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Dry eye is one of the most common ocular surface diseases in the world and seriously
affects the quality of life of patients. As an immune-related disease, the mechanism of dry
eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered
pathway that plays an important role in autoimmune and inflammatory diseases by
recognizing dsDNA. As an important signal to initiate inflammation, the release of
dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the
immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight
into the involvement of dsDNA in the dry eye immune response, and investigated the
mechanism of the cGAS-STING pathway involved in the immune-inflammatory response.
We further proposed that the cGAS-STING pathway may participate in dry eye as a new
mechanism linking dry eye and the immune-inflammatory response, thus providing a new
direction for the mechanistic exploration of dry eye.

Keywords: cGAS-STING pathway, dry eye, dsDNA, inflammation, innate immunity
INTRODUCTION

Dry eye is a multifactorial ocular surface disease that is characterized by the loss of tear film
homeostasis and accompanied by ocular discomfort (1). Tear film instability, hyperosmotic stress,
ocular surface inflammation, and neurosensory abnormalities are the important causes of dry eye
(1). According to the Dry EyeWork Shop II (DEWS II), the global prevalence of dry eye ranges from
5-50% (2), and the discomfort caused by dry eye usually leads to a decrease in quality of life
companied by high incidence of depression and anxiety (3), suggesting that dry eye is becoming a
global public health issue. Inflammation plays a vital role in the pathophysiology of dry eye, but the
mechanisms remain unclear.

The inflammatory response is an important pathological feature of dry eye. The expression of
inflammatory factors (4) such as IL-1b, IL-6, IL-8, TNF-a and IFN-g and infiltrated inflammatory
cells (5, 6), has been shown to be increased on the ocular surface of dry eye patients. Some
inflammatory signaling pathways have been reported to be involved in the pathogenesis of dry eye
(7). For example, hyperosmotic stress activates the NF-kB signaling pathway, which mediates
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inflammatory cytokine release and adaptive immune activation
(8). Therefore, anti-inflammatory therapy [e.g., treatment with
cyclosporine A (9, 10)] is an important treatment for dry eye.
However, there are still some dry eye patients who have no
significant effect on existing treatments (9). Therefore, new
possible mechanisms need to be considered to provide new
possibilities for dry eye treatment.

The cGAS-STING signaling pathway is a recently
discovered inflammatory signaling pathway (11), which has
become a hot topic in various immune and inflammatory
diseases due to its ability to recognize dsDNA and to mediate
the inflammatory response (12). In addition, dsDNA
recognition and activation of inflammatory signaling
pathways have also been reported to be associated with dry
eye (13). Reduced DNA enzyme content and dsDNA
accumulation have been detected in the tears of dry eye
patients (14). Furthermore, hyperosmotic stress activates the
NLRP3-IL-1b signaling pathway through dsDNA oxidative
damage (13, 15). This suggests that dsDNA could play a role in
the pathogenesis of dry eye. Therefore, in this review, we
mainly focused on the mechanism of dry eye inflammation
and the mechanism of the cGAS-STING signaling pathway in
mediating the immune inflammatory response; additionally,
we summarized the mechanism of dsDNA damage and
release, as well as the mediation of the inflammatory
response in a hypertonic environment. Finally, we discussed
the possibility of the cGAS-STING pathway as a new
mechanism in dry eye.
THE MECHANISMS OF
IMMUNOINFLAMMATORY RESPONSES IN
DRY EYE

