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Abstract—Sequence alignment is essential for phylogenetic and molecular evolution inference, as well as in many other
areas of bioinformatics and evolutionary biology. Inaccurate alignments can lead to severe biases in most downstream
statistical analyses. Statistical alignment based on probabilistic models of sequence evolution addresses these issues by
replacing heuristic score functions with evolutionary model-based probabilities. However, score-based aligners and fixed-
alignment phylogenetic approaches are still more prevalent than methods based on evolutionary indel models, mostly due to
computational convenience. Here, I present new techniques for improving the accuracy and speed of statistical evolutionary
alignment. The “cumulative indel model” approximates realistic evolutionary indel dynamics using differential equations.
“Adaptive banding” reduces the computational demand of most alignment algorithms without requiring prior knowledge
of divergence levels or pseudo-optimal alignments. Using simulations, I show that these methods lead to fast and accurate
pairwise alignment inference. Also, I show that it is possible, with these methods, to align and infer evolutionary parameters
from a single long synteny block (%530 kbp) between the human and chimp genomes. The cumulative indel model and
adaptive banding can therefore improve the performance of alignment and phylogenetic methods. [Evolutionary alignment;

pairHMM; sequence evolution; statistical alignment; statistical genetics.]

Efficient and accurate modeling of sequence evolution,
including substitutions and indels (insertions and
deletions), is key for accurate phylogenetic, selection,
and alignment inference, but so far a simple solution
to this problem has remained elusive (Miklds et al.
2009). Phylogenetic and molecular evolution methods
usually analyze a fixed alighment inferred from a
multiple sequence aligner and model only substitution
events while treating gaps in the alignment as missing
data (Yang and Rannala 2012). On the other hand,
multiple sequence aligners are typically heuristic
and score-based, sometimes using fixed phylogenies
(guide trees, Notredame 2007). However, evolutionary
modeling of indels is important for improving
alignment inference and reducing biases in molecular
evolution analyses (Loytynoja and Goldman 2008b).
Furthermore, statistical and evolutionary modeling of
indels allows parameter estimation (Lunter 2007b),
unbiased alignment sampling (Metzler et al. 2001;
Metzler 2003), joint alignment-phylogeny inference
(Mitchison and Durbin 1995; Mitchison 1999; Holmes
and Bruno 2001; Lunter et al. 2005; Fleissner et al.
2005; Novdék et al. 2008; Redelings and Suchard 2005;
Bouchard-Co6té et al. 2009; Westesson et al. 2012), and
realistic simulations (Cartwright 2005; Rosenberg 2005;
Fletcher and Yang 2009; Strope et al. 2009).

Some evolutionary indel models are similar to
phylogenetic substitution models (McGuire et al. 2001;
Rivas and Eddy 2008), with the limitation that alignment
columns are considered independent. One of the most
popular evolutionary indel models, TKF91 (Thorne et al.
1991), has a similar limitation, in that it models indels
as l-residue events. This limitation was removed in
the TKF92 model (Thorne et al. 1992). The TKF91 and
TKF92 models can be represented as Hidden Markov

Models (Hein 2000; Holmes and Bruno 2001), which
allows their efficient and flexible use in a variety of
settings. Pair Hidden Markov Models (“pairHMMSs”)
have in fact long been used in statistical alignment
although originally not in the context of evolutionary
indel models (Durbin et al. 1998). Recently developed
pairHMMs, however, do consider the indel evolutionary
process, similarly to TKF92, to account for the effect of
different expected alignment patterns at different levels
of sequence divergence (Loytynoja and Goldman 2005;
Redelings and Suchard 2007).

While the TKF92 model and other similar pairHMMs
have been the predominant models in statistical
alignment, in recent years there has been considerable
effort in attempting to increase the realism of
evolutionary indel models; in particular, one target
for improvement has been the relaxation of the
TKF92 assumption that sequences are composed of
unsplittable “fragments” of geometrically distributed
lengths. The most popular of these new models is the
“long indel model” (Miklés et al. 2004; Levy Karin
et al. 2019) that is based on assumptions generally
considered as realistic. The long indel model does not
assume unsplittable fragments and allows multi-residue
instantaneous indels. The long indel model assumes
that at each instant, any stretch of contiguous residues
can be deleted from a sequence, and any stretch of
residues can be inserted in any position of the sequence.
Despite the positive qualities of the long indel model,
its applications have remained limited, partly due to its
complexity, and partly to the computational demand of
its implementations.

Here, I present the “cumulative indel model,” a
new evolutionary pairHMM that closely approximates
the features of the long indel model, additionally
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assuming geometrically distributed indel lengths, and
without assuming reversibility. In the following, for
brevity, I will refer to the model being approximated as
simply the “general indel model”. Given evolutionary
parameters such as divergence time and insertion and
deletion rates, the cumulative indel model accurately
predicts expected numbers and lengths of stretches
of gap columns in an alignment generated under the
general indel model. Unlike the long indel model,
the cumulative indel model assumes that stretches
of gap columns in an alignment have geometrically
distributed lengths. While this assumption is generally
not correct, it allows implementation of the cumulative
indel model as a classical finite pairHMM, granting
simplicity, computational efficiency, and applicability.

I also introduce a new dynamic programming
technique called “adaptive banding,” which can
drastically reduce time and memory demands of
pairHMMs, as well as of classical alignment algorithms.
Unlike previous related techniques (Chao et al. 1992;
Hein et al. 2000; Havgaard et al. 2007, Westesson et al.
2012; Bogusz and Whelan 2017), adaptive banding is
flexible and accurate, being suitable for any alignment
without requiring prior knowledge of divergence level
or pseudo-optimal alignments.

Using simulations, I compare the cumulative
indel model with previous pairHMM evolutionary
indel models. I performed all simulations under the
general indel model, rather than under the cumulative
indel model proposed here. I consider the problem
of inferring pairwise alignments as well as inferring
evolutionary parameters from homologous sequence
pairs. Parameter estimation is useful not only to improve
alignment accuracy, but also to infer and compare the
frequency of different mutational events and the
effects of selective forces on genome evolution. I show
that the cumulative indel model offers considerable
advantages, such as high alignment accuracy and
parameter interpretability. Furthermore, I compare
classical score-based pairwise alignment techniques
with pairHMMs, and show that adaptive banding
allows accurate and efficient genome-wise alignment
and parameter inference for closely related sequences.

MATERIALS AND METHODS
Definition of Alignment

A residue in a sequence is considered homologous
to a residue in another sequence if they are descended
from the same ancestral residue, possibly through
substitution but not insertion. An evolutionary pairwise
alignment (from now on just “alignment”) states
the homology relationships between the residues of
two sequences: homologous residues are in the same
alignment column, while non-homologous residues
are in different columns. For simplicity, I restrict
consideration to the alignment of an ancestral and
a descendant sequence, so that the three types of
alignment columns correspond to homologous residues
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Insertion of G C substituted by G
ACT=—>ACGT—p AGT ACT =——p AGT
Deletion of C
; -T evolutionary ACT
sphsdoomry KT algnment’  AGT
wrong evolutionary ACT wrong evolutionary AC - T
aglignment: AGT alignment: A-GT
FIGURE 1.  Example of correct and wrong evolutionary alignments.

a) An ancestral “ACT” sequence undergoes an insertion of a “G” and
the deletion of the “C”. b) An ancestral “ACT” sequence undergoes a
substitution of the “C” into a “G”. The correct evolutionary alignments
in each scenario of the ancestral (“ACT”) and derived (“AGT”)
sequences are in the center. Wrong evolutionary alignments are in the
bottom. Inserted bases are colored in green, deleted bases in red, and
substitutions in blue.

(match columns) inserted residues (insertion columns)
and deleted residues (deletion columns). A “match”
alignment column (often denoted simply as “M”)
contains residues for both sequences, and infers that
these residues are homologous, and so did not undergo
insertion or deletion within the considered evolutionary
history separating the two sequences. An inferred
alignment can be wrong if homologous residues are
placed in different columns, or if non-homologous
residues are placed in the same column. A “deletion”
alignment column (or “D”) contains a residue only for
one of the two sequences aligned, and in particular the
sequence that is considered ancestor of the other; a gap
character “-” appears instead in place of the residue of
the descendant sequence. Only residues that are in the
ancestral sequence can be in a D column, while residues
that are first inserted and then later on deleted (and so
do not appear in either of the two sequences) are not
present in the alignment. The sum of the numbers of M
and D columns is therefore equal to the length of the
ancestral sequence. “Insertion” alignment columns (or
“1”) contain a residue only for the descendant sequence,
and they contain a gap character in place of the ancestral
residue. The sum of the numbers of M and I columns
in an alignment equals the length of the descendant
sequence. In Figure 1, I show examples of correct and
wrong evolutionary alignments: correctness does not
depend only on the two considered sequences, but also
on the (usually unobserved) indel events generating
them from their common ancestor.

