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ABSTRACT: The elucidation of aggregation rules for short
peptides (e.g., tetrapeptides and pentapeptides) is crucial for the
precise manipulation of aggregation. In this study, we derive
comprehensive aggregation rules for tetrapeptides and pentapep-
tides across the entire sequence space based on the aggregation
propensity values predicted by a transformer-based deep learning
model. Our analysis focuses on three quantitative aspects. First, we
investigate the type and positional effects of amino acids on
aggregation, considering both the first- and second-order
contributions. By identifying specific amino acids and amino acid
pairs that promote or attenuate aggregation, we gain insights into
the underlying aggregation mechanisms. Second, we explore the
transferability of aggregation propensities between tetrapeptides
and pentapeptides, aiming to explore the possibility of enhancing or mitigating aggregation by concatenating or removing specific
amino acids at the termini. Finally, we evaluate the aggregation morphologies of over 20,000 tetrapeptides, regarding the
morphology distribution and type and positional contributions of each amino acid. This work extends the existing aggregation rules
from tripeptide sequences to millions of tetrapeptide and pentapeptide sequences, offering experimentalists an explicit roadmap for
fine-tuning the aggregation behavior of short peptides for diverse applications, including hydrogels, emulsions, or pharmaceuticals.
KEYWORDS: short peptides, complete sequence space, molecular dynamics, deep learning, aggregation rules, transferability relation,
aggregating morphologies

1. INTRODUCTION
Peptide aggregation is a widely observed phenomenon in both
natural contexts and the human environment. It refers to the
association of peptide monomers into oligomers and the
subsequent combination into exquisite or amorphous supra-
molecular assemblies, a process primarily driven by non-
covalent interactions such as hydrogen bonding, electrostatic
interactions, and van der Waals forces.1,2 The importance of
peptide aggregation has been recognized for a long time, and it
has a 2-fold nature. On the one hand, peptide aggregates can
be developed into various applications such as semiconductors
and batteries,3,4 fluorescent probes and ligands,5,6 and drugs
and nutraceuticals.7−9 On the other hand, the aggregation of
peptides is involved in more than 20 diseases, such as
Alzheimer’s disease,10 Parkinson’s disease,11 and type II
diabetes.11 Elucidating the aggregation mechanisms of peptides
under aqueous or cellular conditions is of great significance for
controlling the degree of aggregation (promoting or mitigat-
ing), which in turn has tremendous biomedical and practical
relevance.
The primary sequences driving aggregation in polypeptides

and proteins are short peptides of less than 10 amino acids. For
example, the Aβ16−22 peptides are the main driving force for
the aggregation of full-length amyloids.12 Therefore, in this
research, we focus on deducing the aggregation rules of short

peptides, i.e., impact of the type and position of individual
amino acids on aggregations within the entire sequence space
of tetrapeptides and pentapeptides comprising 160,000 and
3,200,000 sequences, respectively. We constrain our inves-
tigation conditions to aqueous solutions (omitting the
complexity of cellular environments with varying pH levels,
solvents, or the presence of cellular substances such as
proteins) in order to provide peptide aggregation rules under
a set of experimental parameters that are readily reproducible
and easily accessible.
The peptide sequence, which contains information on the

type and position of the amino acids in a peptide, not only
determines whether the peptide can aggregate or not but also
governs the morphologies of the resulting aggregates.13

Research into the formation mechanism and exquisite control
of morphologies at the molecular level is crucial for modulating
various properties of aggregates (such as mechanical, optical,
and electronic properties) for the development of versatile
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applications.14−16 Therefore, in this research, we also perform
over 20,000 coarse-grained molecular dynamics (CGMD)
simulations of tetrapeptide aggregation for 1.25 μs. By
comparing computational and experimental data, we provide
a comprehensive analysis of the type and position effects of
amino acids on the morphologies of the resulting aggregates.
With the development of simulation and machine learning

approaches, pioneering work on sequence-based peptide
aggregation is on the rise. In 2014, Frederix et al.17 used
CGMD to study the aqueous aggregation propensities and
morphologies of 8000 tripeptides. Since the design rules
generated by Frederix et al. are based on tripeptides containing
only three amino acids, it would be challenging to predict
which termini are the preferred positions of the 20 amino acids
for aggregation in longer peptides. Therefore, it is necessary to
extend the investigation of the design rules to longer peptides,
such as tetrapeptides and pentapeptides. Beyond tripeptides,
van Teijlingen and Tuttle18 developed an active machine
learning method for the search of aggregating peptides in 2021.
The method they developed pushed the limit of aggregation
prediction to hexapeptides, but no aggregation design rule was
presented. More recently, Batra et al.19 developed a machine
learning workflow that integrates Monte Carlo tree search and
random forest to autonomously search for aggregating peptides
and demonstrated that the predictive power of machine
learning overcomes human biases in the discovery of
aggregating peptides, but design rules were still insufficiently
investigated. Inspired by the aforementioned works, we
developed a deep learning model based on a transformer
regression network (TRN) that is capable of predicting the
aggregation propensity (AP) of any oligopeptide (peptides
with less than or equal to 10 amino acids).20,21 The AP values
reported in this paper are all predicted by our TRN model
trained on the CGMD-generated AP data. Due to the limited
spatial and temporal scale of CGMD and the coarse-grained
force field model, we focus on aggregation without distinguish-
ing between aggregation, self-assembly, crystallization, or
precipitation in this work.
Starting from the predicted and validated AP values against

experimental results (the validation details can be found in
Section 2.1), we derive aggregation rules based on the AP of

tetrapeptides and pentapeptides from three perspectives
(Figure 1), aiming to generalize the aggregation rules to
longer oligopeptides (beyond tripeptides): first, we investigate
the type and positional contribution of each amino acid to the
AP within the complete sequence space of tetrapeptides and
pentapeptides. In addition to the first-order aggregation rules
considering a single amino acid (P1, P2, P3, P4, and P5 refer to
one of the 20 amino acids at positions 1 to 5 of a pentapeptide,
see Figure 1a), we also analyze the type and positional effect of
400 amino acid pairs (P1′, P2′, P3′, and P4′ refer to one of the
400 amino acid pairs, i.e., pairs of adjacent amino acids) on
aggregation, referred to as the second-order effect (Figure 1a);
second, we investigate the transferability relationship between
APte and APpe, where APte and APpe represent the AP values of
tetrapeptides and pentapeptides, respectively. A pentapeptide
P1−P2−P3−P4−P5 can be considered as a “concatenation” of
two tetrapeptides, i.e., P1−P2−P3−P4 and P2−P3−P4−P5,
with the acylation of P4 of the first tetrapeptide or P2 of the
second tetrapeptide (Figure 1b). By analyzing the relationship
between the averaged APte of two tetrapeptides and the APpe of
the corresponding pentapeptide, the AP of longer oligopep-
tides can potentially be obtained without performing molecular
dynamics (MD) simulations or even machine learning
prediction. We analyze the peculiar cases where APte and
APpe show poor transferability by examining the contribution
of each amino acid in the AP determination, especially the
amino acids located at P4 of the first tetrapeptide or P2 of the
second tetrapeptide; finally, we examine the morphologies of
over 20,000 aggregating tetrapeptides, in terms of morphology
distribution and effect of type and position of amino acids
(Figure 1c). The standard deviation of parallel CGMD run for
morphology and the effect of initial secondary structure in
Martini force field version 2.2 are also investigated. In addition,
we compare the morphologies of 66 tetrapeptide aggregates
between CGMD simulations and experimental results, aiming
to assess their discrepancies and suggest possible solutions to
achieve more accurate computational morphologies.