The Vicious Cycle of Inflammation in
Dry Eye
The immune-inflammatory response is the core pathophysiology
of dry eye. The epithelial cells of the ocular surface can be
damaged by tear hypertonicity, thus leading to the release of a
large number of proinflammatory factors, such as IL-1b, IL-6,
and TNF-a . And then, dendritic cells recognize the
inflammatory cytokines and migrate to drainage lymph nodes
of the neck through lymphatic vessels of the ocular surface.
Dendritic cells further bind with T cells to promote the
differentiation of T cells into Th1 and Th17 cells. The
differentiated T cells enter the blood and reflux to the ocular
surface, after which they secrete inflammatory factors such as
INF-g and IL-17, further leading to epithelial cell damage.
Moreover, the damage to epithelial cells further promotes the
release of inflammatory cytokines, thus forming a vicious cycle of
“injury-inflammation”, which ultimately results in chronic and
persistent inflammation. In addition, this vicious cycle provides
an entry point for any of the factors that can cause dry eye, thus
explaining the diversity of factors in the pathogenesis of dry eye
(7). Regardless of the cause, the core of the pathogenesis of dry
eye is attributed to immune inflammatory responses.
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The NF-kB Signaling Pathway Is the Key
Target Mediating Innate and Adaptive
Immunity in Dry Eye
Many signaling pathways have been reported to be involved in
immune inflammatory responses of dry eye, among which the
NF-kB signaling pathway is the most studied, which has been
confirmed in various dry eye models (16–19). The recognized
role of the NF-kB signaling pathway is to regulate innate and
adaptive immunity. The NF-kB signaling pathway induces the
transcription of proinflammatory cytokines (IL-1b, IL-2, IL-6,
IL-8, IL-12, and TNF-a, among other factors.), chemokines
(MCP-1, IL-18, and CXCL10, among other factors), and
adhesion molecules (ICAM-1, VCAM-1, and MMPs, among
other molecules) in different types of innate immune cells.
These inflammatory mediators can not only directly participate
in the induction of inflammation but also play an indirect role by
promoting the differentiation of inflammatory T cells (20). The
NF-kB signaling pathway can be activated by tear film instability
and increased tear osmotic pressure (2), which induces
downstream inflammatory factors (IL-1b, TNF-a, and IL-6)
and activates antigen-presenting cells and CD4+ T cells to
release IL-17 and IFN-g, thus leading to reduced tear secretion,
corneal epithelial damage, and decreased goblet cells (21). Once
the NF-kB signaling pathway is inhibited, the expression of IL-
1b, TNF-a, and IL-6 on the ocular surface of dry eye, as well as
the activation of immune cells, can be down-regulated (22). In
conclusion, the NF-kB signaling pathway plays an important role
in dry eye. (Figure 1)

The activated NF-kB signaling pathway and downstream
inflammatory response in dry eye are not induced by
infectious pathogens (7), but may be by the endogenous
substance (23). One way to activate inflammatory response is
the cGAS-STING pathway, which recognizes the endogenous
substance to induce NF-kB signaling pathway.
THE CGAS-STING PATHWAY
CONTRIBUTES TO AUTOIMMUNE AND
INFLAMMATORY DISEASES