Often, multiple evolutionary alignments can be
correct at the same time (Fig. 2). This can happen if
some alignment columns are “exchangeable,” that is,
if inverting their order in the alignment does not affect
the homology statements of the alignment (like the two
central columns in the alignments in Fig. 2). Following
(Miklés et al., 2004), I denote a class of exchangeable
columns (all I and D columns between two consecutive
M columns) as a“chop zone.” A chop zone can be
represented by many different alignments, which I call
“chop zone alignments.” For example, the alignments
in Figure 2 are different chop zone alignments, but they
all represent the same chop zone. In the probabilistic
sequence evolution models TKF91 and TKF92, only one
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Insertion  Deletion Insertion  Deletion

ofa G ofaC ofa G ofaC
A-CT A-CT
Evolutionary] A G - T AG-T
alignment: AC-T AC-T
A-GT A-GT
A-CT A-CT
TKF AG-T AG-T
models: AC-T AC-T
A-GT A-GT
A-CT A-CT
Cumulative AG-T AG-T
indelmodel:}] A C -T Al =T
A-GT A-GT

FiGUre 2. Different definitions of evolutionary alignment. Above

the matrix: two evolutionary histories with the same ancestral (“ACT”)
and derived (“AGT”) sequences, but with inverted order of the “G”
insertion and “C” deletion. Matrix top row: each history has two correct
evolutionary alignments. Middle row: the TKF models have one correct
alignment per indel history, and in this case the correct alignments
differ from each other. This is because in the TKF models inserted
residues are thought as generated by “links” near extant residues (see
Thorne et al. 1991, 1992 for details). Bottom row: in the cumulative
indel model, only one alignment is consistent with both indel histories.
Inserted bases are colored in green, deleted ones in red.

chop zone alignment is consistent with a history of indel
events (Fig. 2 and Supplementary Fig. S1 available on
Dryad at http://dx.doi.org/10.5061 /dryad.rbnzs7h8m;
see Thorne et al. 1991, 1992 for details), so different
alignments of the same chop zone make different
predictions about the evolutionary history that
generated that chop zone. If the probability of an
alignment is defined as the sum of the probabilities of the
evolutionary histories consistent with that alignment,
then it conveniently follows that under the TKF91
and TKF92 models all alignment probabilities sum to
one (i.e., different alignments share no evolutionary
histories). Other pairHMMs are more loosely defined,
and while different chop zone alignments can have
different probabilities, the order of I and D column in a
chop zone alignment does not have a clear interpretation
(see e.g., Loytynoja and Goldman 2005; Redelings and
Suchard 2007). In the context of my model, I only assign
nonzero probability to (i.e., I consider valid) alignments
where, when an insertion and a deletion column are
exchangeable, the deletion column appears on the left
end of the insertion column (Fig. 2 and Supplementary
Fig. S1 available on Dryad). I define the probability of
a valid alignment as the sum of the probabilities of all
evolutionary histories that result in the same sequences
and homology relationships. This way, the probability
that two different alignments are both true is always
0. Note that this restriction on alignment column is
only made during inference under my model, and not
during simulations, which are performed under the
general indel model adhering to the TKF92 convention
regarding chop zone alignments. When assessing the
accuracy of alignment inference, only the correctness
of the homology statements is then taken into account,

and not the order of columns within a chop zone. I will
refer to a group of contiguous insertion columns as a
“cumulative insertion,” and to a group of consecutive
deletion columns as a “cumulative deletion.” As a
cumulative insertion refers to a group of alignment
columns, and therefore to homology statements, it
should not be confused with individual instantaneous
insertion events, which are modeled but not inferred
or represented in an alignment. Unlike the TKF91 and
TKF92 models, there is a one-to-one identity between
valid alignments and valid sets of homology statements,
so that the alignment space that needs to be explored
during alignment inference is smaller. Restricting the
space of allowed alignments can therefore reduce the
computational demand of statistical inference, but can,
potentially, also reduce the ideal accuracy of the model,
as I later discuss more in detail. In Supplementary
Section S3 available on Dryad, I extend the definition of
alignments allowed by the cumulative indel model to the
case of a multiple sequence alignments associated with a
phylogenetic tree.

The General Indel Model

Here, I briefly describe the model that I use in most
simulations, and that I refer to as the “general indel
model” (GIM). The GIM is a specific instance of the
model implemented in simulators such as INDELible
(Fletcher and Yang 2009), where I additionally restrict
to the case that indel events have geometrically
distributed lengths. The GIM is also similar to the
Long Indel Model (Miklés et al. 2004), but here
I specifically assume geometrically distributed indel
lengths, while I do not necessarily assume reversibility,
and I do not assume upper bounds to indel lengths
or numbers of indel events. The GIM is not the most
general indel model that can be used for inference or
simulations (in particular due to the assumption of
geometrically distributed indel lengths), and can be
distinguished from the model proposed for inference in
this manuscript (the Cumulative Indel Model) because
the latter involves several simplifying approximations
to reduce computational complexity. One of the aims
of the Cumulative Indel Model is to closely (but
approximately) predict the features of alignments
generated under the GIM.

The GIM assumes that evolution occurs in continuous
time, and that given the current sequence s, its future
evolution depends on s but not on the past evolutionary
history of s (sequence evolution is a continuous time
Markov process). Three types of mutation events cause
sequence evolution. Substitutions can instantaneously
replace one character in s with another character; as
typical, I assume that the substitution rate of a character
does not depend on its position along s or on the other
characters in s. More specifically, in the following I
will always employ the HKY85 model of substitutions
(Hasegawa et al. 1985). I will also assume that time is
measured in units of expected substitutions per site,
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so that the substitution rate per site is constantly 1.0
across time. The other two types of mutational events
are insertions and deletions. Insertion events can happen
at any position in the sequence (between any two
characters, before the first character in s, or after the last
character ins) with the same rate r; constant through time
and along the sequence. When an insertion happens,
it adds a stretch of characters to s at the considered
position. I assume that the length n of the stretch of
character is taken from a geometric distribution with
parameter g;, that is, the probability of length n is

(gi)”‘l(l —gi). The insertion rate is not affected by the
specific sequence of characters of s, however, the longer is
s the more insertions are expected overall in s per unit of
time. The specific characters added to s with an insertion
are sampled independently of one another from the
equilibrium distribution of the substitution process (in
this case, from the HKY85 model). Deletions remove a
continuous stretch of characters from s. A deletion of
length n starts at a certain character in s and removes that
character from s as well as the following n —1 characters.
The rate r; at which a deletion happens starting at a
certain position of s is constant through time and through
sand is not affected by the specific sequence of characters
in s (however, again, the longer s the more deletions
are expected overall per unit of time). The length n
of a deleted stretch is also sampled from a geometric
distribution with parameter g;, that is, the probability

of length n is (gd)”_l(l —g4). Note that, under these
assumptions, the GIM is not necessarily a reversible
model of sequence evolution. Defining the deletion
process near the edges of s is not straightforward.
Here, we assume that s is embedded within an infinite
sequence, so that the initial characters in s can also be
deleted due to deletion events starting before s (see also
Miklés et al. 2004; Cartwright 2005; Fletcher and Yang
2009). While I assume geometric length distributions
for indel events, power law indel length distributions
have sometimes been recommended as more realistic
(Cartwright 2008). Geometric indel lengths have
however considerable computational advantages as
they can be naturally translated into pairHMM
parameters.

The Cumulative Indel Model

Here, I aim to accurately and efficiently approximate
features of the GIM, such as the distributions of
cumulative indels expected between ancestral sequence
s; and descendant s, separated by a divergence
time t. Accurate predictions of the distributions of
indel columns in an alignment will then be used,
in later sections, to calculate the probability of an
alignment, and, more importantly, to infer alignments
and evolutionary parameters within a pairHMM. The
model proposed here is not in itself a model of
sequence evolution, and is not meant to simulate the
evolution of sequence; it instead defines a pairHMM,
which can be used to describe the probabilities

of alignments, to perform statistical inference of
alignments or over alignments, and possibly to simulate
alignments. However, it in general makes more sense
to simulate alignments under the exact GIM, as I do
here, and use the cumulative indel pairHMM instead
to perform statistical inference from the simulated
sequences.

Combining accuracy and efficiency in statistical
alignment is still an open problem (Holmes 2017).
To derive useful transition probabilities in the final
pairHMM, I assume, as an approximation, that at
any time t cumulative indel lengths are geometrically
distributed with parameters g! for insertions and gé for
deletions. Geometric distributions for cumulative indel
lengths have also the advantage of being maximum
entropy distributions given fixed expected lengths for
cumulative indels and are therefore a convenient and
principled choice given that the true distributions are
not known. Such geometric distributions are expected
to be a good approximation for short divergence times
t; however, the dynamics of indel distributions under
the GIM are complex, and at divergence time >0
cumulative indels are not guaranteed to be geometrically
distributed even if instantaneous indel event lengths
are (Fig. 5F, Supplementary Fig. S3 available on Dryad,
and Rivas and Eddy 2015). Therefore, the assumption
I make of geometrically distributed cumulative indel
lengths is not consistent with the other assumptions
of the GIM, and, as such, estimation under this
model is not expected to be statistically consistent
under the GIM. The pairHMM obtained from this
approximation is intended as an approximation of
the GIM providing a computationally efficient mean
for calculating approximate alignment probabilities.
Another approximating assumption I make is that the
non-empty cumulative insertion (respectively, deletion)
length distribution is independent of the presence and
length of a non-empty cumulative deletion (respectively,
insertion) in the same chop zone (the part of an
alignment between two consecutive match columns).
This means that the model does not take into account
that, at high divergence, cumulative indel length, and
cumulative insertion length within the same chop zone
can be correlated.

For most of the following, unless stated otherwise,
I assume that sequences s; and sp are parts of
infinite genomes; the considered true alignment of
s1 and sy is a selected stretch of the true infinite
alignment of the two infinite genomes, with uniform
(improper) distributions over position and length
of the selection. This means assuming a uniform
prior measure (improper probability) over alignment
length. Alternative assumptions are discussed in
Supplementary Section S4 available on Dryad. Unlike
TKF91 and TKF92, I do not assume sequence length
equilibrium or reversibility of sequence evolution, and I
do not assume that the prior distribution over ancestral
sequence length is affected by the parameters of the indel
process.
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TABLE 1.  Parameters and variables of the cumulative indel model.
Human-chimp Human-chimp Max divergence

Parameters Description comparison x100 simulated

t Divergence time between ancestral and descendant sequence 0.0118 1176 1.0

ri Instantaneous indel rate 0.0657 0.0657 0.5

7 Instantaneous deletion rate 0.0657 0.0657 0.5

Si Instantaneous insertion length geometric distribution parameter 0.759 0.759 0.75

8 Instantaneous deletion length geometric distribution parameter 0.759 0.759 0.75

Variables

g Cumulative insertion length geometric distribution parameter 0.759 0.791 0.925

g Cumulative deletion length geometric distribution parameter 0.759 0.791 0.923

P Probability that an ancestral residue is extant 0.9968 0.726 0.136

Al Probability that an ancestral residue is extant and followed 7.7x107* 0.0572 0.0650
by a nonempty cumulative insertion

Pt Probability that an extant ancestral residue is followed by 7.72x107* 0.0788 0.479
a nonempty cumulative insertion

Al Probability that an ancestral residue is extant and followed 7.7x1074 0.0574 0.0669
by a nonempty cumulative deletion

r Probability that an extant ancestral residue is followed by 7.72x107* 0.0791 0.493
a nonempty cumulative deletion

L! Expected inserted residues per 0.0032 0.274 0.864
ancestral residue

Al Probability that an ancestral residue is extant and followed 1.696 x 107° 0.0109 0.0464
by both a nonempty cumulative insertion and deletion

P, Probability that an extant ancestral residues is followed by 1.701 x 10° 0.0151 0.342

both a nonempty cumulative insertion and deletion

The Differential Equations of Cumulative Indel Distributions

To keep track of the evolution over time ¢
of the distributions of cumulative indels, here I
define a set of variables of the alignment. These
variables track the frequency of nonempty cumulative
indels in the alignment and their average lengths.
Due to the assumption of geometrically distributed
cumulative indel lengths, these variables are sufficient
to approximate alignment probability. All parameters
and variables used here are listed and described in
Table 1, including example values estimated from the
human-chimp data set considered below (“Results”
section), for the same scenario but with 100-fold
longer divergence time f between the two species,
and values for the simulations with the highest
levels of divergence considered (t=1.0 and r=0.5,
see “Simulations” section). These variables define the
pairHMM described below, and as such, they are used
to calculate the probability (or measure) of alignments.

