
MAGNETIC RESONANCE

Implementing diffusion-weighted MRI for body imaging
in prospective multicentre trials: current considerations
and future perspectives

N. M. deSouza1 & J. M. Winfield1
& J. C. Waterton2

& A. Weller1 & M.-V. Papoutsaki1 &

S. J. Doran1
& D. J. Collins1 & L. Fournier3 & D. Sullivan4

& T. Chenevert5 & A. Jackson2
&

M. Boss6 & S. Trattnig7 & Y. Liu8

Received: 30 November 2016 /Revised: 24 May 2017 /Accepted: 28 June 2017 /Published online: 27 September 2017
# The Author(s) 2017. This article is an open access publication

Abstract
For body imaging, diffusion-weighted MRI may be used for
tumour detection, staging, prognostic information, assessing
response and follow-up. Disease detection and staging involve

qualitative, subjective assessment of images, whereas for
prognosis, progression or response, quantitative evaluation
of the apparent diffusion coefficient (ADC) is required.
Validation and qualification of ADC in multicentre trials
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involves examination of i) technical performance to deter-
mine biomarker bias and reproducibility and ii) biological
performance to interrogate a specific aspect of biology or
to forecast outcome. Unfortunately, the variety of acquisition
and analysis methodologies employed at different centres
make ADC values non-comparable between them. This inval-
idates implementation in multicentre trials and limits utility of
ADC as a biomarker. This article reviews the factors contrib-
uting to ADC variability in terms of data acquisition and anal-
ysis. Hardware and software considerations are discussed
when implementing standardised protocols across multi-
vendor platforms together with methods for quality assurance
and quality control. Processes of data collection, archiving,
curation, analysis, central reading and handling incidental
findings are considered in the conduct of multicentre trials.
Data protection and good clinical practice are essential prereq-
uisites. Developing international consensus of procedures is
critical to successful validation if ADC is to become a useful
biomarker in oncology.
Key Points
• Standardised acquisition/analysis allows quantification of
imaging biomarkers in multicentre trials.

• Establishing Bprecision^ of the measurement in the
multicentre context is essential.

• A repository with traceable data of known provenance pro-
motes further research.

Keywords Diffusion-weightedMRI .Multicentre trials .

Quality assurance . Quantitation . Standardization

Essentials

1. When utilizing the Apparent Diffusion Coefficient (ADC)
as an imaging biomarker in multicentre trials, processes
that standardise data acquisition and analysis within a
framework of Quality Assurance and Quality Control
are mandatory.

2. Test-object and healthy volunteer studies should be used
to develop an imaging protocol for multi-vendor, multi
field-strength use and establish the precision of the ADC
measurement within a multicentre trial context.

3. A streamlined workflow for data curation, archiving and
analysis in a central repository ensures traceable data within
the trial as well as its preservation for further research.

Patient Impact

1. A standardised ADC measurement would enable incor-
poration of an imaging biomarker of response as an
early end-point in multicentre trials of cancer therapies.

2. A standardised ADC measurement in longitudinal stud-
ies could be utilized as a prognostic biomarker in on-
cology and for stratifying patients for therapeutic
interventions.

Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI)
provides unique soft tissue contrast and is nowused in tumour
detection, staging and for monitoring response to treatment in
avarietyof tumour types [1–8]. Itmaybeutilized qualitatively
(binary, normal vs. abnormal), semi-quantitatively (scoring
system, e.g., grade I-V) or quantitatively (continuum, derived
numerical values).Qualitative assessments are quick and easy
for the expert radiologist but are variable in interpretation.
Objective semi-quantitative (scoring systems) or quantitative
(numerical) assessments are more robust; the latter deliver
information beyond visual perception.

The apparent diffusion coefficient (ADC) derived from
DW-MRI describes the diffusion of a water molecule proton
(typically over 10-40 μm during 10-100 msec) and reflects
tissue microstructure and its remodelling. This is interesting
for drug developers as it sits in the Bpharmacologic audit trail^
[9] downstream of a target and its pathway (thereby uniting
many therapy classes), but upstream of macroscopic disease
modification (thus making it suitable for early readouts). Such
quantitative measurements potentially offer earlier indicators
of response than conventional size criteria, with ethical and
economic benefits for sponsors and pharmaceutical compa-
nies as well as for patients and society in general. The imple-
mentation of DW-MRI, however, is variable across scanner
platforms [10], tissue-type being studied and methods of in-
terpretation and analysis. Consensus on image acquisition and
analysis methods must be reached before embarking on a clin-
ical trial and measures put in place to standardise the process
across centres. Furthermore, the utility of quantitative ADC
metrics as response biomarkers depends on the variability of
the measurement, which must be established and minimized.
This article reviews current knowledge of factors that require
consideration (equipment, technical development, quality
control, infrastructure, expertise and governance issues) when
acquiring and analysing DW-MRI data prior to adopting ADC
as a biomarker in multicentre trials.