Induction of the cGAS-STING Pathway
cGAS (24) and STING (25) were first discovered in 2008 and
2013, respectively. The cGAS-STING pathway can recognize
cytoplasmic dsDNA to activate the innate immune response
(12). The C-terminus of cGAS contains a nucleotide transferase
domain with surface grooves on the back (26). The main chain of
sugar-phosphate on dsDNA interacts with the positively charged
residues in the grooves on the surface of cGAS, which changes
the conformation of cGAS and activates it (27, 28). This binding
mode explains why cGAS does not require sequence specificity to
recognize dsDNA; thus, cGAS can sense dsDNA from
cytoplasmic viruses and bacteria, as well as autologous dsDNA.
Activated cGAS converts adenosine 5-triphosphate (ATP) and
guanosine 5-triphosphate (GTP) into cyclic GMP-AMP
(cGAMP), after which cGAMP acts as a secondary messenger
June 2022 | Volume 13 | Article 929230
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to bind and activate STING (29, 30). STING is located in the
endoplasmic reticulum in a dimeric form, the two C-termini of
which form a V-shape and contain the binding site of cGAMP
(31). The conformation of STING changes after binding with
cGAMP, and STING then migrates from the endoplasmic
reticulum to the Golgi apparatus (32), which is necessary to
induce the transcription of type I interferons (33). Furthermore,
STING recruits TBK1 and IRF3 after activation, and IRF3 is
phosphorylated to form a dimer and is ectopic to the nucleus,
thus driving the expression of type I interferons (33, 34).
Additionally, STING combines with TBK1 and IKK to
phosphorylate IkB and to activate NF-kB to become ectopic to
the nucleus (35, 36). Finally, the cGAS-STING pathway mediates
immune-inflammatory responses through IFN and NF-kB.
Frontiers in Immunology | www.frontiersin.org 3
The cGAS-STING Pathway Is Involved in
Autoimmune Disease
By sensing dsDNA, the cGAS-STING pathway has become a key
pathway in autoimmune and inflammatory diseases (Table 1),
such as Sjogren’s syndrome (52), systemic lupus erythematosus
(SLE) (45), and multiple sclerosis (53). As a downstream target of
the cGAS-STING pathway, type I interferon serves as a marker
and potential therapeutic target of systemic autoimmune diseases
(54, 55). TREX1 is a cytoplasmic DNA exonuclease that degrades
accumulated DNA in cells (56). TREX1 mutations can mediate
SLE-like pathological changes (57) with increased type I
interferons, whereas the phenotypes of SLE in Trex1-/- mice
depends on the activation of the cGAS-STING pathway (58). A
large cohort study found that the TREX1 polymorphism is a sign
FIGURE 1 | The role of the NF-kB signaling pathway in dry eye. Hyperosmotic stress induces the activation of the NF-kB signaling pathway, which induces the
releases of proinflammatory cytokines, chemokines and adhesion molecules, and activates antigen-presenting cells and CD4+ T cells. Proinflammatory cytokines (IL-
1b, IL-2, IL-6, IL-8, IL-12, TNF-a) and chemokines (MCP-1, IL-18, CXCL10) can lead to inflammatory responses and goblet cell loss. Chemokines and adhesion
molecules (ICAM-1, VCAM-1, MMPs) can induce T cell migration and corneal barrier disruption. CD4+ T cells could be differentiated into T help cells (TH1 and TH17),
which then release IL-17 and IFN-g, leading to tear secretion reduction, corneal epithelial damage, and goblet cell decrease. NF‐kB inhibitors, including pyrrolidine
dithiocarbamate and sulphasalazine, show therapeutic potential in dry eye by inhibiting NF‐kB activation.
TABLE 1 | Inflammation disease links to cGAS-STING pathway.

Disease Gene Inflammation Improved by cGAS
inhibited or knock out

Improved by STING
inhibited or knock out

Ref.

Age-related macular degeneration Alu RNA IFN-b, IL-18, caspase-4, caspase-11 Yes (37)
Aspergillus fumigatus keratitis TBK1, IFN-b, IL-1b, IL-6 Yes (38)
Acute kidney injury BAX IL-6, ICAM1, CXCL10, GM-CSF, NF-kB Yes Yes (39)
Kidney fibrosis TFAM IL-1b, CCL2, IL-6, TNF-a, NF-kB Yes Yes (40)
Parkinson’s disease Parkin/PINK1 IL-6, IFNb1, TNFa, IL-1b, CCL2, IL-12

(p70), IL-13, IL-17, CXCL1, CCL4
Yes (41)

Myocardial infarction IRF3, IFNb1, CXCL10, IL-6, TNFa, IL-1b, Yes Yes (42)
Aicardi–Goutieres syndrome TREX1, RNase H2 CXCL10, ISGs, MX1, IFN-b1 Yes Yes (43,

44)
systemic lupus erythematosus TREX1, DNase I,

DNase IL3, Fcgr2b
IFN-g, IFN-b, CXCL10, IL-1a, IL-6, TNF-
a

Yes (45–
47)

Alcoholic liver disease IFNb1, IRF3, TBK1 Yes (48)
Nonalcoholic steatohepatitis TNF-a, IL-6, IL-1b, NF-kB Yes (49)
STING-associated vasculopathy with
onset in infancy (SAVI)

