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ABSTRACT: Perovskite solar cells have witnessed a surge in ) )
interest as a promising technology for low-cost, high-efficiency
photovoltaics with certified power conversion efficiencies beyond
25%. However, their commercial development is hindered by poor
stability and nonradiative losses that restrict their approach to the
theoretical efficiency limit. Using ab initio nonadiabatic molecular
dynamics, we demonstrate that nonradiative charge recombination
is suppressed when the iodide in formamidinium lead iodide
(FAPDL,) is partially replaced with pseudohalide anions (SCN-,
BF,”, and PF¢"). The replacement breaks the symmetry of the
system and creates local structural distortion and dynamic disorder, " " —
decreasing electron—hole overlap and nonadiabatic electron— Increased structural distortion & Long carrier lifetime
vibrational coupling. The charge carrier lifetime is found to

increase with increased structural distortion and is the longest for

PE4". This work is fundamentally relevant to the design of high-performance perovskite materials for optoelectronic applications.

O rganic—inorganic hybrid perovskites (OIHPs) have Three-dimensional (3D) perovskites have a general chemical
emerged as one of the most promising semiconducting formula of ABX;, where A stands for a monovalent cation
materials in the realm of photovoltaic research, owing to their (MA" = CH;NH;", FA* = CH(NH,),", or Cs"), specifically an
organic cation for OIHPs, B stands for a divalent metal cation
(Sn?* or Pb**), and X is a halide anion (CI~, Br~, or I7)."¢
Among OIHPs, methylammonium lead iodide (MAPDI;) is
the most widely studied photovoltaic material. However, it is
intrinsically thermally unstable due to its low formation
energy.'” Formamidinium lead iodide (FAPbI,) is generally
preferred over MAPDI; because of its superior thermal stability
and charge carrier transport properties.m’19 Unfortunately,
practical applications of FAPbI; are seriously limited by the

outstanding optoelectronic properties, including high absorp-
tion coeflicients, long charge carrier diffusion lengths, and
ambipolar charge transport.'~* These fine features render the
applications of such perovskites to extend beyond solar energy
harvesting into light-emitting diodes, lasers, transistors and
detectors, etc.’~'* The power conversion efficiency (PCE) of
OIHPs has witnessed a staggering increase since the first report
of a methyl ammonium halide cell in 2009,"* from an initial

value of 3.8%'" to 25.5%,"" which is comparable to that of spontaneous transformation from its photovoltaically active
conventional silicon-based solar cells. Despite the impressive phase to the unwanted but more stable phase.”’ Long-term
progress in the performance, the currently achievable efficiency stability under ambient photo and thermal stresses remains a
of these perovskite solar cells (PSCs) is still well below the critical bottleneck for the large-scale commercialization of
theoretical Shockley—Queisser limit of 33%'° for a single- PSCs.”' This challenge has motivated efforts to improve device
junction device, suggesting the presence of additional channels Stability, and Signiﬁcant advancements in this direction are
of energy losses other than radiative pathways. Often, the being made by developing novel perovskite materials.
nonradiative recombination of charge carriers has been

identified as the predominant pathway that limits device Received: October 12, 2023

performance. This entails an urgent need to understand the Revised: ~ November 15, 2023

underlying mechanisms of nonradiative recombination losses Accepted: November 16, 2023

and the relationship between the perovskite structure and Published: November 21, 2023

charge carrier dynamics at the atomistic level to further push
the efficiency of PSCs toward the thermodynamic limit.
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Composition engineering, especially using mixed cations and
halide anions, has proven to be a feasible and effective
approach to achieve stable, high-performance PSCs.””** In
particular, mixtures of MAPDbI; with FAPbI; have been
demonstrated to stabilize the active phase and suppress ion
migration, achieving excellent transport characteristics.”*
Calculations show that alkali metal dopants greatly improve
perovskite performance by passivatin% interstitial defects,
therefore extending carrier lifetimes.”> Compared to the
amount of effort that has been put into building perovskites
based on mixed cations and halides, not much focus has been
placed on using molecular anions as alternatives to halogen
anions to modulate the PCE.