Figure 1. Analyses of the aggregation rules of short peptides from three perspectives. A deep learning-based TRN model predicts the AP values of
tetrapeptides (APte) and pentapeptides (APpe) across the entire sequence space (i.e., 160,000 tetrapeptides and 3,200,000 pentapeptides). Based on
the predicted AP values, we analyze the (a) type and positional contribution of 20 amino acids to the AP, (b) transferability relationship between
the AP of a pentapeptide and the averaged AP of two corresponding tetrapeptides (APpe versus APave), and (c) distribution of the morphologies of
aggregated tetrapeptides as well as the type and positional contributions of 20 amino acids to different morphologies.
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2. RESULTS AND DISCUSSION

2.1. Prediction of APte and APpe
AP is utilized as a target in the training of the machine learning
model, calculated as the ratio of accessible surface area at the
beginning and at the end of a CGMD simulation (calculation
details can be found in the Experimental Section 4.1 and
Figure S1 of Supporting Information-1).20 The APte and APpe
predicted by the TRN Combo model20 (see Section 4.2 for
access of the TRN model) are compared to the ground truth
data generated by the CGMD simulations, i.e., 5000 APsim,te
data and 10,000 APsim,pe data (Figure 2a,b). In terms of
prediction performance regarding pentapeptides, the model
has a mean absolute error (MAE) of 0.04 and a coefficient of
determination (R2)22 of 0.96, while for tetrapeptides, the MAE
is 0.06 and R2 = 0.90. Although the training data does not
include APte, the TRN model exhibits reasonable extrapolation
capability, corroborating the work in the field of computational
chemistry regarding “out-of-distribution” prediction.18

Furthermore, APte and APsim,te (also APpe and APsim,pe)
exhibit similar distributions, as shown in the insets of Figure 2a
(also 2b). The maximum error between APte and APsim,te is
0.32 for tetrapeptides (0.19 for pentapeptides), and the
relatively large errors are mainly distributed in the small
APsim,te and APsim,pe regimes (i.e., [1.0, 1.5]), which has an
infinitesimal influence on the selection of aggregating peptides.
Therefore, we conclude that the TRN model predicts APte and
APpe with satisfactory accuracy.
To gain an overview of APte and APpe, we plot the violin

distribution of normalized APte and APpe (i.e., APte′ and APpe′)
of a total of 160,000 tetrapeptides and 3,200,000 pentapeptides
(Figure 2c,d). The APte′ and APpe′ is calculated by AP′ = (AP
− APmin)/(APmax − APmin), and they are categorized into four

ranges of A ∈ [0.00, 0.25), B ∈ [0.25, 0.50), C ∈ [0.50, 0.75),
and D ∈ [0.75, 1.00). APte′ and APpe′ exhibit considerable
similarity in distribution in each range, with an approximate
peptide number ratio of 9:23:53:15. It can be inferred that it is
an intrinsic nature that most of the peptides (>90%, summed
over range B to D) tend to form aggregates (including
precipitation) due to various interactions induced by the side
chains, offering great potential for the development of versatile
applications.
To further verify the accuracy of the predicted AP values, we

qualitatively compare the 165 predicted AP values of
tetrapeptides (whose distribution is shown as purple and
yellow dots in Figure 2c) with experimental TEM results.23 We
categorize the peptides with a normalized AP of less than 0.34
(corresponding to 1.4 before normalization) in the simulations
as non-aggregating peptides. Among the 165 AP values, 155 of
them (e.g., purple dots) agree with the experiments, yielding
an accuracy percentage of ∼94%. Therefore, we conclude that
the prediction of aggregation is in reasonable agreement with
experiments. It should be noted that the experimental data are
not involved in the machine learning training process. Details
of the comparison are shown in Table S1 in Supporting
Information-1.
2.2. First-Order Aggregation Rules

To obtain a comprehensive and self-consistent view of the
effect of amino acid type and position on aggregation, we
perform statistical analyses on the distribution of individual
amino acids from three aspects, referred to as first-order
aggregation rules: first, we divide the AP values into four
ranges (i.e., A, B, C, and D, Figure 2c,d) and calculate the
percentage of each amino acid at each position within the four
ranges (Figure 3a,b for range D of tetrapeptides and
pentapeptides, respectively; Figure S2a−c of Supporting

Figure 2. Prediction and distribution of APte (and APte′) and APpe (and APpe′). (a,b) Predicted AP values of tetrapeptides (APte) and
pentapeptides (APpe) compared to simulation-generated AP of tetrapeptides (APsim,te) and pentapeptides (APsim,pe). (c,d) Violin distribution of
APte′ (normalized APte) and APpe′ (normalized APpe) within four ranges of A ∈ [0.00,0.25), B ∈ [0.25,0.50), C ∈ [0.50,0.75), and D ∈ [0.75,1.00),
with the number of peptides counted in each range. The purple and yellow dots overlapping the “Total” distribution in (c) indicate the comparison
results with experimental TEM images,23 i.e., consistent and inconsistent on a qualitative level, respectively.
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Information-1 for ranges A, B, and C of tetrapeptides; and
Figure S2d−f of Supporting Information-1 for ranges A, B, and
C of pentapeptides). Next, we compute the averaged AP values
of the peptides in which a given amino acid is fixed at the one
of the four (or five) positions (Figure 3c for the tetrapeptides
and Figure 3d for the pentapeptides). For each amino acid at
each position, a total of 8000 and 16,000 tetrapeptide and
pentapeptide sequences, respectively, are numerated for
calculating the averaged AP values. For example, for
tetrapeptides with F fixed at position 1 (or positions 2, 3,
and 4), we average the AP values of the 8000 peptides in which
the remaining three positions are occupied by any of the 20
amino acids including F. Finally, we examine the distribution
of AP values with respect to different contents of a particular
amino acid in the peptides, regardless of its position (Figure 3e
for tetrapeptide and 3f for pentapeptide). For tetrapeptides,
the numbers of peptides containing one, two, three, and four
specific amino acid(s) are 27,436 (=19 × 19 × 19 × 4), 2166
(=19 × 19 × 6), 76 (=19 × 4), and 1, respectively. For

pentapeptides, the corresponding numbers of peptides
containing one, two, three, four, and five specific amino
acid(s) are 651,605 (=19 × 19 × 19 × 19 × 5), 68590 (=19 ×
19 × 19 × 10), 3610 (=19 × 19 × 10), 95 (=19 × 5), and 1,
respectively. The bold numbers in parentheses indicate the
number of possible positions of a single amino acid and its
doublet, triplet, and quadruplet (quadruplet for pentapeptides
only). The distributions of the AP values of peptides with a
single amino acid and its doublet, triplet, and quadruplet at
different positions are shown in Supporting Information-2:
Figures S1−20 for tetrapeptides and Figures S21−40 for
pentapeptides.
As observed from the aggregation range (i.e., range D, APte′

or APpe′ ∈ [0.75, 1.00]), the aromatic amino acids W, F, and Y
contribute most when they are located at positions from the
middle to the C-terminus (Figure 3a,b), especially at the
middle position in pentapeptides (Figure 3b). To provide a
physical rationale of this observation, we analyze the molecular
level interactions in three different scenarios as the aromatic