Data Acquisition

Hardware and software considerations

Over the last decade significant hardware improvements have
enhanced data acquisition. Signal-to-noise ratio [SNR]
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improvements have resulted from higher field strength (3T),
improved magnetic field gradient performance (increased max-
imum gradient amplitudes and ramp rates), improved digital
radiofrequency (RF) chains and receiver technology with mul-
tiple receiver arrays. Advanced digital compensation schemes
further mitigate gradient-induced eddy currents reducing image
distortion and blur. Although DW-MRI at 3T initially struggled
to match the quality of large field-of-view (FOV) 1.5T DW-
MRI images because of inhomogeneity of the static magnetic
field (B0), recent advances in automated correction (shimming)
and improvements in static field homogeneity have made mod-
ern 3T platforms viable options for body imaging. In normal
volunteers, ADC values of upper abdominal organs are
comparable across field strengths; however, the coefficient
of variation, (CoV) of the liver was 1.5 - 2.0 times greater
at 3.0T compared to 1.5-T [11], emphasising that suitabil-
ity for inclusion in a multicentre trial requires assessment
of individual scanner performance.

Optimising a DW-MRI protocol

Protocol optimisation is often scanner-specific as available
measurement and artefact [12] reduction techniques vary be-
tween manufacturers, models and software versions.
Geometric distortion associated with the static magnetic field
can be reduced by using methods to correct field inhomoge-
neity (advanced shimming) and by increasing the readout
bandwidth [13–15]. Distortions arising from eddy-currents
can be diminished by reducing the diffusion-weighting
(maximum b-value) and other sequence parameters (echo-
train length, matrix) or by employing gradient schemes such
as the twice-refocused spin echo [16] that compensate for
eddy-currents, as well as by using post-acquisition image reg-
istration routines [17]. Ghosting artefacts (displaced re-
duplications of the image) can be reduced by adjusting the
receiver bandwidth and echo time.

Depending on the disease, an optimal selection of b-values
[18] is needed with considerably more b-values required if the
signal decay with increasing b-value is to be fitted to non-
mono-exponential functions [19]. To avoid confounds from
perfusion, b-values of <100 s/mm2 should be avoided: maxi-
mum b-values of 800 to 1000 s/mm2 are usual in body appli-
cations (Fig. 1) [20] but their range may need optimisation for
specific tumour types. Noise characteristics influence the
maximum b-value used in practice. The number of signal
averages may be increased at higher b-values to increase
SNR [21]. Most DW-MR images are acquired in free-
breathing, averaging the signal over physiological motion.
Respiratory triggering, using bellows or a navigator, has
not shown advantages over multiple averaged free-
breathing in estimation of ADCs in abdominal organs
[22, 23]. Cardiac triggering has been explored in the upper
abdomen [24]. Anti-peristaltic agents reduce image blur

arising from peristaltic motion in abdominal and pelvic
DW-MRI and multishot techniques may offer some advan-
tages over single-shot techniques in reducing distortion
from air within bowel [25].

Parallel imaging reduces geometric distortion, but reduces
SNR. The extent of the imaging volume along the scanner
bore (z-axis) should be limited to around 25 cm (depending
on scanner capability) to mitigate bias in ADC estimates due
to spatial non-linearities in diffusion-encoding gradients [26].
For larger volumes, multiple imaging stations can be acquired
at the isocentre of the magnet sequentially [27]. Acquisition of
multiple stations requires software tools to normalize station-
to-station signal variation and the ability to compose the im-
ages into a single series for a given diffusion-weighting (b-
value). At 1.5T, spectral fat-suppression techniques are often
used for abdominal, pelvic or small FOV applications, while
inversion recovery is used for whole-body DW-MRI and in
regions of poor static magnetic field homogeneity. Fat sup-
pression at 3T is more challenging, and the preferred method
may vary between scanners; combinations of suppression
techniques may be required [28]. Some consortia such as
the Quantitative Biomarkers Imaging Alliance (QIBA)
and the European initiative Quantitative Imaging in
Cancer-Connecting Cellular Processes to Therapy (QuIC-
ConCePT) have been working on standardisation and op-
timisation of DW-MRI acquisition protocols, and techni-
cally validated protocols, e.g., in liver and lung are avail-
able to the public [29, 30].