Pseudohalides, which are polyatomic analogues of halides
such as thiocyanate (SCN7), tetrafluoroborate (BF,”), and
hexafluorophosphate (PF,”), can serve as alternatives for X-site
halides in perovskites because their ionic radii and chemical
properties are similar to those of true halides.”® A wider range
of negatively charged anions (pseudohalides) may form the
ABX; stoichiometry with Pb**. Zhang et al. reported that
introducing the BF,” anion in a mixed-ion perovskite crystal
frame resulted in a slight lattice relaxation, a longer
photoluminescence lifetime, and improved charge transport
in the perovskite solar cell.”” By utilizing relativistic electronic
structure calculations, Hendon and co-authors demonstrated
that substitution with BF,” and PF~ anions in hybrid
perovskites can form wide bandgap dielectric compounds.”®
Tai et al. reported that the incorporation of the SCN™ anion as
a dopant improved the moisture resistance and photovoltaic
performance of PSC devices.”” Given these interesting
findings, a systematic study on the detailed mechanism of
PCE improvement with pseudohalides in OIHPs is needed.
This can be achieved by an atomistic investigation of the
structural and electronic properties, electron—vibrational
interactions, and charge carrier dynamics.

Motivated by experimental studies, we report here an ab
initio time domain investigation of the substitution by the
pseudohalide anions PF4~, BF,”, and SCN™ as “dopants” in
FAPbI; and provide a mechanistic understanding of the
nonradiative electron—hole recombination and reduced charge
and energy losses. We demonstrate that nonradiative charge
recombination is suppressed in FAPbI; doped with pseudoha-
lide anions due to changes in the properties of the inorganic
sublattice. Minor changes in the PbI;™ octahedra can affect the
electronic properties of the perovskite to a significant extent.
The anion doping expands the inorganic sublattice, distorts the
Pbl;~ octahedra, and creates structural asymmetries, which in
turn change the electronic properties of the sublattice.
Dynamically, the anion substitution activates low-frequency
lattice vibrations that are responsible for transient disorder and
decreased electron—hole interactions. The simulations illus-
trate that the synergistic effect of static and dynamic lattice
disorder decreases NA coupling, thereby slowing the non-
radiative electron—hole recombination in polyanion-substi-
tuted FAPbI;. The atomistic details of the mechanism of the
nonradiative charge and energy losses provide guidelines for
further improvement of the performance of hybrid perovskites.

To simulate the nonradiative recombination processes in the
FAPDI; perovskite with different pseudohalide dopants, we
performed ab initio nonadiabatic molecular dynamics
(NAMD) simulations with real-time time-dependent density
functional theory (TD-DFT) in the Kohn—Sham representa-
tion.’"** The lighter electrons were treated quantum-

mechanically, whereas the heavier atoms were described
semiclassically. The charge recombination dynamics were
investigated using the decoherence-induced surface hopping
(DISH) technique, which includes the loss of coherence within
the electronic system due to coupling to quantum
phonons.””** The decoherence time is estimated as the pure
dephasing time using the optical response theory.”**° In order
to further reduce the computational cost, classical path
approximation (CPA) was used,”” in which the atomic
dynamics were assumed to be weakly dependent on the
quantum state of the electronic subsystem, as compared to
thermal atomic fluctuations. This methodology has already
been widely applied to study excited-state dynamics in a broad
range of systems, including perovskites.”* >’