The first variable, P!, is the probability that an
ancestral residue is still present in the descendant
sequence (it has not been deleted) after time f. As initially
(t=0) no residue is deleted, one has P% =1. Since 7, is
the deletion rate, 1/(1 —g ) is the average instantaneous
deletion length, and all residues are deleted at the same
rate, extant ancestral residues are deleted at rate r;/(1 —
g4)- 1t follows that:

dPp,
=P/ (1=8a). M)

Another way to derive this result is by considering that
for a very short time 3 one has that the probability that
an extant ancestral residue is deleted is

50> 3 &) (1-ga)+0(9) b))

h=0j=h+1

here, § is small enough so that one can ignore the
probability of more indels affecting the same region,
and 8r; approximates the probability of a deletion event
starting at any position; parameter & >0 represents the
starting position of a deletion (in terms of bases at the left

of the considered extant ancestral residue); g{[l(l —84)

is the probability that the considered deletion is long
enough to delete the considered extant ancestral residue.

. j—1 .
Since } ;-0 ijhHgii (1-g4)=1/(1—g,), Equation 1
follows. The solution to Equation 1 is:

pt =PO e tra/(1=8d) = p=tra/(1=8a) (3)

A second variable I consider is Lf, the expected number
of inserted residues per ancestral residue. The initial
value is L? =0. Inserted residues are deleted at rate
14/(1—g4), as above for ancestral residues. New residues
are instead inserted at rate (P, + Lf)ri /(1—gj)sincel/(1—
gi) is the expected instantaneous insertion length, and
since insertions can appear next to either extant ancestral
residues or inserted residues. Combining the rates of
these two types of events one obtains:

dL; toort t

L= (Pl + L/ (1 -g)~Lirg/(1=g0)- (@)
Substituting the function for P, from equation 3 and
considering the initial condition of L? =0, one finds that
the solution is:
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Extantseq: A CT
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Extantseq.: ACCGT
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Extantseq: ACCGT
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of CC

Ancestor: A - T
Extantseq. AG T

E Ancestor: A- -GT F
Extantseq: ACCGT

Deletion
of CG

Ancestor: AG- T
Extantseq. A-CT

Ancestor: ACCT
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of G

Ancestor ACC - T
Extantseq.: A- -G T
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Ancestor: AC = =T of GGI Ancestorr ACT
Extantseq.: A - G GT Extantseq: A = T

FIGURE 3.

C  Ancestor: AC--T D
Extantseq: ACCGT

Deletion
of CG

Ancestor: AC T
Extantseq: AC T

Ancestorr ACG T
Extantseq: ACG T

Deletion
of CG
Ancestor: ACGT
Extantseq: A - - T

G Ancestor: A--GT
Extantseq.: ACCGT

Deletion
of G

Ancestor: AG - - T
Extantseq.: A - CCT

H Ancestorr AC- - T
Extantseq: ACGG T

Deletion
ofC

Ancestor: AC - =T
Extantseq: A - GGT

J Deletion
Ancestor: A - G - T ofCGI Ancestor AG - T
Extantseq.: ACGTT Extantseq: A = T T

Events affecting cumulative indel dynamics. Each sub-plot represents a type of event that can affect a variable of the cumulative

indel model. In each sub-plot, the alignment between the ancestor sequence and the extant sequence before the event is shown, followed (after
the arrow that represents the indel event) by the alignment of the ancestor sequence and the extant sequence after the event. Inserted bases are

colored in green, deleted ones in red.

Lf =i/ (1=8i)=ra/(1=ga)t (1 _ otri/(1=81)y =p£n(etri/(1*gi) —1).

)
In deriving P!, and th- above, I have not used the
assumption of geometrically distributed cumulative
indels lengths or any other approximations to the GIM.
As such, Equations 3 and 5 hold exactly for the GIM.
For all other variables below, 1 use instead the
assumption that cumulative indels have geometrically
distributed lengths, and often other approximations
such as neglecting low-probability events. As such,
all the remaining variables below in this section
need to be treated as approximations to the GIM.
These approximations are expected to be accurate
for short divergence times (or equivalently low indel
rates) when most cumulative indels are made of
individual indel events; their quality is instead expected
to degrade at very high divergence. The derivatives
of these remaining variables in the model define a
system of ordinary differential equations, which I solve
numerically.
A third variable A! is the probability that an ancestral
residue is extant (not deleted) and followed by a

non-empty cumulative insertion. The initial value is
A?:O. A related variable that I also define here for
convenience is Pf, the probability that an extant ancestral
residue is followed by a non-empty cumulative insertion.
The difference between A! and P! is that the former
represents a proportion over all ancestral residues
(also deleted ones), while the latter is the proportion
over only extant residues, and one therefore has Af:
PfP,tn. Variable Alt. is affected by four types of events.

New insertions can appear right after match columns
previously not followed by insertions, so increasing
A§ with rate (P;n—Af)ri (see e.g., Fig. 3a). Deletions
can remove match columns followed by non-empty
cumulative insertions, decreasing Af at rate Afrd /(1=
g4)- Deletions can start right after a match column not
followed by insertions, and remove a match column
followed by a non-empty cumulative insertion, but
not delete the whole cumulative insertion (see e.g.,
Fig. 3b); this causes Alt. to increase at rate (P, —
ADraPi(1-ga)/(1—ga(1—P))(1-g48})), since Pf/(1—
gd(l—Pf)) is the probability that a deletion reaches a

nonempty cumulative insertion, and (1—-g4)/(1— gdgf)
is the probability that the cumulative insertion is not
completely deleted. Here and below, I neglect the
contributions of deletions removing multiple entire
cumulative insertions, as these events are expected
to be relatively rare unless deletions events can be
considerably longer than insertion events. In large-
scale alignments, such as genome-level alignments, such
large deletions events can be particularly plausible
(see e.g., Gregory 2004; Newman et al. 2005), and
so this approximation could be a target for future
improvement of the model. Lastly, deletions can remove
whole cumulative insertions after a non-deleted match
column (see e.g., Fig. 3C), therefore decreasing Af
at rate Alr(1-g/)(1—g4)/(1—ga(1—P})(1—g4g})): here
one has to require that the deletion removes the whole
cumulative insertion, which has probability (1— gf) /(11—

gdgf), and that the deletion does not continue into
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another cumulative insertion, with probability (1—
84)/(1—ga(1— Pf)). Here, and below, I use the assumption
that at any point in time non-empty cumulative indels
are geometrically distributed, and as such, while these
derivatives usually provide a good approximation of
evolutionary dynamics under a GIM, they do not define
in themselves a self-consistent mathematical model of
sequence evolution. Combining these four types of
events leads to:

dAf t t t
= (B —ADri—Alrg/(1—g)+

Pi(1—g4)
(1—g4(1—PhH)(1-gagh)
_ot)(1—

T < gl)(tl 84) y
(1-ga(1=P))(1—-gag;)

It is possible to express gf in terms of Lf and Pf (and

+(Ph,—Adrg

i

(6)

therefore Af) since
Li=P! Pl/(1-gh. )

The second variable I consider in the system
of differential equations is Afi' the probability that

an ancestral residue is extant and followed by a
nonempty cumulative deletion. This has initial value
A2=0. Another variable that I also use for notational
convenience is PZ, the probability that an extant
ancestral residue is followed by a non-empty cumulative
deletion. This means A;:P;Pfﬂ. Variable A‘ti is subject
to three types of events. Deletions that start at (and

include) a match column preceded on the left by an
empty cumulative deletion (see e.g., Fig. 3D) create

new nonempty cumulative deletions at rate (P, —
A;)rd. Deletions remove match columns followed by
nonempty cumulative deletions, and therefore reduce
Aﬁi at rate Al‘;rd /(1—g4). Lastly, deletions starting at an
inserted residue can create a new nonempty cumulative
deletion (see e.g., Fig. 3E) at rate (Pf—Pfd)th.rdgd(l—
gh/(Pi(1—g4g!)). Summing these contributions one
obtains:

dA{ti t t t
i P —Apra—Agra/(1—84)

d
N P{—Pj, Liraga(1-g})
P{  1-gag}

(8)

Because at time t one has a proportion 1— P, of deleted
ancestral residues, the average length of a nonempty

cumulative deletion is (1 —P%) JAL: however, due to the
assumption of geometric length cumulative deletions,
this quantity is also equal to 1/(1— gé). It follows that
one can express g!, in terms of Af:

t

A
t d
=1-—— 9
gd 1 Pt ( )