IFN-a, IFN-b, ISGs, STAT1 (50,
51)
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of SLE susceptibility, which further strengthens the association
between cGAS and SLE (59). In addition, the serum autologous
DNA level in SLE patients was increased (60), the peripheral
blood cGAMP concentration of approximately 15% of SLE
patients was increased, and the cGAS level was also higher
than that of the control group (61). Similarly, Sjogren’s
syndrome is a common autoimmune disease characterized by
lymphocytic infiltration and inflammation of the exocrine
glands, resulting in decreased secretion of involved glands that
manifests mostly as dry eye and dry mouth (62). The innate
immune response mediated by type I interferons plays an
important role in Sjogren’s syndrome (63, 64). The loss of the
type I interferon receptor can prevent the pathological changes of
Sjogren’s syndrome (65). DNA recognition by DNA receptors is
the main triggering factor for the activation of type I interferons,
and the activation of the cGAS-STING pathway can promote
type I interferons expression by recognizing cytoplasmic DNA
(12). In vivo, activation of the cGAS-STING pathway can
mediate Sjogren’s syndrome-like pathological changes in
salivary glands and lungs (66, 67). Research on the cGAS-
STING pathway in Sjogren’s syndrome is still in the
preliminary stage, and more evidence is needed to prove its
role in Sjogren’s syndrome, thus suggesting that the cGAS-
STING pathway may become a hotspot for future studies on
the innate immune response.

The cGAS-STING Pathway Is Involved in
Inflammation Disease
The cGAS-STING pathway has been confirmed not only to be
involved in autoimmune diseases but also to mediate
inflammatory responses (33). STING-associated vasculopathy
with onset in infancy (SAVI) is an autoinflammatory disease
caused by gain-of-function mutations in STING (50). Gain-of-
function STING mutations induces overproduction of type I
interferons (IFN-a and IFN-b), leading to skin disorder,
inflammatory pulmonary and liver manifestations in SAVI
patients (68, 69). Many proinflammatory factors, including IL-
6, TNF, IL-1b, and IFN-g, were found to be elevated in the serum
of patients with Parkinson’s disease, which is an inflammatory
disease. It has been reported that damaged mitochondria can be
cleared by PINK1 and Parkin via autophagy (70). Prkn-/- or
Pink1-/- mice could mimic the phenotypes of Parkinson’s disease,
which is accompanied by mitochondrial stress responses and the
release of DAMPs, thus leading to the release of a large number
of inflammatory factors through the STING-mediated IFN-I
response, whereas knockout of STING reduced inflammation
and improved the disease phenotype of Prkn-/- or Pink1-/- mice
(41). Furthermore, geographical atrophy is a manifestation of
age-related macular degeneration (AMD) that is characterized by
DICER1 deficiency and the accumulation of endogenous Alu
RNA, which could trigger the release of mitochondrial DNA to
activate cGAS and further induce IFN-b and IL18, as well as
drive caspase 1-, 4-, and 11-related inflammation (37). These
responses ultimately lead to RPE degeneration, thus suggesting
that cGAS-driven inflammasome activation is involved in AMD
Frontiers in Immunology | www.frontiersin.org 4
(37). In mouse models of ischemic myocardial infarction and
drug-induced acute kidney injury, the cGAS-STING pathway
was shown to be activated, thus leading to the release of a large
number of inflammatory factors (71, 72). Downregulation of the
cGAS-STING pathway was found to alleviate inflammation and
relieve ventricular dysfunction and kidney damage (39, 42).
Similarly, in chronic renal fibrosis, the cGAS-STING pathway
was activated due to mitochondrial dysfunction, thus resulting in
the release of inflammatory cytokines and the recruitment of
immune cells, which aggravated renal fibrosis that could be
improved by STING knockout (40). The abovementioned
studies have indicated the role of the cGAS-STING pathway in
inflammation, thus suggesting that it may become a potential
target for the treatment of inflammatory diseases.
THE ROLE OF DSDNA IN DRY EYE