The ground-state geometry optimization, electronic struc-
ture calculations, and room-temperature MD were performed
with the Vienna Ab Initio Simulation Package (VASP).*° The
Perdew—Burke—Ernzerhof (PBE) exchange-correlation func-
tional was adopted.®”®” The van der Waals interactions were
described by the Grimme DFT-D3 method.”> Both the
structural optimization and the adiabatic MD employed a 4
X 4 X 4 I'-centered Monkhorst—Pack k-mesh grid.”* The NA
couplings (NACs) were computed for the I'-point, as the
structures had direct bandgaps located at the I'-point. The
plane wave energy cutoff was 400 eV. The geometry
optimization at 0 K was stopped when the Hellmann—
Feynman forces on each atom were smaller than 0.01 eV/A.
Then, the systems were heated at 300 K through repeated
velocity rescaling and further equilibrated for 6 ps with a 1 fs
atomic time step in the NVE ensemble. Next, 500 initial
conditions were selected randomly from the last 4 ps of the
MD trajectories, and NAMD simulations were carried out
using 1000 random number sequences to sample the surface
hopping probabilities for each initial geometry. The NAMD
simulations were performed with the Python eXtension for Ab
Initio Dynamics (PYXAID) code.’’’

To investigate the electron—hole recombination dynamics in
different pseudohalide anion-substituted perovskites, we first
constructed a 96-atom (2 X 2 X 2) simulation supercell of the
FAPbI; cubic phase and generated pseudohalide-mixed
perovskite structures through partial halide substitution. Figure
1 shows the optimized stoichiometric structure for pristine

Figure 1. Structures of (a) pristine FAPbL;, (b) FAPbL; with Iyg, (c)
FAPbI; with Iy, and (d) FAPbI, with Igcy. The red circles indicate

the sites where iodine atoms are substituted by the respective
pseudohalide anions.
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FAPbL, (Figure la) and the substituted structures (Figures
1b—d), in which one of the I” ions has been replaced by BF,”,
PF,~, or SCNT, respectively. The calculated averaged Pb—I
bond length in the optimized pristine FAPbI; was 3.174 A,
which is consistent with the experimental (3.181 A) and
theoretical (3.177 A) data.”® After the pseudohalide anion
substitution, the inorganic Pb—I sublattice around the doping
site expands and the Pb—Pb distances increase (Table 1).

Table 1. Pb—Pb Distances *Pb,—Pb, and *Pb,—Pb; at 0 K
and the Averaged Pb—Pb Distances "Pb,—Pb, and "Pb,—
Pb, at 300 K around the Anion-Substituted Site (See Figure

1)

*Pb,—Pb, (A) *Pb,—Pb, (A) "Pb,—Pb, (A) “Pb,—Pb, (A)
FAPbI, 6.35 6.50 6.32 6.46
L, 6.98 6.56 6.80 6.52
Lpg, 7.26 6.61 7.16 6.60
Isen 6.57 6.51 6.52 6.49

Thus, the distances between the key Pb atoms, marked in
Figure la, are 6.57, 6.98, and 7.26 A for Pb,—Pb, and 6.51,
6.56, and 6.61 A for Pb,—Pb, in Iscy, Igg, and Ipp, respectively,

as compared to 6.35 A for Pb,—Pb, and 6.50 A for Pb,—Pb; in
FAPDI;. Structural fluctuations at room temperature led to a
slight decrease in the canonically averaged Pb—Pb distances
relative to the 0 K data; however, the dopant-induced
expansion trend remained (Table 1).

The PF~ substitution showed the maximum increase in the
Pb—Pb distances and the highest local lattice expansion among
all of the systems. Distortion of the octahedral structure is
known in mixed-ion perovskites,"”” leading to lattice strain
that balances different-sized cations/anions. The molecular
orbitals of pseudohalides such as BF,” (tetrahedral shape) can
weakly hybridize with the atomic orbitals of Pb*" compared to
iodide (spherical shape), and hydrogen bonds can form
between pseudohalides and FA*. Such additional chemical
bonding contributes to the improved chemical stability of the

doped perovskites. The local expansion of the inorganic Pb—I
sublattice modulates the electronic properties and electron—
vibrational coupling, which in turn influences the electron—
hole recombination.