The third and last variable whose derivative is part of the
system of differential equations is Af , the probability
that an ancestral residue is extant and followed by
a non-empty cumulative insertion and a non-empty
cumulative deletion. The initial value is Af = 0. Asusual,

for convenience I will also use the notation Pfd to refer
to the probability of an extant ancestral residue being
followed by a nonempty cumulative insertion and a
nonempty cumulative deletion; the relation between Plt. 5
and Alt. ;is then Af i =Pf dP;,Z. The derivative of Alt. ; is more
complex than the others above and has smaller impact.
There are six types of events contributing to it: insertions
after match columns that already had nonempty
cumulative deletions but empty cumulative insertions
(see e.g., Fig. 3f), at rate (AZ —Alt. ;)7i; deletions removing
match columns followed by nonempty cumulative
insertion and deletion, decreasing Alt. 4 at rate Alt. gra/(1—
84); deletions that introduce nonempty cumulative
deletions at match columns that already have nonempty
cumulative insertions but empty cumulative deletions
(see eg., Fig. 3G), at rate (Al—Al)ry/(1-gigs) (the
denominator considers that such deletions can start
both within or at the end of the considered cumulative
insertion, and uses the assumption that cumulative
insertion length is independent of cumulative deletion
length in the same chop zone); deletions that cause
match columns (previously with empty cumulative
insertions) to gain nonempty cumulative insertions by
deleting intermediate match columns (see e.g., Fig. 3h),
at rate (P}, —ANrgPi(1—g4)/(1—-ga(1—P))(1-g4s!));
deletions that remove whole cumulative insertions from
match columns previously followed by both nonempty
cumulative insertion and deletion (see e.g., Fig. 3I),
decreasing Afd at rate Azt.drd(l —gf)(l —g4)/((1 —gfgd)(l -
(1—Pf)gd)); and lastly, deletions that remove an entire
cumulative insertion after an unaffected match column
that was previously followed by an empty cumulative
deletion, and at the same time deleting a match column
followed by a non-empty cumulative insertion, and
not deleting this whole cumulative insertion (see e.g.,
Fig. 3j), with rate (Af — Al )ryPi(1—g4)g4(1—gH/(1—(1—
Pf)gd)(l — gdgf)(l — gfgd)). Combining all six terms, one
obtains:

dAt
7"1 =(AL—Ari—Alrg/(1-g9)
+(A,t- —Afd)rd/(l _gfgd)
’ Pi(1-g4) n
(1—(1—P)ga)(1-gag})

+ (P, —Abyr

i
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—Abr, (1=8)0 )
T (1-glga) 1~ (1-Phgy)
Pi(1-g4) ga(1—g})
(Al At l .
A i phg (1 —gagh) 1—glea
(10)

The three derivatives in Equations 4, 6, 8, and 10
form a system of ordinary differential equations for
the variables Af, A‘ti, and Af d with initial point +=0
that I solve numerically using the odeint function of
the scipy Python package (Bressert 2012). This typically

requires a running time in the order of 1073 s. Solving
this system allows calculation of values for A?, A‘ti' and

Afd for any divergence time ¢ and any instantaneous

parameters t;, 74, §; and g;. From these (and considering
equations above including 7 and 9) one can obtain values
for gf, gél, Pf, le, and Plt'd' Finding the value of these
variables is a prerequisite for defining and using the
cumulative indel pairHMM described in the following
section, and therefore for performing efficient alignment
and parameter inference under the cumulative indel
model. The differential equations above need to be
solved for each combination of parameter values ¢, 7;,
4, &, and g; considered; they do not depend on the
particular sequences to be aligned.

The Cumulative Indel pairHMM

The results from the previous section allow the
definition of the cumulative indel pairHMM. Assuming
that one sequence is descended from the other with
divergence time ¢, a classical finite pairHMM has three
states: M (for match, homology), D (for deletion), and
I (for insertion). In Supplementary Section S6 available
on Dryad, I discuss the more typical case of two
sequences descended from a common ancestor. While
in reality the case that one sequence is ancestor of the
other is rarely met, it is however almost never possible
to assign a directionality to indel events (and most
substitution events) using just two sequences. As such,
while the model considered is not necessarily stationary
or reversible, I always make inference under the more
computationally efficient assumption that one sequence
is ancestor of the other. I instead simulate sequences
under the GIM assuming they both descended from
a common ancestor, so to account for the effects of
likely model misspecification affecting the accuracy
of the cumulative indel model. While not assuming
stationarity means that the position of the root can affect
inference, it also means that the model is better equipped
to describe scenarios where sequence evolution is not at
equilibrium.

Each state of the pairHMM refers to a type of pairwise
alignment column: columns with M have residues in
both sequences, columns with D only in the ancestral
sequence, and columns with I only in the descendant. I

define the transitions between states of the pairHMM in
such a way that the probability of an alignment under
such pairHMM corresponds to the probability of the
sequence of cumulative indels in the model described
above. Here, I assume that the considered alignment has
been sampled by selecting a finite contiguous stretch
of columns from an infinite alignment. This is often
a reasonable approximation since sequences within
an alignment are usually selected from within much
longer chromosomes. I assume that all possible lengths
of the sampled alignment are equally likely, which
corresponds to a uniform prior measure over alignment
lengths. This means that the probabilities of all possible
alignments of all possible sequences will not sum up to
one, but the probabilities of all alignments of the same
length will. Note that a uniform prior over alignment
lengths does not necessarily yield a uniform prior over
the length of either the ancestral or the descendant
sequence length.

Given the assumption that the considered alignment
starts at a random position within an infinite alignment,
the probabilities of a state at the first alignment column
is defined as its equilibrium probabilities within the
pairHMM. Equivalently, if one denotes as S the start
state of the pairHMM, we have the following transition
probabilities:

P(X|S)=P(X), for X=M,D,I, (11)

where equilibrium probabilities P(M), P(D), and P(I) can

be calculated from the transition probabilities defined
below. A pairHMM describes the probability that one
type of column is followed by another type of column,
assuming the Markov property along the pairwise
alignment. The transition probabilities P(S2|S1) from
state S7 to state S in the cumulative indel pairHMM
are defined as:

e P(M|M)=1—P!—P\+P!,

* P(DIM)=P},

* P(IIM)=P!—P!,

* P(MID)=(1-gy)(P;—P;;)/Py
* P(DID)=g;

* PUID)=(1-g)Piy/Py

o PMI=1-g!

* P(I)=g!.

Lastly, we ignore the contribution of the probability
of terminating the alignment from any column, that
is, of transitioning from any state M,D,I to the end
state E representing the end of the alignment. This is
equivalent to considering the length of the alignment

known a priori, that is, conditioning on alignment
length. This in practice does not affect the algorithm
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FIGURE 4. PairHMM structure. Graph representation of the cumulative indel pairHMM (left) compared to the RS07 (Redelings and Suchard

2007) pairHMM (right). Hidden states are represented as a graph vertices (circles) and non-zero transition probabilities as edges (arrows). The
RS07 model has been here simplified by removing start and end states. Unlike in the RS07 model, in the cumulative indel model the transition

from deletion (D) to insertion (I) column is never allowed.

implementation, but has the consequence that the
alignment probabilities (of alignments of any length) do
not sum to 1. As mentioned above, this is equivalent
to defining a measure over alignments rather than a
probability, which has the benefit of allowing uniform
prior weights over possible alignment lengths. More
detail for the rationale behind the definition above
of transition probabilities and their relation to the
cumulative indel probabilities is given in Supplementary
Section S2 available on Dryad.

The assumption of how an alignment is sampled from
an infinite alignment might not be realistic in certain
common situations. In the Supplementary Section 54
available on Dryad, I define more realistic alignment
boundary conditions at the expense of increased
model complexity (but small additional computational
complexity). The key modifications necessary for
these extensions is to alter the alignment starting and
ending probabilities P(X|S) and P(E|X) defined above.
In Supplementary Section S5 available on Dryad, I also
discuss how to define a cumulative indel pairHMM for
the probability of a descendant sequence and alignment,
conditional on the ancestral sequence and parameters,
as is typical for pairHMMs used in multiple sequence
alignment and phylogenetic inference.

Figure 4 presents a graphical representation of the
cumulative indel pairHMM. There are some noticeable
differences between the cumulative indel pairHMM and
previous finite pairHMMSs (i.e., previous pairHMMs
except the long indel model). An important difference
is that the transition probability from I to D is 0
as cumulative insertions are required to appear in
the alignment after deletions; this has the effect of
reducing the number of alignments with nonzero
probability, in turn simplifying the search of an optimal
alignment, and integration over alignment space. In
fact, in the cumulative indel pairHMM, a chop zone is
represented by a single possible chop zone alignment
(all deletion columns followed by all insertion columns).
This is very different from the TKF91 and TKF92

pairHMMs where many alignments can be possible for
the same chop zone, and different alignment represent
different evolutionary histories leading to the same chop
zone. In the cumulative indel pairHMM, all possible
evolutionary histories are still considered, but now
allowed alignments typically have more evolutionary
histories consistent with them. Assuming 0 transition
probability from I to D also reduces the theoretical
accuracy achievable by a general pairHMM, that is, it
could be possible, by removing the constraint P(D|I)=
0, and by adjusting the other transition probabilities
accordingly, to define a more accurate pairHMM than the
cumulative indel pairHMM. A specific example of this is
when simulating indel events of length 1 (i.e., simulating
under the assumptions of the TKF91 model). In this case,
the TKF91 pairHMM matches the simulated patterns
exactly, while the cumulative indel pairHMM introduces
an element of approximation (see next section).

Here, I do not assume the existence of sequence
fragments, unlike most previous pairHMMs. A
graphical comparison of the cumulative indel pairHMM
and the RS07 pairHMM (Redelings and Suchard, 2007)
is given in Figure 4 while a comparison to other finite
pairHMMs is presented in Supplementary Section S16
available on Dryad.