Figure 3. Aggregation rules in terms of individual amino acids (i.e., first-order aggregation rules). (a,b) Percentage of each amino acid at each
position within the pool of aggregating peptides (i.e., the normalized AP values within the range D ∈ [0.75, 1.00]) for (a) tetrapeptides and (b)
pentapeptides. (c,d) Averaged AP values of peptides with a fixed amino acid at a specific position for (c) tetrapeptides and (d) pentapeptides. (e,f)
Averaged AP values of peptides containing (e) 1−4 and (f) 1−5 specific amino acids.
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amino acids are located at the N-terminus, C-terminus, and the
middle position, respectively: (1) when the aromatic amino
acids are located at the N-terminus, the NH3

+ groups of the
amino acids act as hydrogen donors, which is prescribed in the
Martini force field.24,25 This contributes to the formation of
hydrogen bonds and specific angles between the nitrogen atom
at the terminus and the backbone carbon atoms of the
aromatic amino acids, which are not conducive to strong π−π
interactions that require benzene rings in a parallel direction;
(2) as the aromatic amino acids are located at the C-terminus,
the zwitterionic-state carboxyl groups of the amino acids act as
hydrogen acceptors. Since the C-terminus is predisposed to the
zwitterionic state, the terminus would interact strongly with
other peptides through Coulombic forces and hydrogen
bonding. However, the formation of specific structures through
Coulombic interactions would also possibly incur the steric
effect for effective π−π interactions; and (3) as the aromatic
amino acids are located in the middle of a peptide chain, they
have more degrees of freedom to attract each other through
π−π interactions, leading to the strongest AP.
Other statistical results also confirm the contributions of W,

F, and Y to aggregation. The averaged AP′ is the highest when
W, F, and Y are located at the middle to C-termini positions
(Figure 3c,d), and increasing the number of W, F, and Y in

peptide chains can significantly increase the AP′ at the
statistical level (Figure 3e,f), especially when their doublets,
triplets, or quadruplets are located at the middle to C-termini
positions within the chain (Supporting Information-2: Figures
S5 and S25 for F, Figures S19 and S39 for W, and Figures S20
and S40 for Y).
Second to aromatic amino acids, amino acids I, L, V, P, H,

C, M, S, and T also contribute positively to aggregation
(Figure 3). Except for H, all other amino acids I, L, V, P, C, M,
S, and T contribute more to aggregation when they occupy
positions close to the two termini, especially at the N-terminus
(Figure 3a,b). As I, L, V, and M are located at the N-terminus,
they act as hydrogen donors and contribute to the interactions
with the C-terminus of other peptides; as they are located at
the C-terminus, they act as hydrogen acceptors, which incurs a
strong tendency to interact with water, potentially reducing the
hydrophobic effect of the side chains and thus inducing less
aggregation than at the N-terminus. It should be noted that the
exposure of hydrophobic side chains at both termini is
conducive to aggregation. For the amino acid P, the side chains
of the five-membered rings remain intact when located at the
N-terminus, while the backbone structure is altered for the
formation of the amino bond when located at the C-terminus,
possibly allowing special packing due to its unique “kink

Figure 4. Aggregation rules in terms of 400 amino acid pairs (i.e., second-order aggregation rules). (a,b) Percentage of amino acid pairs in the high
AP range of D (AP′ ∈ [0.75, 1.00]) for (a) tetrapeptides and (b) pentapeptides. (c,d) Averaged AP values of (c) tetrapeptides and (d)
pentapeptides with amino acid pairs fixed at specific “positions”.
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structure” at the N-terminus, consistent with the reported
results.17 The amino acid C is a relatively simple case, as the
sulfur bond is not specifically parametrized in the Martini force
field, and the only difference is that the backbone is prone to
interact with water due to the “hydrogen acceptor” nature at
the C-terminus, which reduces the AP. S and T with polar side
chains can also contribute to aggregation by forming hydrogen
bonds with each other, and for the same reason as amino acid
C, the “hydrogen acceptor” nature at the C-terminus induces
less aggregation than that at the N-terminus. Similar to
aromatic amino acids, the amino acid H prefers the middle
position to the C-terminus and especially to the middle
position, as peptides with H in the middle position have more
degrees of freedom to attract each other through π−π
interactions, leading to the strongest AP.
The remaining amino acids A, D, E, G, K, N, Q and R

generally have a statistically negative effect on aggregation due
to their strong hydrophilicity and the repulsion induced by
Coulombic interactions. This is evidenced by their scarcity in
the aggregation range D (Figure 3a,b) and the decreasing AP
values with increasing content of these amino acids (Figure
3e,f). It should be noted, however, that peptides containing
these amino acids can still achieve a strong tendency to
aggregate when they are placed at positions that are favorable
for aggregation. For example, negatively charged amino acids D
and E and positively charged amino acids K and R could
promote aggregation when placed at the C- and N-terminus,
respectively, due to intermolecular alignment by repulsion of
equal charges and possible formation of salt bridges17 (Figure
3a−d; Supporting Information-2 Figures S3, S4, S9, and S15
for D, E, K, and R in tetrapeptides; and Figures S23, S24, S29,
and S35 for D, E, K, and R in pentapeptides, respectively).
In summary, hydrophobicity (additional discussion regard-

ing the correlation between hydrophobicity and AP is detailed
in Supporting Information-1), hydrogen bonding, unique kink
structure, and polarity all have a secondary effect on
aggregation compared to π-stacking. It is challenging to
quantify the effect of each type of interaction on aggregation
using a specific number; alternatively, our quantitative
measurement of the percentage of 20 standard amino acids
at each position within each AP range should provide a
qualitative guide for experimentalists to manipulate aggrega-
tion of peptides.
2.3. Second-Order Aggregation Rules

Since the analysis of AP in terms of the distribution of
individual amino acids does not provide sufficient information
about which an amino acid should be placed next to the
desired amino acid to promote aggregation, we therefore
perform analyses of the type and positional distribution of a
total of 400 (=202) amino acid pairs, termed second-order
aggregation rules (Figure 4). For each amino acid pair in a
tetrapeptide, they can occupy three possible “positions”: P1′
(P1−P2), P2′ (P2−P3), and P3′ (P3−P4). For pentapeptides,
each amino acid pair can occupy an additional fourth position,
P4′ (P4−P5). Similar to the analysis with respect to individual
amino acids, we analyze the percentage of amino acid pairs
with respect to each position in each given AP range
[specifically, Figure 4a,b for the AP range of D ∈ [0.75,
1.00) and Supporting Information-1 Figures S3 and S4 for the
ranges of A ∈ [0.00,0.25), B ∈ [0.25,0.50), and C ∈
[0.50,0.75), for tetrapeptides and pentapeptides, respectively].
In addition, we calculate the averaged AP values of peptides

with a specific amino acid pair placed at each position (Figure
4c,d). For example, if FF is fixed at P1′ of a tetrapeptide, we
average the AP values of 400 tetrapeptides with P3 and P4
occupied by any of the 20 amino acids.
Within the aggregating range (i.e., range D) of tetrapeptides

and pentapeptides, it can be observed that the F-, W-, and Y-
containing doublets (e.g., FF, FW, and FY) are the most
prominent, especially when the doublets are located at P3′/P4′
near the middle to the C-terminus. Second to the aromatic
doublets, the doublets of aromatic amino acids coupled with C,
H, I, L, M, P, S, T, and V can also promote aggregation, which
is congruent with the aggregation rules regarding single amino
acids. Finally, the doublets formed by A, D, E, G, K, N, Q, and
R are rarely found in the aggregating range. It should be noted
that the doublets formed by the above amino acids and F, W,
and Y may still occur (such as AF, AW, GF, etc.) in aggregating
peptides.
It is important to notice that the second-order effect is not a