The projected density of states (PDOS) of pristine FAPbI,
and the doped systems Ipg, Iyg, and Igcy are shown in Figure

2. The PDOS is separated into the FA, Pb, I, and pseudohalide
contributions. The conduction band minimum (CBM) and
valence band maximum (VBM) of perovskites are formed
primarily by the Pb-6p and I-5p/Pb-6s atomic orbitals,
respectively. The electronic states near the Fermi level are
supported by the Pb and I atoms; therefore, the Pbls octahedra
determine the relevant electronic properties. Among all of the
pseudohalide atoms, only the SCN™ group makes a
contribution to the valence band, although it is almost
negligible. The pseudohalide anions do not contribute to the
band edge states, and hence, they have no direct influence on
the electron—hole recombination. They instead influence the
recombination in an indirect way: by perturbing the structure
and motions of the inorganic Pb—I framework.

The calculated canonically averaged direct bandgap of
pristine FAPbI; was 1.80 eV, (Table 2), which is in agreement

Table 2. Canonically Averaged Bandgap, Absolute NA
Coupling, Pure Dephasing Time, and Nonradiative
Electron—Hole Recombination Time

average bandgap  NA coupling  dephasing  recombination
(ev) (meV) (fs) (ns)
FAPbI, 1.80 0.426 9.03 6.36
Igg, 1.82 0.389 8.49 12.56
Ipg, 1.86 0.353 9.06 15.62
Leen 1.83 0399 10.33 8.63

with previous DFT calculations.”® The canonically averaged
bandgaps in the anion-substituted systems ranged from 1.82 to
1.86 eV, which are again consistent with the experimental
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Figure 2. Atom-projected DOS for (a) pristine FAPbI,; and the doped systems (b) Iy, (c) Ipg, and (d) Iscy at 300 K. The energy reference is

given at the Fermi level.
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CBM

Figure 3. Orbital spatial charge densities of the VBM and CBM for the representative configuration at 300 K in (a) FAPbI, (b) Iz, (c) Ipg, and

(d) Isen-

trend.”” No additional electronic levels (traps) were intro-
duced in the bandgap for the doped systems.

The electron—hole recombination is determined primarily
by electron—vibrational NA coupling (NAC). The NAC, dy, is
calculated as the overlap between the electronic states j and k
at sequential time steps:ég’70

where H is the electronic Hamiltonian, ¢; ¢y, &, and ¢; are the
wave functions and energies of the electronic states k and j, and
R is the atomic velocity vector. The last expression
demonstrates that the NAC is inversely proportional to the
energy difference ¢, — ¢, grows with the atomic velocity R
(and hence temperature), and depends on the electron—
vibrational coupling matrix element (@|VzHlg;). The latter
depends on the relative localization of the two wave functions,
which are sensitive to composition and thermal disorder.”" "
The CBM and VBM charge densities, which characterize the
localization of electrons and holes, are shown in Figure 3.
Figure 3a demonstrates that in pristine FAPbI;, the VBM is
localized primarily on I atoms, while the CBM is distributed
over Pb atoms, which is consistent with the PDOS analysis
(Figure 2). The localization of the CBM and the VBM on
different atoms is beneficial for achieving a decreased wave
function overlap and a small NAC. The anion substitution
influences the localization of both the VBM and the CBM.
Because the VBM is supported by iodides, by removing an
iodide, the anions also remove the hole density from the
corresponding spatial region. The CBM is influenced indirectly
by the distortion of the Pb sublattice. Overall, the electron and
hole wave functions become more localized upon pseudohalide
doping. Provided that they are not being localized in the same
place, their overlap should be reduced and the NAC decreased.
Indeed, the NAC decreases in the following order (Table 2):

FAPDI; > Igcy > Ipg, > Ipp, suggesting that the charge carrier

0

_ (zijVRHIgok)R
o) =

&5 1)

lifetime should increase in this same order. The NAC trend
correlates with the changes in the Pb—Pb distances (Table 1).
The largest change in Ipp, leads to the smallest NAC.