Testing the Cumulative Indel pairHMM with Simulations

I use INDELible (Fletcher and Yang 2009) to simulate
sequence evolution under the GIM and to test how
well the pairHMM above and other pairHMMs fit the
dynamics of the GIM (Figure 5 and Supplementary
Figs. S2-54 available on Dryad). I simulate an ancestral
2 Mbp sequence and alignments at different levels of
divergence, from which I extract the proportions of
nonempty cumulative indels and the distributions of
their lengths. I then compare these values to those
predicted by the cumulative indel model, by the TKF91,
TKF92, RS07, and PRANK (Loytynoja and Goldman
2005, 2008a, 2010) finite pairHMMs, and by the long
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indel model generalized pairHMM (MLH04, Mikl6s
et al. 2004). For the cumulative indel model and
the MLHO04 I use the true (simulated) instantaneous
indel rates, divergence time, and instantaneous gap
extension probabilities as parameter values. To allow
calculation of MLH04 expected features, I assume,
as an approximation, a maximum of 3 indel events
per chop zone and maximum chop zone length of
35, and I use the implementation of the MLH04
in https:/ /github.com/ihh/trajectory-likelihood/. The
TKF91, TKF92, RS07, and PRANK pairHMMSs have
different parameterizations than the simulated model
(e.g., assuming unsplittable fragments or 1-residue
instantaneous indels), so they are not straightforward to
compare to the cumulative indel model (see e.g., Fig. 4
and Supplementary Fig. S16 available on Dryad) and
to simulations. Therefore, in the TKF91, TKF92, RS07,
and PRANK pairHMMs, I set, as an example, parameter
values that fit well simulations at short divergence time
(t~0) in terms of numbers of expected indel events per
time unit; if possible (i.e., for non-TKF91 models) I also
set parameter values to match simulated indel lengths at
t~0 (so gap extension probabilities equal to simulated g;
and g4). For PRANK, I set the match fragment extension
probability y to either y=0 or y=e¢. For a more detailed
description of all finite pairHMMs considered here, see
Supplementary Section S9 available on Dryad. I extract
predicted patterns of cumulative indel proportions
and lengths distributions in finite pairHMMSs from
alignments of 2 million columns simulated under the
parameter settings of each finite pairHMM. For the
MLHO04 instead, I calculate the probabilities of different
chop zones under the given parameter values and
the given approximations, normalize them, and use
them to calculate the considered expected chop zone
patterns.

The cumulative indel pairHMM closely tracks many
simulated patterns, including mean lengths of chop
zones, cumulative insertions, and cumulative deletions,
and proportions of non-empty chop zones and non-
empty insertions (Fig. 5 and Supplementary Fig. S2
available on Dryad). Other patterns are not perfectly
matched, but seem more closely matched compared
to other pairHMMs, for example median cumulative
indel lengths, proportion of non-empty cumulative
deletions, and variance of cumulative indel lengths.
Most predictions by the TKF91 model are strongly
affected by its assumption of 1-residue instantaneous
indels. The PRANK pairHMM seems instead mostly
affected by the fact that its transition probabilities are
only defined up to a threshold of divergence, and
that, approaching this threshold, expected cumulative
indel lengths diverge to infinity. The TKF92 and RS07
models are affected by their fragment assumption,
in that, most remarkably, the expected proportion of
non-empty chop zones converges to a relatively low
probability instead of approaching 1.0 as divergence
increases. The MLH04 model, while in theory closely
matching the simulated model, in practice seems

affected by the approximations (maximum number
of indels in chop zone and maximum chop zone
length) used to implement the model in practice; in
particular, at high divergence, the model seems to
considerably underestimate cumulative indel lengths.
This could be addressed by relaxing the approximations
further; however, this would also come at considerable
computational cost.

The cumulative indel pairHMM  assumes
geometrically distributed cumulative indel lengths
for any t. Even if this assumption can be met at
t~0, simulated cumulative indels at high t are too
dispersed to be fit by a geometric distribution (Fig. 5F,
Supplementary Fig. S3 available on Dryad and Rivas
and Eddy, 2015) and as such cannot be accurately
described by a pairHMM.

While, in the simulations above, the cumulative indel
pairHMM seems to represent a better approximation to
the GIM than other pairHMM, this is not necessarily
the case for all theoretical scenarios. For example, when
considering indel events that only affect 1 residue
at the time, that is, under the assumptions of the
TKF91 model, TKF91 predictions are exact, while the
cumulative indel model ones are only approximations
(see Supplementary Fig. S4 available on Dryad). In
this scenario, the predictions of the cumulative indel
pairHMM are very close to the simulations, but the
expected variance of non-empty chop zone lengths
does not perfectly match them. One of the reasons
for this is that the cumulative indel pairHMM has
the constraint P(D|I)=0, and this does not allow it to
accurately describe the correlation between cumulative
indel length and cumulative deletion length within
the same chop zone. Relaxing the constraint P(D|I)=
0 (and consequently adjusting the other transition
probabilities) might therefore lead to a slightly more
accurate pairHMM, which would however still be an
approximation in most realistic scenarios due to the
non-Markov nature of alignments generated under the
GIM.

Substitution Probabilities

So far I discussed patterns of residue presence—
absence, that is, the indel process, and ignored
substitutions and sequence composition. As usual
in statistical alignment (Mitchison and Durbin 1995;
Fleissner et al. 2005; Redelings and Suchard 2005;
Fletcher and Yang 2009), I assume that the substitution
probabilities are independent of the indel process.
In Supplementary Section S7 available on Dryad, I
discuss how this independence follows from typical
assumptions regarding substitutions (substitution
process at equilibrium) and indels (indel rates
independent of sequence composition, and inserted
sequence composition sampled from equilibrium
residue frequencies) which I also assume hereby.
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The phylogenetic probability Py, of a single
alignment column, assuming that one sequence is the
ancestor of the other with divergence time ¢, is:

* Poup((R1,—))=P((—.R1))=7(Ry)
o Psub((RlaRZ))Zn(Rl)ngle

where Ry and Rp are residues, (Rq,—) and (—,Rq)
are respectively a deletion and an insertion alignment
column, (Rq,Rp) is a match alignment column, n are
the equilibrium residue frequencies, and 5%1 R, is the

probability of having residue R; in the descendant
sequence conditional on its homologous ancestor being

Rj. Probability S%l R, is entry (R1,R2) of the probability

matrix St=¢!Q, where Q is the instantaneous residue
substitution rate matrix (Yang and Rannala 2012). In
the rest of the manuscript, I consider the case of amino
acid residues, and I assume that substitution rate Q and
amino acid frequencies n are from the LG model (Le
and Gascuel 2008). For nucleotide sequences, entirely
analogous methods can be employed.

In some cases, one is interested in the probability of
the descendant sequence conditional on the ancestral
sequence (e.g., in treeHMMSs like BAli-Phy, Redelings
and Suchard 2005). In this case, given that the first
sequence is ancestral (e.g., in match column (R1,Ry) the
ancestral residue is R1) one has:

° Psub((Rla_))zl
* Pyup((— R2))=m(Ry)
° Psub((RlvR2)):S§z]R2

Dynamic Programming Algorithms

Just like any other classical finite pairHMM,
one can use the cumulative indel model within
classical finite pairHMM algorithms for statistical
inference of pairwise alignments (Needleman-Wunsch
algorithm), evolutionary parameter inference (Baum-
Welch algorithm), indel history inference (Viterbi
algorithm), and posterior decoding (Forward and
Backward algorithms, Durbin et al. 1998; Lunter 2007a).

Given two sequences s1 and sp of length /1 and I, all
these methods employ a dynamic programming matrix
L with I;+1 rows and Ip+1 columns. Entry L;, of L,
with 0<j<l; and 0<m <[y, refers to probabilities of
partial alignments of the first j residues of sequence sy,
(s%, ...,571), and the first m residues of sy, (s%,...,sgz). For

example, in the pairHMM version of the Needleman-
Wunsch algorithm, L]-’m tracks information regarding

the highest partial alignment probability of s%,...,s’1
and s%sé” Entries Lj,m are calculated dynamically,
starting from Lgg=1, and ending with j=I[1,m=I.
In order to calculate L;,,, only the values of Lj 1,
Lim-1, and Lj_1,,—1 are usually needed. The main

difference between this method and classical pairwise
aligners is that one uses pairHMM state transition
probabilities (like the ones in Section “The cumulative
indel pairHMM”) instead of fixed and arbitrary gap
opening and extension penalties, and phylogenetic
substitution probabilities (like the ones in Section
“Substitution probabilities”) instead of fixed mismatch
penalties. In case of the pairHMM Needleman—-Wunsch,
the final dynamic programming score now has a clear
interpretation as the highest alignment log-probability
between the two considered sequences and given a set
of evolutionary parameter values. The algorithm also
allows the reconstruction of the specific alignment with
the highest probability. I do not employ evolutionary
parameter values fixed a priori, but I estimate them
from the sequences themselves using similar dynamic
programming methods. In Supplementary Section S8
available on Dryad, I describe the cumulative indel
model versions of these methods and some extensions.

All methods were implemented
in Python and are available from
https:/ /bitbucket.org /nicofmay/cumulativeindel. I
implemented pairHMMs for the cumulative indel
model, as well as for the TKF91, TKF92, RS07,
and PRANK models. While the values of state
transition probabilities differ among models, as
do their parameterizations, most of the pairHMM
techniques discussed here and in Supplementary
Section S8 available on Dryad remain the same for
different pairHMMSs. For efficiency, I represent and
calculate probabilities as “more buoyant floats” (Lunter
2007a) which is a particularly convenient number
representation for pairHMMSs. To further reduce
computational demand, I often run Python scripts
with the PyPy2 v6.0.0 (https://pypy.org/) alternative
Python implementation.

Fast Dynamic Programming Approximation: Adaptive
Banding

All PairHMM dynamic programming (DP) algorithms
described in Section “Dynamic programming
algorithms” and Supplementary Section S8 available on
Dryad work on a DP matrix L of size (I;+1)x (Iz+1).
When the sequences considered, s; and s;, are close
relatives, most of these partial alignments considered
in L are very unlikely. This has sparked interest in
“banding” or “corner cutting” approaches (Chao et al.
1992; Hein et al. 2000; Havgaard et al. 2007; Westesson
et al. 2012; Bogusz and Whelan 2017) that aim to focus
only on likely regions of L.