mere superposition of the first-order aggregation rules. To
distinguish second-order aggregation rules from the super-
position of two individual first-order aggregations, we compare
the AP rankings of tetrapeptides with F and H at the third and
fourth positions (Table S2 in Supporting Information-1),
respectively. NNFN ranks lower than NNHN (NNFN has a
lower AP), and NNNF ranks lower than NNNH. However,
when FF acts synergistically at the end of the tetrapeptide, it
significantly increases the AP value. Consequently, NNFF
ranks higher than NNHH, with a ranking difference of 34,576.
This implies that when analyzing NNFF, we cannot simply
consider it as the sum of the effects of F at the third position
and F at the fourth position. Instead, we must take into
account the synergistic effect of FF, including hydrogen
bonding, π−π stacking interactions, hydrophobic interactions,
and possible changes in the secondary structure incurred by
the roles of amino acids at different positions within the
peptide chain. Similarly, when F and H are positioned in the
middle, we observe the same phenomenon. NFNN ranks
10,780 positions lower than NHNN, and NNFN ranks 6745
positions lower than NNHN. However, when FF acts
synergistically, NFFN ranks 32,761 positions higher than
NHHN. The same pattern is observed when F and H are at the
beginning of the tetrapeptide. FNNN ranks 14,454 positions
lower than HNNN, and NFNN ranks 10,780 positions lower
than NHNN. However, the synergistic effect of FF results in
FFNN having a higher AP value and ranking 30,303 positions
higher than HHNN.
2.4. Transferability of AP

Peptide aggregation should be promoted or prevented
depending on different situations. For example, aggregation
should be promoted for hydrogel formation,23 while it should
be mitigated for possible prevention of neurodegenerative
diseases.26 Thus, understanding the mechanism of aggregation
and developing tuning approaches/laws are of great signifi-
cance for the design of desirable peptides. To achieve the goal
of manipulating aggregation, we have undertaken a detailed
investigation into the transferability relationship of APs′
between tetrapeptides and pentapeptides, through which we
hope to tune the aggregation tendency by simply adding or
removing specific amino acids within the sequences, inspired
by our previous work that the concatenation of pentapeptides
to decapeptides can promote or prevent aggregation.20
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We first calculate the averaged AP′ (APave′) values of two
tetrapeptides [APave′ = (APte,1′ + APte,2′)/2] and then examine
the difference between the APave and APpe of pentapeptides
composed of these two tetrapeptides, such as KPED, PEDF,
and KPEDF. Examining the sequence relationship of the
peptides KPED, PEDF, and KPEDF, it is straightforward to
observe that the pentapeptide KPEDF is one amino acid
addition of the tetrapeptides by the concatenation of F at the
C-terminus of KPED or K at the N-terminus of PEDF, through
which we hope to alter the aggregation tendency of the matrix
peptides. Figure 5a illustrates the correlation between 3.2
million groups of APpe′ and APave′, and Figure 5b shows the
distribution of the difference between APpe′ and APave′, as
denoted by ε. Although most of the APpe′ (∼80%) values are
similar to the APave′ (|ε| ≤ 0.15) values, the aggregation
tendency of pentapeptides can be significantly altered
compared to the corresponding tetrapeptides, as indicated by
the fact that the largest absolute difference |ε| can reach over
0.3.
To understand the causes of the altered aggregation

tendency, we then select 10 groups of peptides with the
largest ε (Figure 5c−e) and another 10 groups with the
smallest ε (Figure 5f−h) to determine the amino acids that
have the dominant contributions to the AP values by

performing attribution analysis of each amino acid to AP
(Section 4.3 for calculation details of attribution). To validate
the predicted results here, we perform additional CGMD
simulations on the selected tetrapeptides and pentapeptides for
200 ns (“effective time” of 800 ns) to generate ground-truth
AP values. 1250 ns CGMD simulations are also performed on
tetrapeptides to confirm convergence (Figure S5 of Supporting
Information-1). The calculated attribution of each amino acid
and the corresponding predicted and simulated AP values
(denoted by APPRD and APSIM, respectively) are shown in
Table S3 in Supporting Information-1.
Examining Figure 5c,e (also rows Te1 and Pe1, i.e.,

tetrapeptide 1 and pentapeptide 1, of Table S3 in Supporting
Information-1), it is observed that the AP of tetrapeptides can
be increased by placing an aromatic amino acid at the last
position of the tetrapeptide sequence, e.g., KPED → KPEDF.
This is consistent with the first-order aggregation rules that
aromatic amino acids play a more dominant role in
contributing to aggregation when located at the C-terminus,
which is also evidenced by the fact that the attribution of the
aromatic amino acids at the last position of a pentapeptide is
generally the largest (e.g., 0.138, 0.012, 0.225, 0.177, and 0.229
for each amino acid in KPEDF, as shown in the row Pe1 of
Table S3 in Supporting Information-1). Examining Figure 5d,e

Figure 5. Transferability relationship between APpe′ and averaged APave′ (APave′ are the average of two APte′). (a) Relationship between APpe′ and
APave′, with the color indicating the difference ε between APpe′ and the averaged APave′ (ε = APpe′ − APave′). (b) Violin distribution (left) and
number distribution (right) of ε. (c−e) AP values of 10 groups of peptides with positive maximum ε between APpe and APave. (f−h) AP values of
the 10 groups of peptides with negative maximum ε between APpe and APave.
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(also rows Te2 and Pe1, i.e., tetrapeptide 2 and pentapeptide 1,
of Table S3 in Supporting Information-1), we observe that the
AP can also be significantly increased by adding a positively
charged amino acid into the sequence of a tetrapeptide with a
net negative charge to mitigate electrostatic repulsion, e.g.,
PEDF with 2e− → KPEDF with 1e−. This is also consistent
with the first-order aggregation rules that the positively
charged amino acids yield a more positive contribution to
aggregation when they are located at the N-terminus, even
though they do not have the largest attribution (i.e., 0.138 in
KPEDF).
In addition to promoting aggregation by adding aromatic or

charged amino acids, the aggregation tendency can also be
attenuated by simply adding a negatively charged amino acid
(or possibly positively charged amino acids) at the N-terminus,
even if aromatic amino acids are present in the sequence. The
peptides in Figure 5f,h (also rows Te3 and Pe2, i.e.,
tetrapeptide 3 and pentapeptide 2, of Table S3 in Supporting
Information-1) all have relatively low AP values due to the
presence of negatively charged amino acids at the N-terminus.
Also, the attributions of the negatively charged amino acids in
these peptides are the largest. This is further evidenced by the
fact that the AP values of the peptides in Figure 5g (also row
Te4, i.e., tetrapeptide 4, of Table S3 in Supporting
Information-1) are significantly reduced by the addition of
negatively charged amino acids at the N-terminus (Figure 5h).
In summary, the competition between the π−π interactions

and Coulombic interactions between amino acids at different
positions dominates the aggregation tendency: the π−π
interactions at the C-terminus induced by aromatic amino
acids can compete with the electrostatic repulsion induced by
only one positive charge at the N-terminus, while not a
negative charge. For example, PEDF has a low AP value
because this peptide has two charges (2e−), and DPAY has a
low AP value because the N-terminus is occupied by a negative
charge. The rules summarized here can be seen as
complementary to the aggregation rules in Section 2.2 above,
emphasizing that placing aromatic and charged amino acids at

certain positions or tuning the overall charge of peptides can
potentially promote or mitigate peptide aggregation.
Inspired by the above rules, we concatenate the negatively