In multi-centre trials, compromises may be required in ac-
quisition parameters in order to achieve an acceptable degree
of standardization whilst maintaining good image quality on
all scanners [12]. A current list of multicentre trials reporting
DW-MRI as a readout in body imaging applications is listed in
Table 1.

Setting up Quality Assurance: Test Objects

According to metrology standards of quantitative imaging
biomarkers (QIB) [39], measurement performance should be
evaluated by assessing repeatability, reproducibility, linearity
and metrics of bias. Test-object measurements yield practical
estimates of the bias and the repeatability of each clinical MRI
system and can be used to compare technical accuracy across
the systems [40]. Precise measurement of ADC is important
since the dynamic range of the biomarker is quite small, from
approximately 0.5×10-3 mm2/s in densely packed cells to
3×10-3 mm2/s in fluid-filled cysts.

Ice-water test-objects comprising multiple tubes with dis-
tilled water at 0°C and one of sucrose solution [30, 41] have
been used but did not provide a sufficient range of ADC esti-
mates. Following this, an ice-water test-object containingmul-
tiple sucrose samples doped with metals to reduce relaxation
times to physiological values was presented [42] and utilized
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[12] for optimising a diffusion-weighted protocol in a multi-
centre setting. Solutions of polyvinylpyrrolidone (PVP) in
water embedded in an ice-water filled sphere [43] or cylindri-
cal vessel [44], remain limited in their range of ADCs (Fig. 2).
More specific test-objects have assessed ADC uniformity
[12], ghosting and distortions [45, 46].

Test-objects at room temperature are more convenient to
prepare than those with ice-water and have been used in
single-centre studies [47, 48] but require correction from a
temperature-controlled experiment [47] to account for temper-
ature dependence of ADC. The performance of routine test-
object evaluations in multi-centre trials involving DW-MRI,
their frequency and pass-fail criteria, depends on the trial de-
sign and the nature of the imaging endpoint. Test-objects with
the required range of ADCs need to be supplied and utilized at
participating centres.

Role of Healthy volunteer studies

Test-objects lack the necessary variation in tissue structure,
geometry and motion experienced when imaging humans.
Therefore, several trials have built in normal volunteer assess-
ments during set-up.

Optimisation [49] and refinement of the DW-MRI mea-
surement, e.g., multiband techniques [50], Zonal Oblique
Multislice [51] and diffusion tensor imaging (DTI) can be
assessed [52]. Protocols can also be tailored to underlying
tissue structure e.g., lower b-values in pancreas [53] and
tolerable versions for clinical use can be developed. Data
analysis methods can also be optimised by seeking the best
model fits of data from normal tissue [54] which can then
be used as a comparator with pathological tissue to inves-
tigate structural differences [55].

Healthy volunteer studies are also useful for establishing
physiological variation and reference values for disease e.g.,
in liver [56], bladder [57], bonemarrow [58] and breast [59, 60].

Finally, normal volunteer studies are invaluable for study-
ing technique repeatability: coefficient of variation of mean or

median ADC estimates in breast 8%,[61] in liver 5.1% [62]
and in skeleton 3.8% [63] have been reported. Inter-scanner
reproducibility of volunteer data in neurological [64] and ab-
dominal [11] applications provides re-assurance that, with
standardisation DW-MRI is suitable for use in multi-centre
clinical trials.

Data Storage and Analysis

Data archiving, Transfer and Curation

A contemporary data archiving framework (termed a
Research PACS [65]) needs to consider three important areas:

& A data storage platform that is resilient, secure and scal-
able and attached to multiple redundant servers. The ob-
ject store is a currently popular example [66].

& A database and associated application program interfaces
(APIs) for uploading, querying and downloading data. At
present, so-called relational (SQL) databases dominate but
the era of Big Data is seeing increasing use made of
noSQL concepts.

& User-facing components that allow a user to access and
interact with the data, e.g., a web browser interface and a
toolkit of research applications.