Here, I propose and adopt a new such approach called
“adaptive banding” (see Fig. 6). Adaptive banding fills
L along diagonals, unlike typical column- or row-wise
approaches. Each adaptive banding iteration i with 0 <
i<l1+Iy considers cells (j,k) with j+k=i, so that each
partial alignment in the current iteration has a constant
number of residues, and therefore comparable data size
and probability (Fig. 6b,d). If a cell has much lower
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Graphical example of adaptive banding. Two sequences of length 5 are considered. Green cells have been previously considered and

not discarded, red cells have been discarded, and blue ones are being considered in the current iteration. From a) to b), a new iteration evaluates
cells along a diagonal, but cells in the bottom row and leftmost column were already discarded and are ignored. c) Cell (1,3) is discarded in the
current iteration, and therefore so are the other (not yet evaluated) cells in row 1 and d) a new iteration starts. At each iteration, any number of

rows and columns can be discarded.

probability (or score) than some other cells considered
in the same iteration, it is discarded for the rest of the
algorithm. In all applications below, unless otherwise
mentioned, the minimum threshold for discarding cells
is set to 15 log-probability units difference. Further, if
a bottom cell (i.e., one with only discarded cells under
it in the same column) is discarded, all the cells on
its right in the same row can also be discarded, as
they become unreachable except through previously
discarded cells (Fig. 6¢). Similarly, if a left-most cell is
discarded, all cells above it in the same column are also
discarded.

In the ideal scenario that two sequences are
homologous and with high enough identity, adaptive
banding can considerably reduce the time cost of
all dynamic programming methods by filling only a
narrow band of L surrounding the highest-probability
alignment. However, in the worst-case scenario of two
non-homologous (or extremely diverged) sequences,

because all cells in the same adaptive banding diagonal
are expected to have similar probabilities, the cost of this
method can remain proportional to the size of L.

To reduce not only time demand, but also memory
demand of this approach, one can avoid to allocate
memory for DP matrix cells that are discarded without
being visited. I achieve this by allocating memory for
one diagonal at the time just before said diagonal is
filled. Instead of allocating memory for all cells in a
diagonal, I only allocate memory for the cells in the
diagonal that have not been already discarded. Then,
to be able to correctly access a cell, I only need to
record how many cells have not been allocated from the
bottom of each diagonal. In a favorable scenario with
two similar homologous sequences, this approach leads
to a significant saving in memory, and to comparable
memory and time demands.

Many previous banding approaches have assumed
a fixed prior band size, considering only cells of the
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dynamic programming matrix that fall within this pre-
determined diagonal band (see Chao et al. 1992 and
citations within). Adaptive banding has the advantage
that band size is not determined a priori, allowing long
indels within an alignment, but also allowing a reduced
band size in regions of high similarity where alignment
uncertainty is low. (Hein et al., 2000) proposed instead
to use a similarity alignment between two sequences to
delimitaband around the maximal similarity alignment,
the size of the band being determined by the similarity
scores of the suboptimal alignments. Adaptive banding
has the advantage with this respect of not requiring
an initial similarity alignment, therefore allowing the
alignment of very long but similar sequences; also,
adaptive banding bases the size and location of the
band on the model used for statistical alignment, which
might prevent biases in the case the similarity alignment
model would support different alignments than the
statistical alignment model. (Havgaard et al., 2007)
proposed a banding (or “pruning”) scheme in which
a threshold for a minimum acceptable subalignment
score is defined based on the length of the aligned
subsequences. While this approach shares several
aspects with adaptive banding, it has the limitation
that when the aligned sequences are not very similar,
or if there are long indels, sometimes no acceptable
alignments can be found at all. Adaptive banding has
instead the advantage that the subalignment scores are
compared with each other, preventing this problem
and allowing many subalignments to be considered
in regions of high alignment uncertainty. (Westesson
et al.,, 2012) implemented a banding approach within
an MCMC framework. In their method, a new sampled
alignment has to reside within a band of fixed size
around the currently considered alignment. Adaptive
banding could be useful in this context to automatically
modulate band size relative to alignment uncertainty
(e.g., a larger band for long tree branches and a
small band for closely related sequences) and relative
to alignment uncertainty locally along the alignment.
(Bogusz and Whelan, 2017) utilized a more complex
banding scheme with an initial banding based on k-
mer distance estimates, followed by identification of high
posterior cell using the Forward-Backward paradigm.
Adaptive banding does not need initial k-mer based
assessment, and as such might work even in cases
where divergence might disrupt most k-mers while
still leaving a detectable signal of homology. Adaptive
banding was developed independently of another
similarly named approach (adaptive banded dynamic
programming, Suzuki and Kasahara, 2017) where the
size of the band is fixed before running dynamic
programming alignment, while the location of the band
within the dynamic programming matrix is allowed
to change.

Adaptive banding can be used not only with the
cumulative indel model pairHMM methods, but also
with other pairHMM s (such as the TKF91, TKF92, RS07,
and PRANK models), as well as with classical dynamic
programming alignment methods. Here, I implement

and use adaptive banding for all finite pairHMM models
considered in this text.

Simulations

I use simulations in INDELible (Fletcher and
Yang 2009) with geometric instantaneous indel length
distributions to compare different methods of alignment
and parameter inference. I will instead not use
benchmark structural alignments, since the different
assumptions of structural alignments (used in these data
sets) and evolutionary alignment (considered in the
current work) can cause considerable biases (lantorno
et al. 2014; Tan et al. 2015). I simulate substitutions
under an LG model (Le and Gascuel 2008) and assume
that the amino acid rate matrix and frequencies are
known during inference. Simulated instantaneous indel
gap extension probabilities are always g;=g;7=0.75 (so
instantaneous indels have an average length of four
residues).

All considered finite pairHMM methods (the
cumulative indel pairHMM, but also the TKF91,
TKF92, RS07, and PRANK ones) were run using
adaptive  banding  (unless stated otherwise)
and with custom Python scripts available from
https:/ /bitbucket.org/nicofmay/cumulativeindel/.

In each scenario and data set, I perform dynamic
programming pairHMM alignment inference with a set
of fixed parameter values specific for the considered
data set. These parameter values are estimated via
maximum likelihood from the simulated data itself,
and as such they are expected to fit well each simulated
data set (see e.g., Lunter 2007b for a similar approach),
and therefore to be a sensible choice for performing
alignment. Maximum likelihood parameter inference
is performed with a dynamic programming pairHMM
method, the Forward algorithm (Supplementary
Section S8 available on Dryad), which calculates the
likelihood of pairHMM parameter values given two
homologous sequences by efficiently integrating over
all their possible alignments. I estimate maximum
likelihood parameter values for a dataset by using the
pairHMM Forward algorithm over different parameter
values combinations, until a local likelihood maximum
in parameter space is reached; specifically, I use the
Nelder-Mead method in the scipy.optimize package
(Gao and Han 2012) to explore parameter space and
optimize the likelihood function given by the pairHMM
Forward algorithm. For each maximization, I start from
three different points in parameter space ((t=0.2,7;=
ry=0.1,4i=¢4=0.5), (t=0.1,r;=r;=0.4,4;=g;=0.5),
and (t=0.1,r;,=r3=0.1,4;=7=0.9)) to help in case
non-global likelihood maxima are present. To aid
parameter inference, and to address the fact that in
pairwise alignment normally insertions and deletions
are not distinguishable from one another (unless indeed
one sequence is ancestor of the other), I fix r;=r; and
gi=g&4 in the cumulative indel model; similarly, I fix
A=p in TKF91 and TKF92 (where A is the instantaneous
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insertion rate and p the instantaneous deletion rate),
and either e=y in the PRANK model (where ¢ is
the gap fragment extension probability and y the
match fragment extension probability) or y=0. I do
not condition on ancestral sequence length for any
pairHMM, and I do not assume that ancestral sequence
length is at equilibrium. For each data set, I then use the
inferred maximum likelihood parameter values as fixed
parameters for alignment inference with the pairHMM
Needleman-Wunsch algorithm (see Supplementary
Section S8 available on Dryad). For comparison, I also
performed alignments with the traditional pairwise
alignment implementation of the NEEDLE function in
EMBOSS v6.6.0 (Rice et al., 2000) with default options;
this latter method is a traditional aligner without an
explicit probabilistic model, but with gap opening, gap
extension, and mismatch penalties. I consider these
penalties as fixed parameters, so they do not change
across applications to simulated data sets.

To investigate computational demands, I use pairwise
alignments of different lengths and simulated under
different evolutionary parameters (see Supplementary
Fig. S5 available on Dryad).

To test parameter and alignment inference, I consider
instead two simulation scenarios, each with 150
simulated pairs of homologous sequences evolved
from a 1 kb common ancestor. While in pairHMM
inference, I assume that one sequence in each pair is
ancestral to the other (so as to reduce computational
cost), in simulations both sequences descend from a
common ancestor with equal divergence times (so as
to increase realism of simulations). This represents
a model misspecification for the cumulative indel
model as it does not assume stationarity. In the first
simulation scenario (“1 species pair”), I assume that 150
homologous gene pairs are selected always from the
same two species; the divergence time ¢ is then inferred
together with indel rate r =r; =r; and instantaneous gap
extension probability g =g;=g,. This scenario addresses
the accuracy of inference when it is known that all
pairwise alignments have similar levels of divergence.
In the second simulation scenario (150 species pairs”),
I assume that all 150 homologous gene pairs are
selected from different species pairs; the divergence
time ¢ for each gene pair is sampled from a uniform
distribution over [0,1]; during inference, divergence
times are assumed known and only r and g are inferred.
In this scenario, as in treeHMMs and in (Bogusz and
Whelan, 2017), the same pairHMM parameters have to fit
different levels of divergence simultaneously. Assuming
known divergence times might not be generally realistic,
however, in practice, inferring 150 divergence times
and indel parameters simultaneously with the methods
considered here would be excessively computationally
demanding; instead, in scenarios when divergence time
is unknown it would be feasible to first infer a guide tree,
as done by most multiple sequence alignment methods,
and then use the guide tree to inform divergence
times for indel parameter inference, similar to what is
presented here.