charged amino acids DD and DDD to the N-terminus of the
Aβ16−22 peptide, i.e., KLVFFAE, trying to inhibit the
aggregation of these hydrophobic cores. In addition, we
calculate the attribution of each amino acid in peptides
KLVFFAE, DDKLVFFAE, and DDDKLVFFAE, aiming to
compare the significance of FF to the aggregation with
increasing number of amino acids D. It is found that with
increasing number of D at N-termini, the aggregation process
is decelerated (Figure 6). For example, at the simulation time
of 500 ns, KLVFFAE has aggregated into one big cluster, while
peptides DDKLVFFAE and DDDKLVFFAE are still in the
processing of aggregating, and at 1250 ns, the peptide
DDDKLVFFAE has reached convergence in aggregating
(Figure 6) and formed clusters with much smaller size
compared with KLVFFAE.
The experimental results suggest that the peptide KLVFFAE

can form large nanoribbons with piece size around 200−500
nm; the peptide DDKLVFFAE can form nanofibers with much
smaller size in diameter and length, while the peptide
DDDKLVFFAE barely forms amorphous aggregates, all
consistent with our prediction and simulation results. The
attribution analysis suggests that the contribution of the FF
moiety to the aggregation is significantly decreased (table in
Figure 6), consolidating the aggregation rules summarized
above. The computational and experimental details can be
found in Experimental Section 4.1.
2.5. Attribution Analysis of Decapeptides

In the previous section, attribution analysis is used to
understand the importance of each amino acid in the
transferability relationship between the aggregation tendency
of tetrapeptides and pentapeptides. The attribution analysis
can also be extended to the complete sequence space of
oligopeptides, where the percentage analysis (as in Figures 3
and 4), requiring the prior known AP values of all peptides,
cannot be performed. For example, it is extremely challenging

Figure 6. Computational and experimental results of AP and morphologies of peptide Aβ16−22 with the addition of amino acids DD and DDD at
the N-terminus. The table lists the attribution of each amino acid with the increasing number of D, as well as the predicted (APPRD) and simulation
AP (APSIM).
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to analyze the dominance of each amino acid in the sequence
of decapeptides since it is impossible to list the more than 10
trillion APs of all decapeptides. However, the attribution
predicted based on, for example, 10,000 data can provide a
quantitative measure of the contribution of each amino acid to
the aggregation tendency, with which we can potentially tune
the type or position of the dominant amino acid(s) for
controlling the aggregation tendency of peptides. We selected
20 decapeptides to verify the accuracy of the attribution of
amino acids (Table 1). It is suggested that highly polar (e.g., N
and Q) and charged amino acids play dominant roles in
reducing the aggregation tendency, while aromatic amino acids
can significantly promote aggregation, which is congruent with
all of the first-order and second-order aggregation rules
mentioned above, corroborating the accuracy of the attribution
analysis. Specifically, the decapeptide ARRERVGNKR is
predicted to be non-aggregating, while TFFFLYWHFV can
aggregate due to the large attribution of charged and aromatic
amino acids, respectively, congruent with the experimental
results. The experimental transmission electron microscopy
(TEM) results corroborate the observation that, for the
decapeptide sequence TFFFLYWHFV, an increased number of
particles are discernible across various length scales within the
different visual fields.

2.6. Morphologies of Aggregated Peptides

In addition to the aggregation tendency of short peptides, the
morphologies after aggregation also play a critical role in
determining the various properties of the aggregates and the
development of subsequent applications.14,27−30 For example,
aligned peptide tubes could increase the flexural stiffness, while
nanospheres could increase the compressive stiffness,30

analogous to the role of aligned metal bars and crushed stones
in macroscale-reinforced concrete. Based on the predicted AP
values, we select 21,050 aggregating tetrapeptides with
predicted AP values larger than 1.44, and 93% of them have
an AP larger than 1.8. The distribution of predicted AP values
of the selected peptides is shown in Figure S6a of Supporting
Information-1. We perform CGMD simulations on each type
of peptide with a duration of 1.25 μs (an “effective” time of 5
μs due to the coarse-graining effect), for assessing the
distribution and accuracy of computational morphologies.
We characterize the morphologies using the ratio of the

moments of inertia (RMOI) along the principal axes of the
largest cluster of aggregates in the system. Additional
calculation details of the RMOI can be found in Section 4.5,
and the correlation between the RMOI and AP values of the
selected tetrapeptides is shown in Figure S6b of Supporting

Table 1. Attribution of Each Amino Acid to the Aggregation Tendency in Decapeptides and the TEM/Simulation Images of a
Decapeptide ARRERVGNKR with a Low APPRD Value (=1.26) and a Decapeptide TFFFLYWHFV with a High APPRD Value
(=2.18)a

aThe amino acids in bold (and the associated attributions) are the top 4 amino acids at specific positions that dominate the aggregation in selected
decapeptides. The P1 (i.e., N-terminus) to P10 (i.e., C-terminus) indicate 10 positions in the decapeptide sequence.
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Information-1. We then categorize the RMOI values into three
classes (i.e., I, II, and III), which are I fibers and possibly tubes
with RMOI ∈ [0.00, 0.35) (I, Figure 7d); II intermediate
shapes with RMOI ∈ [0.35, 0.75), such as net, rod, and curved
sheet (II, Figure 7d); and III spheres and possibly vesicles with
RMOI ∈ [0.75, 1.00) (III, Figure 7d). The violin distribution
of the RMOI values of the 21,050 aggregating peptides show a
dumbbell distribution: approximately 41.6% of peptides form
fibers (MOSI < 0.35), while 35.3% form spheres and possibly
vesicles (RMOI ≥ 0.75), and the remaining 23.1% exhibit a
shape in between of fibers and spheres (0.35 ≤ RMOI < 0.75),
such as rods, sheets, or nets, illustrating the diversity of the
morphologies that tetrapeptides can form. Additional dis-
cussions regarding the scarcity of peptides with intermediate
RMOI values around 0.4−0.5 are also included in Supporting
Information-1.
Within each RMOI class, we quantitatively evaluate the

effect of the type and position of each amino acid on the
morphology. It should be noted that those 21,050 peptides are
selected based on AP values; thus, there exist original amino
acid percentage difference in each position. To eliminate the
effect of the original percentage difference, we calculate the

ratio of the number of each amino acid at each position within
each RMOI range to the total number of the amino acid at the
position across all ranges (i.e., 21,050 tetrapeptides), as shown
in Figure 7e−g, while the percentage of each amino acid at
each position of all 21,050 tetrapeptides, as well as that within
each range of RMOI, is shown in Figure S7 of Supporting
Information-1.
All amino acids are found in the fiber-forming sequence,

except that amino acid E is absent at the P1 position, i.e., the
N-terminus (Figure 7e), indicating that peptides with amino
acid E at the N-terminus generally do not aggregate into fibers
(or do not aggregate at all). The charged amino acids D, E, K,
and R are rarely found in sphere-forming sequences. Instead,
they mainly contribute to fiber formation, especially when they
are located at the C-terminus. This is likely because a fibrous
shape can reduce the Coulombic energy in the aggregate,
suggesting that electrostatic force may play an important role
in tuning the morphology during the peptide self-assembly
process. Comparing the ratios of F, W, and Y in Figure 7e,g, it
can be inferred that aromatic amino acids F, W, and Y
generally contribute more to fiber formation (especially amino
acid W). Among the three, F and W both prefer P3 for fiber