DNA is not only the genetic material of organisms but has also
been found to be a pattern component in innate immune
responses (73). When bacterial infection occurs, bacterial DNA
acts as a foreign antigen to activate the host’s strong innate
immune system and induce the expression of type I interferons,
including IFN-a and IFN-b (74). Furthermore, autologous DNA
can act as an endogenous ligand of DNA receptors, and
overreleased DNA induces innate immune responses and
increases serum type I interferon levels, which are involved in
SLE (75, 76). Anti-ds DNA antibodies have also been detected in
patients with Sjogren’s syndrome (77). These studies have
dramatically changed the traditional view that DNA only acts
as the genetic material of organisms (73). Therefore, we
wondered whether dsDNA could participate in dry eye.

Hyperosmotic Stress Is an Important
Cause of Dry Eye and Mediate the Release
of Nuclear/Mitochondrial DNA
Into the Cytoplasm
In normal cells, DNA is located in the nucleus or mitochondria.
Once damaged, nuclear or mitochondrial DNA is released into
the cytoplasm. Increased extracellular osmotic pressure can
cause damage to corneal epithelial cells (13, 78, 79), the kidney
(80), and cardiomyocyte (81), among other tissues. As the core
mechanism of dry eye, the increased tear osmotic pressure
caused by tear film instability can injure corneal epithelial cells.
The mechanisms are summarized in the following sections.

1. Hyperosmotic stress can mediate increased cellular
oxidative stress. Accumulating evidence has demonstrated that
increased osmotic pressure mediates the accumulation of
intracellular reactive oxygen species (ROS) in human corneal
epithelial cells (HCE), which further induces lipid peroxidation
and increases 4-hydroxynonenal (4-HNE) and malondialdehyde
(MDA) toxic products (79), thus leading to cytotoxic injury. In
addition, aconitase-2 and 8-hydroxy-2 deoxyguanosine (8-
OHdG) in ribosomal and mitochondrial DNA were found to
be increased, whereas antioxidant enzymes, including superoxide
June 2022 | Volume 13 | Article 929230
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dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1), were
reduced (13, 79), thus causing oxidative damage to cellular DNA.

2. Hyperosmotic stress can cause mitochondrial dysfunction.
Compared with nuclear DNA, mitochondrial DNA is susceptible
to various damage factors without the protection of histones and
an efficient damage repair system (82). Under hyperosmotic
stress, mitochondrial nicotinamide adenine dinucleotide
(NADH) diffuses into the cytoplasm, resulting in mitochondrial
depolarization, an increase in the adenosine diphosphate/
adenosine triphosphate (ADP/ATP) ratio, and finally
mitochondrial energy metabolism disorders (83). In addition,
hypertonicity has been shown to induce the high expression of
mitochondrial BCL-2-like protein 4 (Bax) (83), thus leading to an
increase in mitochondrial membrane permeability and the
release of mitochondrial DNA into the cytoplasm (39).

3. Hyperosmotic stress can cause DNA breaks increase. In
hyperosmotic stress, the chromatin nucleus shrinks, followed by
cell apoptosis, which is characterized by DNA fragmentation (81).

In summary, as common causes of dry eye, hyperosmotic
stress can mediate cell damage through cellular oxidative stress,
mitochondrial dysfunction, and DNA scission. Damaged
cytoplasmic DNA may participate in the immune response
mechanism of dry eye, but more research is needed to prove
this supposition.