RESULTS

Computational Demand

Both classical alignment and finite pairHMM
algorithms are expected to have quadratic time costs
in sequence length. Simulations confirm this pattern
(Fig. 7 and Supplementary Fig. S5 available on Dryad);
however, adaptive banding makes alignment much
faster, approximately linear in sequence length. Long
sequence statistical alignment with adaptive banding is
faster than with EMBOSS, and adaptive banding even
allows genome-wide statistical alignment (see inference
from human-chimp synteny block below). Despite this,
short sequence alignment with EMBOSS remains faster
than with pairHMM alignment. This is expected due
to the greater computational complexity of operations
on probabilities than of operations on integer scores.
However, a major part of the computational demand
difference is due to the specific Python implementation
considered here of the pairHMM methods. This
interpreted high-level language introduces slow-downs,
in particular when compared with the optimized C
implementation of EMBOSS, and could be addressed
by re-implementing all methods in C. Solving the
differential equations of the cumulative indel model
requires negligible time (in the order of 1073 s per
alignment) and so all the finite pairHMMs considered
here have similar computational demands.

The computational demand of adaptive banding is
very dependent on the level of uncertainty in the
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FIGURE7. Comparison of running times. Computational demand of
classical and pairHMM alignment methods. On the Y axis are running
times in seconds; on the X axis the lengths of simulated ancestral
sequences. Here, simulated parameters are t=0.05, r;=r;=0.05, and
8i=84=0.75. Each boxplot includes 10 replicates, and the bars within
boxplots represent median, lower and upper quartiles, and extreme
values. Boxplot bars are often not clearly visible due to differences in
running time within methods being much smaller than differences
between methods. “Alignment banding” and “Alignment” refer to the
cumulative indel pairHMM Needleman-Wunsch algorithm, with and
without banding respectively, and with simulated parameter values.
“Forward banding” and “Forward” refer to the cumulative indel
pairHMM Forward algorithm, with and withoutbanding, respectively.
Values for non-banding pairHMMs for 10 kb and 20 kb sequences were
not calculated due to elevated computational demand.


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa050#supplementary-data

2021

DE MAIO—THE CUMULATIVE INDEL PAIRHMM

251

alignment. In fact, the width of the bands visited during
alignment typically increases at high divergence and
increase locally in the presence of long indels (Fig. 8).
Therefore, adaptive banding is more computationally
demanding for highly diverged sequences than for
closely related ones. Furthermore, while an adaptive
banding threshold of 15 log-likelihood units was
sufficiently accurate for all scenarios simulated under
the GIM, when hiding large parts of a sequence (or,
equivalently, when introducing large artificial indels)
adaptive banding could in certain cases miss the true
alignment. In such cases, making the threshold stricter
at 30 log-likelihood units was typically sufficient to
address the issue (Fig. 8d—f and Supplementary Fig. S9
available on Dryad). In real life scenarios, however, when
large portions of some sequences might be missing, or
if very long indels could be present, care should be
used in selecting a proper adaptive banding likelihood
threshold; in cases where no prior upper limit for the size
of missing parts of sequences is known, more nuanced
banding strategies might be required (see “Discussion”
section).

Accuracy of Parameter Inference

Parameter inference under the cumulative indel
pairHMM appears accurate under all considered
simulation scenarios (Fig. 9 and Supplementary Fig. S6
available on Dryad). The pairHMM parameter inference
approach used here efficiently integrates over plausible
pairwise alignments. An even more computationally
efficient method, often used in practice, is to first infer a
single alignment, and then infer parameter values from
the fixed alignment. I recreated this second approach
by first inferring alignments with EMBOSS and then
performing cumulative indel pairHMM parameter
inference on fixed alignments. This faster approach
results in inaccurate estimates, as it is probably subject
to the effects of alignment errors, in particular over-
alignment, which could explain why t is overestimated
and r underestimated (Fig. 9).

Among the finite pairHMMs, the TKF91 noticeably
leads to the least reliable estimates, as inferred values
of t and r are considerably different from those used
for simulation. This is not surprising given that TKF91
only allows 1-residue instantaneous indels, and so needs
multiple indel events to explain any long simulated indel
event. Also noticeable is the underestimation of g by
the TKF92 and RS07 pairHMMs (corresponding to €
in the original notation) at high divergence and their
overestimation of r (Fig. 9). In these models, € describes
fragment lengths of both indel and match columns, and
so the lack of simulated contiguous match columns at
high divergence might cause its underestimation, and
consequently also the overestimation of r. Similarly, the
PRANK model with y=¢ tends to underestimate y at
high divergence, probably for similar reasons as the
TKF92 and RS07 pairHMMs. When however one sets
y=0 in the PRANK pairHMM, this pattern changes

considerably. Overall the cumulative indel pairHMM
seems the most reliable at inferring evolutionary
parameters, in particular the gap extension parameter
g, the PRANK pairHMM with y=0 also seems to
perform similarly well. The fact that a model’s parameter
estimates do not match simulated values does not
necessarily mean that the models is less accurate,
but only that its parameter estimates are less clearly
interpretable.

Accuracy of Alignment Inference

All finite pairHMMs considered here, except the
TKF91 model, seem to lead to better alignments than the
classical aligner EMBOSS in most simulation scenarios
and parameter settings (Fig. 10 and Supplementary
Fig. 57 available on Dryad). This is true in particular
for the number of wrongly inferred match columns,
suggesting that, especially at elevated divergence times,
non-TKF91 pairHMMs reduce overalignment biases of
traditional aligners. All non-TKF91 pairHMMSs have
similar performance across most data sets, in particular
in the “1 species pair” scenario (Supplementary Fig. S7
available on Dryad). This suggest that all non-TKF91
pairHMMs are better equipped to model any individual
level of divergence and indel rate, at least when paired
with appropriate parameter inference procedures. The
TKF91 pairHMM shows systematically the worst results
(Fig. 10 and Supplementary Fig. S7 available on
Dryad). This is not surprising when compared to
other pairHMMSs, considering that TKF91 assumes 1-
residue instantaneous indels. However, TKF91 often
also performs considerably worse than EMBOSS. This
suggests that, while the TKF91 is an elegant model with
interesting mathematical and computational properties,
it might often be over-performed by simpler, score-based
affine-gap models in practical applications.

In the “150 species pairs” simulation scenario at high
indel rates, all non-TKF91 finite pairHMM also seem
to perform similarly, and the cumulative indel model
seems to show slightly fewer wrong match columns
(Fig. 10), possibly because of its ability account for
indel patterns expected at differing levels of divergence
simultaneously. TKF92 seems to perform second best.
The cumulative indel model and the PRANK model with
y=0 tend to show higher likelihoods (Supplementary
Fig. S8 available on Dryad).

Human-Chimp Alignment and Parameter Inference

To showcase the applicability of the methods
presented here, in particular with respect to parameter
inference and alignment of long sequences, I analyzed
a segment of shared synteny between human
(reference hg38) and chimp (reference PanTro6).
This was downloaded from the UCSC Genome
Browser pairwise alignment of human and chimp
https:/ /hgdownload.cse.ucsc.edu/goldenPath /hg38/
vsPanTro6/. Syntenic blocks and alignments in the
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FIGURE 8.  Adaptive banding performance and the effects of missing sequence data. a—d) Examples of dynamic programming matrices
for alignments simulated under the “1 species pair” scenario. As typical for alignment dynamic programming matrices, each cell represents
a partial alignment between subsequences of the two sequences being aligned. Here, the matrices are filled using adaptive banding, from the
top left to the bottom right of each matrix. The black path represents the true simulated alignment between the considered sequences. The gray
cells are those that are not discarded by adaptive banding with a log-likelihood threshold of 15 (the threshold used in most simulations here).
The green cells are those not discarded using a threshold of 30 log-likelihood units. In a), the divergence between the two sequences is t=0.05
expected substitutions per site and the indel rate is r=0.1; the same is in b), but now the central 250 residues in one of the sequences have
been removed. In c), the divergence is t=0.4 and the indel rate r=0.5; similarly in d), but again the central 250 residues from one of the two
simulated sequences have been removed. e, f) Proportions of columns that are wrongly inferred to be homologous, relative to the number of
extant ancestral residues, from simulations similar to the “150 species pairs” simulations when additionally removing parts of sequences (either
100 or 250 residues, either from the beginning, the middle, or the end of a sequence) to simulate missing data. Each pair of neighboring box plots
of the same color corresponds to results using an adaptive banding threshold of 15 log-likelihood units (left box in each pair) or 30 log-likelihood
units (right box in each pair).
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(so half of the divergence time between the two sequences). For each combination of parameter values, only one inference was performed from
a simulated data set of 150 pairwise alignments of the same divergence. Azure horizontal dashed lines show “true” simulated values. “Fixed
alignment” refers to values inferred by first estimating EMBOSS alignments, and then inferring parameters on those fixed alignments. All other
estimates are from the Forward pairHMM algorithm. In PRANK, the match block extension probability v is set either to 0 (grey) or equal to the
indel block extension probability (y=¢, black).
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FIGURE 10.  Alignment inference accuracy in the “150 species pairs” simulation scenario. Performance of different alignment methods
when simultaneously modeling different levels of divergence. A,D number of wrong match columns per inferred alignment (homology false
positives). B,E number of non-matched (“missed”) simulated homologous residues per alignment (homology false negatives). C,F correct match
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UCSC Genome Browser were inferred using LASTZ
(Harris 2007) with a gap opening penalty of 600
and a gap extension penalty of 150. From all the
synteny blocks, I selected the longest one, which aligns
human chromosome 2 (starting at position 143,012,077
with positive orientation) and chimp chromosome 2B
(starting at position 29,588,967 with positive orientation).
The human sequence in this block is 530,612 bp long,
the chimp sequence 530,236 bp, and their alignment
inferred by LASTZ is 531,984 columns with 3120 gapped
columns and 6196 substitutions.