Excess electronic energy is accommodated by phonons

during nonradiative charge recombination. Electron—vibra-
tional interactions generate elastic and inelastic scattering, both

affecting the excited-state lifetime. Inelastic electron—phonon
scattering leads to an energy exchange between the electronic
and vibrational subsystems and is characterized by the NAC.
Significant amounts of electronic energy are deposited into
atomic degrees of freedom during nonradiative charge
recombination. Elastic electron—phonon scattering destroys
the coherence formed between the initial and final states.
Because the formation of coherence is necessary for a quantum
process to occur, fast decoherence can drastically slow down
electron—hole recombination.”*”*

In order to identify the vibrational motions that couple to
the electronic transition across the bandgap, we computed
Fourier transforms of autocorrelation functions (ACFs) of the
bandgap fluctuations, SE(t), from its canonically averaged
values:

C(t) = (GE(t)SE(t — t')), @)

The obtained spectral densities

1 © ' 2
H(w) = ‘E f_ _dr exp(—iwt)C() (3)

are reported in Figure 4. Several modes in the 30—300 cm™'
frequency range couple to the electronic transition, including
vibrations arising from the inorganic Pb—I framework, the
organic FA cation, and the pseudohalide anions. The main
high-intensity peaks that are observed at low frequencies (<100
cm™") can be attributed to the bending and stretching modes
of the slow Pb—I framework, which generates the NAC. The
peaks at higher frequencies are much weaker in amplitude and
arise from motions of the organic cations. FA and the
pseudohalides contain light atoms and move much faster than
the Pb—I framework; however, they do not contribute to the
band edge states. Their influence on the electron—hole
recombination is indirect, through coupling to the Pb-I
lattice. The influence spectra shift to lower frequencies in the
presence of the pseudohalide anions (Figure 4). The peak
around 30 cm™! is related to the octahedron distortion in the
doped systems. Lower-frequency motions exhibit smaller
atomic velocities (at a given temperature), hence reducing
the NAC, which is proportional to the velocity (eq 1.
Furthermore, low-frequency motions create dynamic disorder,
which partially localizes the electron and hole wave functions
and reduces the NAC as well.”*”

https://doi.org/10.1021/acs.jpclett.3c02850
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Figure 4. Spectral densities obtained by Fourier transforms of
fluctuations of the electron—hole energy gaps in FAPbI, (a), Iz, (b),
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Figure S. Pure dephasing functions for electron—hole recombination
in FAPbL;, Iyp, Ipp, and Igcy. The inset shows the unnormalized
autocorrelation functions, whose initial values are the bandgap
fluctuations squared.

Figure S presents the pure dephasing functions D(t) for
electron—hole recombination in FAPbL;, Iz, Ipp, and Igcy,

which were computed using the second-order cumulant
approximation of the optical response theory:*

1 t t'
D= exp[—;/o dt’/o dt”C(t”)] @

Here, C(t) is the unnormalized ACF (eq 2). Fitting the
functions to a Gaussian, exp[—0.5(t/7)]* gives the pure
dephasing times 7, as reported in Table 2. The short 10 fs
coherence times contribute to the long-lived excited-state
lifetime in perovskites, as exemplified by the quantum Zeno
effect,”* according to which quantum dynamics stops in the
limit of infinitely fast decoherence. The coherence times are
short because the electrons and holes are weakly correlated.
They are localized on different atoms, Pb and I, and couple to

a broad range of anharmonic’®’” vibrations (Figure 4). The

disorder introduced by the pseudohalide dopants slightly
shortens the coherence times. The pure dephasing times can
be correlated to the ACF initial values (insert in Figure S),
which are equal to the square root of the electronic bandgap
fluctuation. Generally, greater unnormalized ACF initial values
lead to faster pure dephasing times.”> Thus, the initial ACF
value is the largest for Ipz, and the corresponding pure