The extensible Neuroimaging Archive Toolkit (XNAT), an
open-source platform (Neuroinformatics Research Group,
Washington University, St. Louis,MO,USA) has recently
gained significant traction among academic groups as the
foundation for such a Research PACS. However, several
dedicated clinical trial management systems are also avail-
able commercially. Whichever product is used, standard
operating procedures (SOPs) must be developed and used
for staff training with both trial protocols and legislation
vis-à-vis data handling.

Fig. 1 Diffusion-weighted-MRI in relapsed peritoneal cancer: Axial b-
value=900 mm2/s (A) and image through the mid pelvis showing an
irregular mass (arrow), with restricted diffusion contoured using a semi-

automated region-growing tool. The tumour shows relatively limited sig-
nal decay with increasing b-value on the apparent diffusion coefficient
map (B), and appears dark compared to normal tissues (arrow)
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Figure 3 presents a schematic of the workflow adopted
within multicentre imaging trials. Clear organisation of multi-
ple data types in a central hub brings significant time-savings
when retrospective analysis is required [68] and all-electronic
data transfer is now rapidly superseding the former practice of
posting digital video discs (DVDs) containing trial images.
Information governance is implemented via the use of desig-
nated staff who exercise a Bgatekeeping^ role. Data
anonymisation by removal and/or replacement of metadata
fields in the DICOM files requires a technical understanding
of the processing to be done as well as knowledge of trial
design and legal expertise. Data protection is achieved by
designing robust systems, often including an element of geo-
spreading, whilst prevention of unauthorised access is
achieved by restriction on an IP address (implemented via
appropriate firewall rules), user authentication and role defi-
nitions within database software. If a patient withdraws con-
sent, it is possible to remove completely the data from the
cohort used for ongoing analysis, but it is likely to prove
impossible to remove these data from any summary statis-
tics that have already been published, or any data record
deposited as part of the publication process. Government
bodies have guidelines pertaining to procedures required to
ensure data integrity and compliance with information
governance legislation [69].

Software for image processing

As the variability of the measurement at low diffusion-
weightings is high [70] and the signal decay is exponential,
a low b-value of 100-150 s/mm2 is preferred when fitting a
monoexponential function to derive ADC to reduce the influ-
ence of perfusion or flow effects on the measurement
(Fig. 1B). Computed DW-MRI, (e.g., b=2000 s/mm2), im-
proves DW-MRI contrast without any measurement penalty
[71] but does not contribute to quantitation.

In DW-MRI, the use of non-mono-exponential models
(stretched exponential, kurtosis, statistical and bi-exponential)
[72–76] probe aspects of tissue microstructure [77] and differ-
ences between tumour sub-types or inter-tumour heterogeneity
[78–83]. They may also provide an earlier indication of re-
sponse to treatment than ADC estimates [84, 85]. Selection
of the most appropriate model remains an area of active re-
search: use of a model with many additional parameters risks
over-fitting the data and may be sensitive to noise characteris-
tics of the system rather than structural properties of the tumour
or normal tissue. Vendor-supplied software to support calcula-
tion of these alternative diffusion attenuation models would
help address some of these issues [77–86].

Finally, retention of tumour segmentations allows quality
control (QC) review of data reduction procedures, as well as
facilitating retrospective trial of alternative diffusion metrics
drawn from the same 3-D segmentation objects stored at theT
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pixel level [87]. As interobserver concordance is dependent on
extent of sampling [88], the method of segmentation should
be clearly recorded, for example, whether whole tumour or
selected slices are segmented, and whether necrotic or cystic
areas are excluded. A manual, semi-automated or automated
method could also introduce variability in the measurement
[89] and should be standardised.

Maintaining quality standards across centres
through the life of a trial

QC and Data cleaning

Following set-up and Quality Assurance (QA), tests should
be carried out at the beginning of the study to assess the
baseline performance of each scanner, followed by regular
QC tests over the course of the study (particularly after
servicing and software upgrades) to detect changes in per-
formance (Table 2). The frequency of tests and defined
action limits, which specify the range of acceptable values
may be study-dependent.