Oxidative MtDNA Initiates Inflammation in
Dry Eye
Hyperosmotic stress causes DNA oxidative damage and initiates
an inflammatory response. The most direct evidence suggests
Frontiers in Immunology | www.frontiersin.org 5
that hyperosmotic stress can cause overproduction of
intracellular ROS and mtDNA damage. Oxidative mtDNA
increases 8-OHdG expression, which can cause an imbalance
in NLRP3/NLRP6, caspase-1 activation, and the release of IL-1b
and IL-18. By using the antioxidant L-carnitine, the reduction in
mtDNA damage can inhibit the release of IL-1b and IL-18 (84,
85). In addition, 8-OHdG was used as a competitive factor to
block mitochondrial 8-OHdG to suppress the maturity and
secretion of IL-1b and IL-18 (13). These findings provide
strong evidence that oxidative mtDNA may be a direct signal
to initiate the NLR-mediated innate immune response in dry
eye (13).

Extracellular DNA and Neutrophil
Extracellular Traps May Be Involved in
Dry Eye
In addition to nuclear and mitochondrial DNA, extracellular
DNA fragments (eDNA) and neutrophil extracellular traps
(NETs) can be involved in the pathogenesis of dry eye as
autologous DNA. eDNA is any DNA that an organism releases
into the environment. NETs are special structures that form after
neutrophil necrosis or apoptosis and consist of nucleic acid
materials without any other cytoskeletal proteins. Both eDNA
and NETs are types of autologous DNA. eDNA is released from
the intracellular to extracellular space during apoptosis or
necrosis (73, 86). Large amounts of eDNA have been found on
the ocular surface of patients with severe dry eye, and it is mainly
derived from shed corneal and conjunctival epithelial cells. Lack
of DNase in the tears of dry eye patients leads to the
FIGURE 2 | The hypothesis of cGAS-STING pathway activation in dry eye. Hyperosmotic stress induces mitochondrial and nucleafr damage, after which dsDNA
(mainly mitochondrial dsDNA) is damaged and released into the cytoplasm. Cytoplasmic dsDNA is recognized by cGAS, which converts ATP and GTP into cyclic
GMP-AMP (cGAMP) and activates STING. STING migrates from the endoplasmic reticulum to the Golgi apparatus and initiates inflammation via phosphorylation
downstream of TBK1/IRF3 and NF-kB.
June 2022 | Volume 13 | Article 929230
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accumulation of eDNA (14). Furthermore, hyperosmotic stress
can induce neutrophils to release NETs (87). NETs are also
detected in patients with dry eye with increased tear osmotic
pressure (14). In addition, corneal fluorescein sodium staining
and increased inflammatory cytokines were observed in mice
treated with media containing NETs (88). According to DEWS
II, more studies are needed to prove the role of eDNA and NETs
in dry eye, which could be the focus of future studies (7). The
involvement of eDNA and NETs in dry eye provides strong
evidence for our hypothesis that DNA could contribute to the
occurrence of dry eye.

Toll-Like Receptor 9 Recognized DNA
in Dry Eye
As a danger-related molecular pattern (DAMP), DNA can be
recognized by pattern recognition receptors (PRRs) and activate
the innate immune system (89). Toll-like receptor 9 (TLR9) is a
PRR and has been demonstrated to participate in dry eye by
recognizing dsDNA (90). In addition, TLR9 is a sensor that
recognizes CpG fragments in bacterial or viral DNA (91). In the
quiescent state, TLR9 is located in the endoplasmic reticulum.
When infection occurs, the CpG DNA of bacteria or viruses can
enter cells through endocytosis to bind to TLR9 (92). Studies have
shown that eDNA can enter cells and bind to TLR9 (73), which
can activate inflammatory pathways through MyD88 (93, 94) to
initiate the type I interferon response and enhance the adaptive
immune response mediated by dendritic cells (95). In the ocular
surface of patients with dry eye, increased expression levels of
TLR9, MyD88, INF-a, and IFN-b have been detected (14).