Figure 7. Distribution of morphologies after aggregation. (a−c) Possible morphologies formed in simulations, such as fibers or tubes, intermediate
structures such as net and curved sheet, and spherical or vesicle structures. (d) Violin distributions of morphologies. (e−g) Positional percentage of
each amino acid within each RMOI range, calculated through dividing the number of each amino acid at each position within a RMOI range, by the
total number of the amino acid at the position across all ranges.
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formation, while Y prefers P2. The amino acids with polar
uncharged side chains, including S, T, N, and Q, contribute
more to fiber formation than to sphere formation (Figure 7e),
which can be attributed to the directional nature of hydrogen
bonding between peptides containing these amino acids.
Among the four, S and T prefer P2 and P3 for fiber formation,
while N and Q prefer the N- or C-termini. Amino acids A and
G have a similar overall propensity to form fibers or spheres,
but when located at the N or C terminus, fiber formation is
preferred (Figure 7e). Amino acids with hydrophobic side
chains, including I, L, V, M, C, and P, contribute more to
sphere formation than to fiber formation (Figure 7g). This can
be attributed to the tendency of hydrophobic interactions to
reduce the surface area of aggregates in an aqueous solution,
resulting in a tendency toward spherical morphologies.
Nevertheless, it is challenging to provide a complete rationale
for the effect of type and position on the morphology for all
amino acids. In the future, all-atom simulations and experi-
ments may be performed to provide further atomistic details of
the aggregation process and to determine the full mechanisms
of the formation of different morphologies.
Additional discussions regarding the standard deviation of

computational morphology, effect of the initial setting of
secondary structure on aggregation, and comparisons of the
morphologies between simulations and experiments can be
found in the discussions of Supporting Information-1.

3. CONCLUSIONS
This study addresses the need for an enhanced understanding
of the aggregation rules governing short peptides and has
pushed the limit of aggregation rules within 8000 tripeptides to
millions of pentapeptides. The aggregation rules are derived
quantitatively based on the AP values, predicted by a
transformer-based regression network (TRN) model trained
on the data produced by MD simulations. The achievement of
approximately 94% accuracy in AP prediction compared to 165
experimental results23 demonstrates the reliability of the MD
data for machine learning training and the effectiveness of the
proposed TRN model.
By deriving comprehensive aggregation rules, this study

contributes to the precise manipulation of the aggregation of
short peptides, which is relevant for both the development of
peptide-based applications (such as hydrogels, emulsions, and
pharmaceuticals) and the understanding of pathological
conditions related to peptide aggregation (such as Alzheimer’s
and Parkinson’s disease). The aromatic amino acids W, F, and
Y are found to contribute most to aggregation when located at
the middle to C-terminus due to the greater degree of freedom
(less steric effect) for the π−π interactions of the aromatic
rings. Second to the aromatic amino acids, the amino acids I, L,
V, P, H, C, M, S, and T also contribute positively to the
aggregation due to various effects such as hydrophobicity and
hydrogen bonding, while the amino acids A, D, E, G, K, N, Q,
and R generally have a statistically negative effect due to strong
hydrophilicity or Coulombic repulsion. The same rules apply
to the amino acid pairs (e.g., FF > FI > FA).
In addition, this work investigates the transferability

relationship between the AP values of tetrapeptides and
pentapeptides, offering a possible approach for tuning the
aggregation behavior by concatenating or reducing aromatic or
charged amino acids at the N- and C-termini. AP can be
increased by placing an aromatic amino acid at the C-termini
of the tetrapeptide sequences, while it can be decreased by

simply concatenating a negatively charged amino acid (or
possibly positively charged amino acids) at the N-terminus,
even in the presence of aromatic amino acids in the sequence.
In summary, the π−π interactions at the C-terminus induced
by aromatic amino acids can compete with the electrostatic
repulsion induced by a single charged amino acid if the
charged amino acid is not located at the N-terminus.
Furthermore, this study provides a comprehensive statistical

analysis of the morphologies of the aggregates and relates them
to the type and positional contributions of individual amino
acids. It is found that charged amino acids D, E, K, and R tend
to promote the formation of fibrous aggregates, especially
when they are located at the C-terminus, as a fibrous shape
could reduce the Coulombic energy in the aggregates. In
contrast, amino acids with hydrophobic side chains, including
I, L, V, M, C, and P, contribute more to the formation of
spherical aggregates, which can be rationalized, given that
hydrophobic interactions tend to reduce the surface area of
aggregates in an aqueous solution.
Overall, the elucidation of aggregation rules and the ability

to predict and control aggregation behavior (i.e., aggregation
degree and morphologies) opens up new possibilities for the
design and development of peptide-based materials and
therapeutics.

4. METHODS

4.1. CGMD Simulations of Peptide Aggregation
The CGMD simulations are carried out for generating the training
data of AP of pentapeptides using the open-source package
GROMACS31 and the version 2.2 of the Martini force field.24 The
AP value is defined as the ratio of solvent-accessible surface area
(SASA) at the beginning (SASAinitial) and end (SASAfinal) of a CGMD
simulation23

AP
SASA
SASA

initial

final
=

For aggregating peptides, the SASA will gradually decrease as the
simulation proceeds, and the AP value will increase over 1, while for
non-aggregating peptides, the AP value will remain as a value close to
1.
Before performing simulations, 150 coarse-grained pentapeptides

are solvated randomly in a 15 nm × 15 nm × 15 nm cubic box with
28,400 water beads (water density ≈ 1 g cm−3), resulting in a solute
concentration of ∼74 mmol/L. The simulation box is then energy-
minimized and subsequently run with an NPT ensemble and a time
step of 25 fs for 5 × 106 steps, corresponding to a total simulation
time of 125 ns (“effective time” of 600 ns due to the simulation
acceleration from the coarse-graining of four atoms into one bead).
The Berendsen algorithm is utilized for controlling the temperature
and pressure at approximately 300 K and 1 bar, respectively.
Within the simulation time of 125 ns, the AP values are close to

convergence (Figure S1 and Supporting Information-1). However, it
should be noted that the simulation for AP generation within 125 ns
does not strictly reach equilibrium. Consequently, should additional
simulation time be granted, a potentially larger AP value might
emerge. We have rigorously examined the impact of simulation
duration on AP20,21 and have found no instances where peptides
initially identified as aggregating were later deemed non-aggregating,
or the reverse. This leads us to conclude that a 125 ns simulation
duration is a judicious choice, yielding reliable AP values while
optimizing the computational efficiency.
For the investigation of the aggregate propensities of the longer

peptides KLVFFAE, DDKLVFFAE, and DDDKLVFFAE, the number
of solvated peptides in the simulation box is reduced to 100 instead of
150 in order to accelerate the simulations, corresponding to a solute
concentration of ∼49 mmol/L. After energy minimization, the
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simulation box is run with an NVT ensemble for 125 ns and an NPT
ensemble for 125 ns and another 1250 ns equilibration run for
obtaining stable morphologies (equivalently 5000 ns due to coarse-
graining smoothing).

4.2. TRN Model
The transformer-based regression network (TRN) model applied in
this research is developed in our previous research21 and can be
accessed from the github: https://github.com/Zihan-Liu-00/DL_
for_Peptide. It should be noted that the model used in this research is
termd as a "Combo" model, trained with AP values of penta- to
decapeptides, without AP values of tetrapeptides.