Within a multicentre trial, QA and QC procedures for im-
aging depend on the role of imaging in the trial [90].
Qualitative interpretation does not require the same level of

QA/QC as for deriving quantitative data. The ROI size and
number of pixels within it are crucial for quantitative assess-
ments, particularly as many studies now address ADC distri-
bution rather thanmean ormedian values. Operational support
for imaging QA and QC should be in place at trial setup and
through the life of the trial (Table 2). A standardised and
optimised acquisition protocol, which acknowledges vendor
differences and incorporates acceptable and non-acceptable
deviations should be defined and supplied to sites upfront.
Acquisition of test data (test-objects, volunteers) reduces the
likelihood of poor quality or non-evaluable imaging data be-
ing acquired from the first patient in the study; occasionally
the first 1 or 2 patients may be considered as Brun-in^ to assess
site compliance and data quality. From an ethical perspective,
the intention must be for all included patients to contribute
analysable data. However, if sites find it difficult to comply
with the protocol, or if the first few patients' data are of poor
quality, it may be necessary to discard those data following a
protocol amendment to improve the methodology.
Prospective QC with timely and informative feedback to the
site enables supplementary correction to be taken and avoids
non-assessable poor quality data at the end of the trial. Site
upload of anonymised data via a web-based system requires
training so that data are securely handled and correctly coded
for inclusion in the trial imaging database.

Fig. 2 Test-objects for Quality
Assurance in diffusion-weighted
imaging: Spherical PVP phantom
produced by QIBA and NIST (A)
and corresponding axial ADC
map (B); Cylindrical PVP phan-
tom produced at The Institute of
Cancer Research UK and used for
EU multicentre trials within the
QuicConCePT consortium (C)
with the corresponding ADCmap
(D). The regions of interest in B
and D denote the concentration
(volume/volume) of PVP in water
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Assessing measurement variability

Measurement uncertainty arises from differences in acquisi-
tion (hardware and software differences between scanners as
well as within scanners variations due to use of different pro-
tocols) plus post-processing parameters, longitudinal changes
or ‘drift’ in MRI signal when using the same scanner over the
study period as well as from natural physiological variation
within and between study participants. The Radiological
Society of North America (RSNA) Quantitative Imaging
Biomarkers Alliance (QIBA) recommends that evaluation of
biomarker reliability includes analysis of precision and bias
estimation, plus measurement linearity, by comparison with
an accepted reference or standard measurement [91]. For
DW-MRI, in vivo physiological references are not available

for bias/linearity measurements and these are extrapolated
from phantom studies [20, 39, 91, 92].

Assessment of technical performance of an imaging bio-
marker includes measurement variability arising through dif-
ferences between scanners (same patient, different scanners)
[11], imaging protocols [93] and post-processing methods
(such as different analysis software, lesion segmentation
methodologies [94] and imaging readers [91, 92, 95]).

In trial design, the context in which the biomarker is being
utilized dictates the measurement variations that must be
accounted for. If measuring therapy-induced change, where
it is usually possible to image each patient on the same scanner
and for all analysis to be carried out by the same investigator,
precision estimation is limited to repeatability [39]. For studies
aimed at prognostication or lesion characterisation, ADC

Fig. 3 Data flow during a typical clinical trial curation process: Steps
marked BIG^ involve an information governance aspect, which will be
determined by the ethics protocols attached to the trial. Local evaluation
(not included as part of this trial workflow schematic) is a critical part of

on-going patient care and is performed in context of clinical data, which
centralized reading is not. The Bresearch PACS^ [65] referred to is pro-
vided by the eXtensible Neuroimaging Archive Toolkit (XNAT) [67]
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values will be compared between individuals or across insti-
tutions and as it is necessary to know whether a measured
difference represents a true difference, measurement uncer-
tainty including statistical appraisal due to reproducibility
must be evaluated.

Coefficients of variation at different anatomic locations are
in the range 3-10% [20, 96]. Inter-vendor two-site reproduc-
ibility coefficients of variation range from 14-27% [20]. In
multicentre trials, a measured difference should be outside
the 95% limits of agreement of the measurement uncertainty
expected in a multicentre trial setting for it to be attributed to a
true treatment-related difference. Alterations in lesion geome-
try also may affect segmentation thresholds and need consid-
eration when making longitudinal measurements [97].