Joint inference of parameters t (human-chimp
divergence), r (indel rate relative to substitutions),
g (instantaneous gap extension probability), and «
(transition to transversion rate ratio) was performed
under the cumulative indel model and HKY85
substitution model with nucleotide frequencies fixed
to observed proportions (g =0.314, nc=0.179, ng=
0.182, and w1 =0.325). Inference required between 2
and 10 h on a 2017 MacBook Pro, depending on the
starting values, and converged to parameters t=0.0118,
r=0.0657, §=0.759, and k=4.50. Due to probably the
large numbers of variable tandem repeats between
the two considered sequences, adaptive banding
required a much stricter threshold than in simulations
(Supplementary Fig. S10 available on Dryad). For the
results presented here, I used a threshold of 100 log-
probability units.

Inferred values are similar to previous studies:
divergence is close to the genome-scale 1.24% (Mikkelsen
et al. 2005); the inferred indel rate is close to the one
inferred in (Cartwright, 2008) from intron alignments.
The exception is average instantaneous indel length,
here inferred to be 4.15bp, which is much smaller than
average indel length inferred in (Cartwright, 2008) (~
50), and average indel length observed genome-wide
in (Mikkelsen et al., 2005) (~18). This is probably due
to the high synteny of the specific block considered
(the average indel length in the UCSC Genome Browser
alignment of the same block is 4.14 bp).

I used these inferred parameter values to perform
whole-block alignment inference under the cumulative
indel model. An adaptive banding threshold of 50
log-probability units or lower resulted in suboptimal
alignment due to an average length tandem duplication
in chimp that is not present in the human sequence
(Supplementary Figs. S11 and S12 available on Dryad).
Alignment inference with a threshold between 55 and 80
log-probability units fixed this issue and took between
10 and 20 min to complete.

The cumulative indel alignment differs from the
LASTZ alignment in 14 regions (see complete list of local
alignments in Supplementary Figs. 513 and 514 available
on Dryad). Overall, the cumulative indel alignment has
more cumulative indels (763 vs. 753) and more gap
columns (3246 vs. 3120), but fewer substitutions (6145
vs. 6196). In one particular region, 10 transversions,
6 transitions, and 1 indel in the LASTZ alignment
were replaced by 2 transitions and 2 indels in the
cumulative indel alignment (Supplementary Fig. S14,

second region). In all but one region, the cumulative
indel alignment has more gap columns but fewer
substitutions than the LASTZ alignment. The only
exception is a region where the cumulative indel model
alignment has 1 fewer cumulative indel but 4 more gaps.

An interesting observation is that in four regions,
differently from LASTZ, the cumulative indel pairHMM
inference places a non-empty cumulative insertion right
next to a non-empty cumulative deletion. This reflects
an important aspect of the model that is not captured
by most non-evolutionary alignment models: non-empty
cumulative insertions and deletions are expected next
to each other more often than if they were randomly
distributed (with parameter values considered here,
~22.85 times more) as also seen in simulations (see
variable Pfd in Supplementary Fig. S2 available on
Dryad).

DIsCcUsSION

I presented a new evolutionary indel model,
the cumulative indel model. The model can be
represented as a finite pairHMM, allowing efficient
dynamic programming evolutionary parameter and
alignment inference. The cumulative indel model
approximates the complex and realistic features of
general evolutionary indel models, like the long
indel model (Miklés et al. 2004), resulting in high
alignment accuracy and interpretability of parameter
estimates. Using simulations, I show that most
pairHMMs, including the cumulative indel pairHMM,
seem to typically outperform traditional score-based
aligners. One plausible reason is that constant scores
do not accommodate different alignment patterns
expected at different levels of divergence. By allowing
efficient parameter inference, pairHMMs can improve
alignment, and in particular reduce “over-alignment.”
One exception is the TKF91 pairHMM. This model has
been often adopted due to its remarkable mathematical
and computational advantages. However, here I show
that the TKF91 often leads to worse alignments than
classical score-based aligners, and for this reason I do not
recommend this model unless indel events are expected
to mostly affect only one residue at the time. In fact,
TKF91 assumes 1-residue indel events, which is similar
to using a linear gap cost, and this assumption probably
causes most of its underperformance. By extension, one
would expect similar trends from methods that model
indels independently across columns (e.g., McGuire
et al. 2001; Rivas and Eddy 2008).

A feature that distinguishes the cumulative indel
pairHMM from previous finite pairHMMs is that it
does not allow transitions from insertion to deletion
columns. This constraint simplifies the interpretation of
alignments and paths: for example, a transition from a
match state to a deletion state represents the presence of
a nonempty cumulative deletion, while transitions from
amatch state to either another match state or an insertion
state, both imply the presence of an empty cumulative
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deletion. With this approach, a chop zone is represented
by only one alignment, and this makes it easier to
translate parameters from cumulative indel distributions
into a finite pairHMM, and to interpret the meaning of
an alignment in evolutionary terms. However, the main
advantage of this feature is that it reduces the number
of possible alignments to be considered. In pairwise
alignments, this can only lead to modest computational
savings, as only one pairHMM state transition out of
a total of nine is prohibited. However, this could lead
to more substantial improvements in computational
demand when considering multiple sequence alignment
and treeHMMSs. One drawback of this assumption is
however that it reduces the numbers of parameters
of the pairHMM, and in at least some cases it can
reduce its potential realism. For example, under the
assumptions of the TKF91 model, the TKF91 describes
the distribution of chop zones in the GIM exactly. In
the same scenario, the cumulative indel model ignores
the correlation between nonempty cumulative deletion
length and nonempty cumulative insertion length, and
therefore it represents only an approximation. In the
future, it would be interesting to try to improve the
realism of the cumulative indel model by using the
transition probability from insertion state to deletion
state as an additional parameter to account for this
correlation.

Here, I also presented “adaptive banding,” a technique
to reduce computational demand of pairHMMs and
dynamic programming alignment in general. Adaptive
banding is particularly effective with recently diverged
sequences, where it only explores a small band of
the dynamic programming alignment matrix. For
highly diverged sequences or regions of low homology,
adaptive banding automatically increasing the size of
the band, accommodating for the global or local higher
alignment uncertainty. This technique does not rely on
prior pseudo-optimal alignments, and generally does
not reduce accuracy, except in the presence of long
duplications, long indels and long missing sequence
parts. As shown here with the statistical alignment
and parameter inference of a large (=530kb) human-
chimp synteny block, adaptive banding paves the way
to genome-wide statistical alignment. In future, it could
be possible to further reduce computational demand of
the presented methods using C and adapting some of
the strategies in HMMoC (Lunter 2007a).

Future Applications

The cumulative indel model and adaptive banding
have a number of possible applications beyond pairwise
alignment and evolutionary parameter inference. One
natural extension of this work is to multiple sequence
alignment. For example, the presented techniques could
be included in phylogenetically aware multiple sequence
aligners such as PRANK (Loytynoja and Goldman 2005,
2008a, 2010) and could also be used in treeHMMs such as
BAli-Phy (Redelings and Suchard 2005, 2007). Another

application could be in iterative methods of phylogeny
and alignment search (Liu et al. 2009, 2011; Mirarab et al.
2015).

(Bogusz and Whelan, 2017) used statistical pairwise
alignment to calculate distance matrices, and, in turn,
phylogenetic trees. The cumulative indel model and
adaptive banding could also be used in this context, for
fast phylogenetic, guide tree, or alignment parameter
inference.

Future Extensions

Evolutionary indel models typically aim at describing
sequence evolution in neutral settings. Selective
pressure, and in particular structural constraints, can
have dramatic effects on indel distributions, causing
clusters of indels and substitutions in some areas
of the alignment, while leaving others more stable.
Modeling nonuniform distributions of evolutionary
events can therefore lead better alignments (Loytynoja
and Goldman 2008a). However, it is still an open
question how to efficiently and accurately account for
selection in alignment inference. Simulating sequence
evolution in this context is also an active filed of
research (Koestler et al. 2012). Selection could, for
example, be included in the cumulative indel model
by allowing stretches of invariable sites, or adding
hidden states describing regions under purifying
selection.

Another open question is to how best model codon
alignments. Codon alignments, in fact, carry the
complication that indels can affect the codon frame.
To simplify this problem, aligners and simulators
typically (and unrealistically) assume that indels in
codon alignments can only insert or delete entire
codons. This assumption can lead to biases, for example
overestimating the number of substitutions (Redelings
and Suchard 2007). It could be possible to address this
issue by extending the state space of the cumulative
indel pairHMM (see Hein 1994; Arvestad 1997; Pedersen
et al. 1998), but at the cost of additional computational
demand.

It could also be possible to rephrase the cumulative
indel model as a homology structure (Lunter et al. 2005)
or alignment graph (Herman et al. 2015) model. These
structures have the advantage of not requiring ordering
of exchangeable alignment columns.

In the future, I also plan to address the issues that
adaptive banding faces with large duplications. It could
be possible to detect this, and possibly other alignment
issues, by running adaptive banding in both directions
and investigate differences in the two alignments. A
similar bidirectional approach would also be key for
a version of adaptive banding with further reduced
memory demand, similar to the Hirschberg algorithm
(Hirschberg 1975). It is however less clear how to address
the problems faced by adaptive banding when large
portions of sequences are missing. While, in these
scenarios, increasing the log-likelihood threshold helps,
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it is usually not possible to choose a threshold that
would allow missing sequence parts of any arbitrary
length. In alignments of moderate size, such as protein
alignments, a threshold could be chosen that is known
to be robust to missing sequence parts of the order
of magnitude of the considered sequence lengths. For
example, a threshold of 30 log-likelihood units seems
to robust, in our simulations, to missing sequence
parts of 250 residues, at realistic levels of divergence,
without sacrificing most of the computational benefits
of adaptive banding. However, another approach that
could be promising would be, when possible, to combine
adaptive banding with other techniques to guide
the alignment, for example using k-mer matches for
anchoring the alignment (see e.g., Bogusz and Whelan
2017).

CONCLUSION

The cumulative indel model represents a promising
approach to improve pairwise alignment efficiency and
accuracy. Adaptive banding allows further reductions
in statistical alignment costs. For these reasons,
the methods presented here have the potential to
importantly impact future alignment, phylogenetic, and
molecular evolution inference.

SUPPLEMENTARY MATERIAL

Supplementary Figures and Text are available
from the Dryad Digital Repository: http://dx.doi.org/
10.5061/dryad.rbnzs7h8m.
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