4.3. Attribution Analysis
Explainability in AI refers to the capacity to understand the decisions
or predictions made by AI. Attribution,32−34 a gradient-based
approach for post hoc explanation, is employed to evaluate the
importance of each input element to neural network prediction.
Integrated gradient35−37 has been widely recognized as an effective
and reliable attribution method. Through back-propagation, the value
of the gradient can reflect the activation of the input feature, hidden
feature, or neurons in the model during inference.
The AP prediction model, denoted as f(X), is trained through the

model architecture of TRN, which includes a transformer encoder and
a multilayer perceptron (MLP) decoder. The transformer encoder can
be further decomposed into input embedding, positional encoding,
and the encoder block. Input embedding is a learnable linear mapping
function that maps discrete dimensions of amino acids to a high-
dimensional continuous embedding space. This process is represented
as

H XEmbedding( )d =

where X represents the input peptide sequence and d represents the
dimension of the embedding layer. By mapping to a continuous
embedding space, the gradient-based attribution can then be
applicable to discrete peptide data. In deep-learning-based attribution
methods, another important factor is the loss function, which is used
to evaluate the gradients on the embedding layer after back-
propagation. For attribution analysis of the AP regression model,
we use the loss function

X f XL( ) ( ( ) AP )min
2=

APmin is the minimum value of the AP values in the training data.
The objective of this loss function is to bring down the AP prediction
f(X), as we intend to find the most important dimension determining
the model prediction. We denote the back-propagated gradient in the
hidden space Hd as

X
L X

H
grad ( )

( )
H dd =

Gradient can be interpreted as the effect on L(X) by changes in
each dimension of Hd. A significant gradient value to a dimension
indicates that this dimension is highly activated during the forward
process, i.e., this dimension is important for the loss L(X).
Integrated gradients (IG) gradually change a nonsemantic sample

X̂ to a real sample X, and we calculate the gradient integral during this
gradual process and the element product with the corresponding
input values as the importance of input dimensions. Since a peptide
input X is a discrete amino acid sequence, we use input embedding Hd

to replace X during the gradual process. The mathematical expression
of this process is35

( )
X H H

L H

H
IG ( ) ( )H

d d

k

m k
m

d

d
1

d =
=

where ( )L Hk
m

d denotes the loss obtained by scaling the
representation of L(X) in the embedding space to the original size

of k
m
and m is the number of steps in the Riemann approximation of

the integral.
For the i-th amino acid Xi of input peptide sequence X, gradient

IGHd(X) is presented as a vector of equal dimensionality to Hd. We
sum the absolute values of the elements in vector IGHd(X) and then
divide it by the sum of the gradients across the entire sequence as the
importance of amino acid Xi on predicting the AP value in the peptide
sequence, expressed as

X
X

X
Saliency( )

sum(IG ( ))
sum(IG ( ))i

H i

j
n

H j0

d

d
=

=

4.4. Peptide Synthesis and TEM Characterization
Short peptides are synthesized by solid-phase peptide synthesis
(SPPS) using 2-chlorotrityl chloride resin. The Fmoc protection
groups are removed by 20% piperidine in anhydrous N,N′-
dimethylformamide (DMF). Then, the Fmoc-protected amino acids
are coupled to the free amino group by using HBTU (O-
(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophos-
phate) as the coupling reagent. The peptides are cleaved from the
resin using a cleavage reagent including 95% of trifluoroacetic acid
(TFA), 2.5% of triisopropylsilane (TIS), and 2.5% of water for 1 h at
room temperature. After TFA is removed using a rotary evaporator,
the peptides are precipitated using cold ether, and the crude peptides
are further purified by reversed-phase high-performance liquid
chromatography.
The negative staining technique is used to observe the

morphologies formed by peptides. A micropipette is used to load
10 μL of sample solution to a carbon-coated copper grid, and filter
paper is used to remove the excess solution. After rinsing the grid with
deionized water, we use uranyl acetate to stain the sample for 1 min
and then rinse the grid with deionized water again. The excess liquid
is drained with filter paper, which is conducted on a Talos L120C
system operating at 120 kV.

4.5. Calculation of RMOI
For the calculation of RMOI, we solvate 300 peptides in one cubic
simulation box with a length of 15 nm. For each type of peptide, a
simulation is run for 1250 ns under an NPT ensemble (P = 1 bar and
T = 300 K). It should be noted that 1250 ns is designed to capture the
initial morphologies that are critical for subsequent assembly steps,
despite being limited to microseconds. The selected time scale has
also been validated by other researchers in the field,17 and reasonable
consistency between the experimental and computational morphol-
ogies have been achieved.17 Consequently, we posit that a simulation
time of 1250 ns (equivalently 5000 ns considering the coarse-graining
effect) is a feasible and practical duration setting for generating
reliable morphologies that serve as a foundation for further assembly
studies.
For assessing the standard deviation, we run 5−10 parallel

simulations on 800 peptides. We then determined the largest cluster
of molecules and then aligned the cluster along its principal axes to
determine its moments of inertia. The RMOI is calculated as the ratio
of the moments of inertia (RMOI = Lx/Lz) along the principal axes of
the largest cluster in the system. A RMOI value close to 1 indicates a
ball-like structure, while a value of 0 indicates a fibrous structure.
Other than ball-like or fibrous structure, there could be other
morphologies such as vesicle or net structure, and examining those
structures would require visual inspection.
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Halvarsson, M.; Spring, D. R. Peptides as a platform for targeted
therapeutics for cancer: Peptide−drug conjugates (PDCs). Chem. Soc.
Rev. 2021, 50 (3), 1480−1494.
(9) Ashaolu, T. J. Antioxidative peptides derived from plants for
human nutrition: their production, mechanisms and applications. Eur.
Food Res. Technol. 2020, 246, 853−865.
(10) Löhr, T.; Kohlhoff, K.; Heller, G. T.; Camilloni, C.;
Vendruscolo, M. A kinetic ensemble of the Alzheimer’s Aβ peptide.
Nat. Comput. Sci. 2021, 1 (1), 71−78.
(11) Knowles, T. P.; Vendruscolo, M.; Dobson, C. M. The amyloid
state and its association with protein misfolding diseases. Nat. Rev.
Mol. Cell Biol. 2014, 15 (6), 384−396.
(12) Pal, S.; Paul, S. ATP Controls the Aggregation of Aβ16−22
Peptides. J. Phys. Chem. B 2020, 124 (1), 210−223.
(13) Li, T.; Lu, X.-M.; Zhang, M.-R.; Hu, K.; Li, Z. Peptide-based
nanomaterials: Self-assembly, properties and applications. Bioact.
Mater. 2022, 11, 268−282.
(14) Cao, M.; Lu, S.; Zhao, W.; Deng, L.; Wang, M.; Wang, J.; Zhou,
P.; Wang, D.; Xu, H.; Lu, J. R. Peptide self-assembled nanostructures
with distinct morphologies and properties fabricated by molecular
design. ACS Appl. Mater. Interfaces 2017, 9 (45), 39174−39184.
(15) Sun, B.; Tao, K.; Jia, Y.; Yan, X.; Zou, Q.; Gazit, E.; Li, J.
Photoactive properties of supramolecular assembled short peptides.
Chem. Soc. Rev. 2019, 48 (16), 4387−4400.
(16) Helen, W.; De Leonardis, P.; Ulijn, R. V.; Gough, J.; Tirelli, N.
Mechanosensitive peptide gelation: mode of agitation controls

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00501
JACS Au 2024, 4, 3567−3580