Good Clinical Practice (GCP)

Clinical trials of investigational drugs and devices must com-
ply with International Conference on Harmonisation GCP if
they are intended to support regulatory approval [98]. For
multicentre imaging studies, challenges exist in ensuring that
different makes and models of MR scanner yield comparable
data [90] and maintaining compliance with unfamiliar proto-
cols at trial centres. The Food and Drug Administration has
specific guidelines to help ensure that imaging biomarkers are
measured in accordance with the trial’s protocol [99], and that
quality is maintained over time and between sites: it recom-
mends that sponsors employ an BImaging Charter^, ancillary
to the trial protocol, which defines the imaging process in
exhaustive detail. Sponsors often engage specialist Imaging
Clinical Research Organisations to perform site qualification
and training, phantom-based QA/QC, pilot studies, data man-
agement and analysis. Double baseline studies are valuable in
verifying repeatability [100], although the additional burden
may deter patients, sponsors and ethical committees.

Reporting considerations for clinical governance

Performing imaging in clinical trials risks discovery of inci-
dental findings (IFs) that may require action and, therefore,
require review by a trained diagnostician [101]. Ethical and
legal issues surrounding IFs are a key element of the duty of
care owed by researchers to study participants (Table 3).
Generic recommendations are offered by the National
Institute of Health in the USA and Royal Colleges in the UK
(Table 3). No specific recommendations have yet been pro-
posed for studies utilising DW-MRI.

A report of whole body DW-MRI in healthy volunteers has
shown IFs in 29% of subjects. Of these 30.6% were consid-
ered of ‘moderate significance’ and 10.2% ‘high significance’,
requiring specialist review but only a minority of scans re-
quired further action [102]. In myeloma, IFs were seen in
38% (67/175) of examinations, 20% of findings were equiv-
ocal and after specialist radiologist and clinical review, only
3% of cases prompted further investigation. It is mandatory to
introduce an image review process, triage and referral path-
ways embedded into trial design and reflected in consenting
procedures. For multicentre trials, this system should account
for the logistical hurdles that arise due to data storage and
delays in data viewing. For cases where data are interpreted
centrally, procedures should define a reporting mechanism, so
that IFs discovered centrally prompt action locally.

Proposals for future workflow

A summary of factors that need to be addressed to ensure that
ADC is accurate and reproducible across multiple centres to-
gether with recommended actions is given in Table 4.
Consideration of these enable guidelines and drug approvals
to be written and implemented consistently so that

Table 2 Quality assurance and quality control considerations for imaging in multicentre clinical trials

Quality Assurance (QA) Quality Control (QC)

Why To prevent errors and defects through planned and systematic actions To identify and correct defects through a reactive process
Benchmarking

When Before trial activation Over duration of trial

What • Assure scanner calibration with a test object covering the desired
range of ADC

• Define minimal quality parameters needed to achieve required accuracy
• Assure standardised acquisition by a master guideline
• Assure correct acquisition before real patients by a human volunteer scan
• Appropriate site training about all requirements and procedures

and consider learning curves

• Control of data anonymisation and completeness
• Control of data compliance to the imaging guideline
- Limited control- randomly selected
- Full control- all patients and all time points

How • Implement standardized acquisition parameters that take account
of variations in image geometry (anatomy, coverage)

• Establish trial specific standard operating procedures (SOPs)
• Establish trial management plan
• Use a secure imaging platform accessible to named personnel at all trial sites

• Check scan quality with pre- defined criteria
• Provide feedback to local sites
- Retrospectively (by batch or at the end of the trial)
- Prospectively (ongoing basis)
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repeatability is smaller than the clinically-significant changes
sought in a clinical trial or trial-of-therapy [103]. MR instru-
ments must be designed and maintained so that selected
diffusion-weightings are imposed faithfully, sufficient gradi-
ent strengths must be provided to allow adequate diffusion-
weighting where T2 is short, pulse sequences, k-space trajec-
tories and analysis modules must be integrated, the number of
measurements (signal averages) optimised, nomenclature

standardised and technical details retained in public DICOM
image fields.

Once the reliability of the ADC has been established, tu-
mour heterogeneity of the biomarker may provide further op-
portunity for tumour mapping (spatial display of quantitative
parameters) to guide surgery or radiotherapy. Locations above
(or below) a cut-off may be selected for targeting. There is
some regulatory precedent for such a workflow with the US

Table 3 Recommendations for dealing with Incidental Findings

Questions arising from research scan NIH recommendation (reproduced from Wolf [88])

Do researchers have an obligation to examine their data for IFs? ‘It is unrealistic to place on researchers an affirmative duty
to search for IFs’

What should be done if an IF is detected - should it prompt specialist
referral for definitive diagnosis?