The role of TLR9 in the inflammatory response of dry eye
indicates that DNAmay initiate immune-inflammatory responses
in dry eye. The possible mechanism is that eDNA is released after
Frontiers in Immunology | www.frontiersin.org 6
cell death and enters epithelial cells of the ocular surface to be
recognized by TLR9 to initiate the innate immune response (7).
THE HYPOTHESIS THAT CGAS-STING
PATHWAY CAN BE INVOLVED IN THE
PATHOGENESIS OF DRY EYE

In summary, although there is no direct evidence that the
pathogenesis of dry eye is related to the cGAS-STING
pathway, when combined with the current research evidence,
we propose that the cGAS-STING pathway may be a new
mechanism involved in dry eye (Figure 2). The reasons are
as follows.

First, cGAS can be activated by various endogenous/exogenous
dsDNA released into the cytoplasm, whereas factors such as tear
hyperosmotic stress can mediate the release of nuclear or
mitochondrial DNA into the cytoplasm and activate the cGAS-
STING pathway. In addition, eDNA andNETs have been reported
to participate in dry eye, although the specific mechanism has not
yet been elucidated. eDNA and NETs contain dsDNA, thus
indicating the possibility of involvement of the cGAS-STING
pathway in dry eye. Second, the cGAS-STING pathway
eventually activates NF-kB and IFN-a/b, which leads to a series
of immune-inflammatory responses. NF-kB and IFN-a/b are
involved in dry eye. Therefore, we propose that various
pathogenic factors of dry eye may activate the cGAS-STING
pathway through cytoplasmic dsDNA, which further upregulates
NF-kB and IFN-a/b to mediate inflammation in dry eye. Third,
accumulating data suggest that autoimmune diseases are closely
related to the activation of the cGAS-STING pathway, and dry eye
is a common complication of autoimmune diseases such as
A B

D E

C

FIGURE 3 | Hyperosmotic stress induced the activation of the cGAS-STING pathway in HCE. (A-C) The protein levels of cGAS and STING in HCE treated with
hyperosmotic stress for 24h. (D, E) The RT-PCR results of cGAS and STING in HCE treated with hyperosmotic stress for 24h. **P < 0.01, ****P < 0.0001.
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Sjogren’s syndrome. Hence, the cGAS-STING pathway may also
be involved in dry eye (Figure 2).

To verify our hypothesis, we will first detect the association
between the cGAS-STING pathway and dry eye in mice. The
mRNA and protein levels of cGAS, STING, TBK1, IRF3, NF-kB
and inflammatory cytokines (INF-a/b, IL-6 and CXCL10) in the
cornea of normal and dry eye mouse models will be detected by
PCR and Western blot. And then, STING-/- mice or topical
application of C-176 (96), a STING inhibitor, will be used to
assess the corneal fluorescein staining and number of goblet cells,
which will provide evidence for the therapeutic potential by
inhibiting cGAS-STING pathway in dry eye.

Next, HCE will be treated with hyperosmotic stress to
construct an in vitro dry eye model. In such a model, the
cGAS-STING pathway and inflammatory cytokines will be
detected, which will be further verified by knock-downing
cGAS or STING using siRNA. In our preliminary study, we
found that hyperosmotic stress could induce the activation of
cGAS-STING pathway (Figure 3, unpublished data).

Finally, we will detect cytoplasmic dsDNA in hyperosmotic
stress-treated HCE by dsDNA staining and mitochondrial DNA
PCR, which will be further verified by using ethidium bromide
(EtBr), a reagent to block the replication of mtDNA.
CONCLUSION AND OUTLOOK

Dry eye is one of the most common ocular surface diseases. To
explore the pathogenesis of dry eye can help us better
Frontiers in Immunology | www.frontiersin.org 7
understanding and treating dry eye. Immune-inflammatory
responses are the core pathologies of dry eye, and increasing
evidence supports a central role for the cGAS-STING pathway in
autoimmune and inflammatory diseases. Although there is no
clear evidence to show whether the cGAS-STING pathway is
involved in dry eye, based on the current research, we speculate
that the cGAS-STING pathway may be a new mechanism that
causes dry eye, and targeting the cGAS-STING pathway might be
potential therapeutic strategy, which could pave the way for
precision treatments and drug development of dry eye and is
worthy of further study.
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