dephasing time is the shortest. The pure dephasing time is the
longest for pristine FAPbI;, but the corresponding initial ACF
value is not the smallest. Coherence is the longest for pristine
FAPDI; because the ACF shows the most regular oscillation
among the four systems, and the positive and negative ACF
contributions to the integral in eq 4 cancel the most.
Nonradiative charge carrier recombination depends primar-
ily on the NAC, which is governed by the relative localization
of the initial and final (electron and hole) wave functions, the
energy gap, and the atomic velocity (eq 1). The pure
dephasing times also influence the recombination; however,
they were very similar (Table 2). The bandgaps were similar as
well. All of the systems were considered at the same
temperature, and therefore, the atomic velocity was smaller
for lower-frequency motions (Figure 4). The overlap of the
electron and hole wave functions depends on structural
disorder. The pseudohalide doping increased the disorder
and shifted the spectral density to lower frequencies, which
both contributed to the observed longer recombination times.
The evolution of the excited-state populations during the
nonradiative electron—hole recombination dynamics are
shown in Figure 6. The nonradiative decay times, reported

0.008
FAPbDI3
IBF4
.E 0.006 Iprs - —-- _-
_1;; IscN —-—-- ‘/,/' :
2. 0.004 i
o
=¥ .
_/‘-
0.002
0 , ‘ ‘ .
0 10 20 30 40 50
Time (ps)

Figure 6. Electron—hole recombination dynamics in FAPbL;, Iz, Ipg,

and Igon.

in Table 2, were obtained by fitting the data to the short-time
linear approximation of the exponential decay: P(t) = exp(—t/
7) & 1 — t/7. The results confirm the expectation based on the
above analysis. All of the pseudohalides slowed the charge
carrier recombination, with the longest lifetime observed for
PF,™. Its lifetime increased by a factor of 2.5 relative to that of
pristine FAPbI;. PF,~ created the largest local lattice distortion
(Table 1), breaking the lattice symmetry and reducing the
electron—hole overlap the most. The overall recombination
was slow because the NA coupling was small (4 meV) and the
pure dephasing time was short (10 fs).

In conclusion, we performed NAMD simulations combined
with real-time TD-DFT to investigate nonradiative charge
carrier recombination in FAPbI; doped with three pseudoha-
lide anions: SCN~, BF,”, and PFs". Using these anions as a
substitute for an iodide in FAPbI; created a local structural

https://doi.org/10.1021/acs.jpclett.3c02850
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distortion and shifted the relevant vibrations to lower
frequencies. Consequently, the electrons and holes became
partially localized and overlapped less, while at the same time,
the atomic motions driving the nonradiative charge recombi-
nation became slower. Both of these factors reduced the NAC
responsible for the recombination, and the excited-state
lifetime became longer. The lifetime correlated directly with
the pseudohalide-induced local structural distortion and
increased in the order of FAPbl; < SCN™ < BF,” < PF{".
The bandgap and the pure dephasing times, which also
influence the charge carrier lifetime, changed little upon
pseudohalide doping. Overall, the nonradiative processes were
slow because they were driven by low-frequency anharmonic
motions of the heavy Pb—I inorganic lattice and because the
electrons and holes were localized on different widely spaced
atoms, Pb and I, and overlapped little. The NAC coupling was
weak, being only a few meV, and the quantum coherence was
short (10 fs); both of these factors favor long lifetimes. The
low-frequency anharmonic motions created dynamic disorder,
which was enhanced by the dopants, further decreasing the
electron—hole overlap. The atomistic analysis of the
mechanisms of charge and energy losses in metal halide
perovskites provided by the current study contributes to the
fundamental understanding of perovskite properties, which is
needed for the rational design of efficient solar energy and
optoelectronic materials.
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