‘Obligation to establish a pathway for handling IFs and communicate
that to the Independent ethics committee/review board and research
participants’

What should the research participant be told? ‘In many, but not all circumstances, researchers have an obligation
to offer to report IFs to participants’

What should research protocols and consent forms include relating to
IFs, should the right to refuse knowledge of IF be addressed?

‘Researchers have an obligation to address the possibility of discovering
IFs in their protocol and communications with the IRB, also in
consent forms and communications with research participants’

Key NIH recommendations for addressing IFs:
• Plan for the discovery of IFs in study protocol and IRB communication
• Plan to verify and evaluate a suspected IF with expert review if necessary
• Researchers and IRBs should create and monitor pathways for IFs
• Address IFs in the consent process
• Plan to determine whether to report IFs, based on likely health importance:

a. Strong net benefit to health from reporting IF
b. Possible net benefit
c. Unlikely net benefit

• Address the potential for IFs in future analyses of archived data

Table 4 Summary of factors contributing to ADC variability in multicentre trials and measures required to reduce them

Factors affecting multicentre
DW-MRI variability

Steps to reduce ADC variability

Low SNR of data Higher field strength, receiver technology (arrays), digital compensation schemes, optimal sequence
parameters (including b-values), increased signal averages, interpolation of single pixels/voxels

Image distortion Eddy current compensation, improved B0 homogeneity (shimming), increased bandwidth, lower
b-values, reduced ETL and matrix

Ghosting artefacts Adjust receiver bandwidth and echo-time

Motion artefacts Breath-hold, respiratory triggering, cardiac triggering, antiperistaltic agents if necessary

Statistical errors due to region
of interest size

Specify a minimum lesion size for inclusion into the trial; specify ROI size, increase signal averages

Quality Assurance measures Standardised test objects, standardised operating procedures for their use and pass/fail criteria

Test-retest repeatability data Build test-re-test baseline scans into trial protocol for a subset of patients at each site

Quality Control measures Longitudinal review of repeated test object data from each site for the duration of the trial

Data Transfer, Curation and access Dedicated server and written standardised procedures within the trial protocol for data anonymisation,
transfer to dedicated software platform and access by trial researchers

Image processing methodology Robust standardised software (preferably FDA approved or CE marked) that can be accessed by
observers from multiple sites to validate reproducibility of results.

Standardised segmentation methods (2-D or 3-D, inclusion/exclusion of necrotic areas, manual vs
semi- automated or automated ROI definition)
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approval of [99mTc]-tilmanocept uptake above cut-off as a
biomarker for surgical removal of lymph nodes in patients
with breast cancer or melanoma [104]. Again, as a prognostic
or predictive biomarker, it may be the proportion of the tu-
mour above (or below) an ADC cut-off which is of interest,
just as with hypoxia biomarkers [105], rather than the average
across a tumour. For acute response biomarkers and trial-of-
therapy biomarkers, a more ambitious workflow is functional
diffusion mapping [97, 106], which attempts to correlate
changes voxel-wise between baseline and follow-up. This ap-
proach requires that specific voxels at baseline correspond to
specific voxels at follow-up, an assumption which may be
difficult to validate.

It is unlikely that ADC will find a decision-making role in
healthcare until vendors incorporate adequate ADC reliability
into scanner maintenance (just as RECIST relies on dimen-
sional accuracy verified by scanner maintenance). However,
vendors are unlikely to consider that it is a good use of their
resources to provide and maintain accurate ADC measure-
ments until there is a demand from their customers, the radi-
ologists; these radiologists are unlikely to demand accurate
ADC measurements until there is an evidence base from
multicentre trials to show the impact of ADC measurements
on health outcomes, and such an evidence base is difficult to
collect unless scanners routinely generate accurate ADC mea-
surements. Expert groups and consortia such as QuIC-
ConCePT, EIBALL (European Biomarkers Alliance),
NCI-QIN (Quantitative Imaging Network) and QIBA are
essential in supporting standardisation to break us out of
this vicious circle and enable ADC quantitation to enter
clinical workflows.

In conclusion, the use of ADC as an imaging biomarker in
multicentre trials demands processes that standardise data ac-
quisition and analysis within a framework of Quality
Assurance and Quality Control. Test-object and healthy vol-
unteer studies should be used to develop an imaging protocol
for multi-vendor, multi field-strength use and establish the
accuracy of the ADC measurement. Finally, data storage in a
central trial repository ensures traceability as well as data pres-
ervation for further research.
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