3579

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00501/suppl_file/au4c00501_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00501/suppl_file/au4c00501_si_003.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tengyan+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:xutengyan@wmu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stan+Z.+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:Stan.ZQ.Li@westlake.edu.cn
mailto:Stan.ZQ.Li@westlake.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenbin+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1240-2707
https://orcid.org/0000-0002-1240-2707
mailto:liwenbin@westlake.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiaqi+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zihan+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6224-3823
https://orcid.org/0000-0001-6224-3823
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shuang+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yu+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c00501?ref=pdf
https://doi.org/10.1098/rsfs.2017.0030
https://doi.org/10.1098/rsfs.2017.0030
https://doi.org/10.1016/bs.pmbts.2019.12.002
https://doi.org/10.1016/bs.pmbts.2019.12.002
https://doi.org/10.1126/science.aam9756
https://doi.org/10.1126/science.aam9756
https://doi.org/10.1038/s41586-021-03399-1
https://doi.org/10.1002/ange.201905643
https://doi.org/10.1002/ange.201905643
https://doi.org/10.1038/s41570-020-0186-z
https://doi.org/10.1038/s41570-020-0186-z
https://doi.org/10.1038/s41573-020-00135-8
https://doi.org/10.1039/d0cs00556h
https://doi.org/10.1039/d0cs00556h
https://doi.org/10.1007/s00217-020-03479-y
https://doi.org/10.1007/s00217-020-03479-y
https://doi.org/10.1038/s43588-020-00003-w
https://doi.org/10.1038/nrm3810
https://doi.org/10.1038/nrm3810
https://doi.org/10.1021/acs.jpcb.9b10175?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b10175?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bioactmat.2021.09.029
https://doi.org/10.1016/j.bioactmat.2021.09.029
https://doi.org/10.1021/acsami.7b11681?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b11681?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b11681?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9CS00085B
https://doi.org/10.1039/C0SM00649A
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mechanical properties and nano-scale morphology. Soft Matter 2011,
7 (5), 1732−1740.
(17) Frederix, P. W.; Scott, G. G.; Abul-Haija, Y. M.; Kalafatovic, D.;
Pappas, C. G.; Javid, N.; Hunt, N. T.; Ulijn, R. V.; Tuttle, T.
Exploring the sequence space for (tri-) peptide self-assembly to design
and discover new hydrogels. Nat. Chem. 2015, 7 (1), 30−37.
(18) van Teijlingen, A.; Tuttle, T. Beyond tripeptides two-step active
machine learning for very large data sets. J. Chem. Theory Comput.
2021, 17 (5), 3221−3232.
(19) Batra, R.; Loeffler, T. D.; Chan, H.; Srinivasan, S.; Cui, H.;
Korendovych, I. V.; Nanda, V.; Palmer, L. C.; Solomon, L. A.; Fry, H.
C.; et al. Machine learning overcomes human bias in the discovery of
self-assembling peptides. Nat. Chem. 2022, 14 (12), 1427−1435.
(20) Wang, J.; Liu, Z.; Zhao, S.; Xu, T.; Wang, H.; Li, S. Z.; Li, W.
Deep Learning Empowers the Discovery of Self-Assembling Peptides
with Over 10 Trillion Sequences. Adv. Sci. 2023, 10, 2301544.
(21) Liu, Z.; Wang, J.; Luo, Y.; Zhao, S.; Li, W.; Li, S. Z. Efficient
prediction of peptide self-assembly through sequential and graphical
encoding. Briefings Bioinf. 2023, 24 (6), bbad409.
(22) Chicco, D.; Warrens, M. J.; Jurman, G. The coefficient of
determination R-squared is more informative than SMAPE, MAE,
MAPE, MSE and RMSE in regression analysis evaluation. PeerJ
Comput. Sci. 2021, 7, No. e623.
(23) Xu, T.; Wang, J.; Zhao, S.; Chen, D.; Zhang, H.; Fang, Y.;
Kong, N.; Zhou, Z.; Li, W.; Wang, H. Accelerating the prediction and
discovery of peptide hydrogels with human-in-the-loop. Nat.
Commun. 2023, 14 (1), 3880.
(24) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; De
Vries, A. H. The MARTINI force field: coarse grained model for
biomolecular simulations. J. Phys. Chem. B 2007, 111 (27), 7812−
7824.
(25) Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.;
Tieleman, D. P.; Marrink, S.-J. The MARTINI coarse-grained force
field: extension to proteins. J. Chem. Theory Comput. 2008, 4 (5),
819−834.
(26) Ross, C. A.; Poirier, M. A. Protein aggregation and
neurodegenerative disease. Nat. Med. 2004, 10 (S7), S10−S17.
(27) Yan, C.; Pochan, D. J. Rheological properties of peptide-based
hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010,
39 (9), 3528−3540.
(28) Sivagnanam, S.; Arul, A.; Ghosh, S.; Dey, A.; Ghorai, S.; Das, P.
Concentration-dependent fabrication of short-peptide-based different
self-assembled nanostructures with various morphologies and intra-
cellular delivery property. Mater. Chem. Front. 2019, 3 (10), 2110−
2119.
(29) Ke, D.; Zhan, C.; Li, A. D.; Yao, J. Morphological
Transformation between Nanofibers and Vesicles in a Controllable
Bipyridine−Tripeptide Self-Assembly. Angew. Chem. 2011, 123 (16),
3799−3803.
(30) Adler-Abramovich, L.; Gazit, E. The physical properties of
supramolecular peptide assemblies: from building block association to
technological applications. Chem. Soc. Rev. 2014, 43 (20), 6881−
6893.
(31) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
(32) Zhang, Y.; Tino, P.; Leonardis, A.; Tang, K. A survey on neural
network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021,
5 (5), 726−742.
(33) Ancona, M.; Ceolini, E.; Öztireli, C.; Gross, M. Towards better
understanding of gradient-based attribution methods for deep neural
networks. arXiv preprint arXiv:1711.06104, 2017.
(34) Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable
ai: A review of machine learning interpretability methods. Entropy
2020, 23 (1), 18.
(35) Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for
deep networks. International Conference on Machine Learning; PMLR,
2017; pp 3319−3328.

(36) Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot,
A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward respon-
sible AI. Inf. Fusion 2020, 58, 82−115.
(37) Qi, Z.; Khorram, S.; Li, F. Visualizing Deep Networks by
Optimizing with Integrated Gradients. CVPR Workshops, 2019; Vol. 2,
pp 1−4.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on September 3, 2024, with
incomplete images in Figure 6. The corrected version was
reposted on September 4, 2024.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00501
JACS Au 2024, 4, 3567−3580

3580

https://doi.org/10.1039/C0SM00649A
https://doi.org/10.1038/nchem.2122
https://doi.org/10.1038/nchem.2122
https://doi.org/10.1021/acs.jctc.1c00159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41557-022-01055-3
https://doi.org/10.1038/s41557-022-01055-3
https://doi.org/10.1002/advs.202301544
https://doi.org/10.1002/advs.202301544
https://doi.org/10.1093/bib/bbad409
https://doi.org/10.1093/bib/bbad409
https://doi.org/10.1093/bib/bbad409
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1038/s41467-023-39648-2
https://doi.org/10.1038/s41467-023-39648-2
https://doi.org/10.1021/jp071097f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp071097f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700324x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700324x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nm1066
https://doi.org/10.1038/nm1066
https://doi.org/10.1039/b919449p
https://doi.org/10.1039/b919449p
https://doi.org/10.1039/C9QM00363K
https://doi.org/10.1039/C9QM00363K
https://doi.org/10.1039/C9QM00363K
https://doi.org/10.1002/ange.201006897
https://doi.org/10.1002/ange.201006897
https://doi.org/10.1002/ange.201006897
https://doi.org/10.1039/C4CS00164H
https://doi.org/10.1039/C4CS00164H
https://doi.org/10.1039/C4CS00164H
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

