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Competitive dCas9 binding as a mechanism for
transcriptional control
Daniel A Anderson & Christopher A Voigt*

Abstract

Catalytically dead Cas9 (dCas9) is a programmable transcription
factor that can be targeted to promoters through the design of
small guide RNAs (sgRNAs), where it can function as an activator
or repressor. Natural promoters use overlapping binding sites as a
mechanism for signal integration, where the binding of one can
block, displace, or augment the activity of the other. Here, we
implemented this strategy in Escherichia coli using pairs of sgRNAs
designed to repress and then derepress transcription through
competitive binding. When designed to target a promoter, this led
to 27-fold repression and complete derepression. This system was
also capable of ratiometric input comparison over two orders of
magnitude. Additionally, we used this mechanism for promoter
sequence-independent control by adopting it for elongation
control, achieving 8-fold repression and 4-fold derepression. This
work demonstrates a new genetic control mechanism that could
be used to build analog circuit or implement cis-regulatory logic
on CRISPRi-targeted native genes.
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Introduction

Regulatory networks integrate environmental and cellular signals to

ensure genes are expressed under the correct conditions. Integration

can occur at individual promoters through the arrangement of DNA

operators to which regulatory proteins bind and either recruit or

interfere with transcriptional machinery (van Hijum et al, 2009;

Weingarten-Gabbay & Segal, 2014). Within a promoter, the binding

of one regulator can also affect the binding of others through posi-

tive or negative interactions, for example, through DNA looping or

overlapping operators. This collectively generates “cis-regulatory

logic”, which dictates the conditions for gene expression based on

the combination of regulators that are active (Shen-Orr et al, 2002;

Shen-Orr et al, 2002; Aerts et al, 2003; Buchler et al, 2003; Hermsen

et al, 2006; Mayo et al, 2006; Kaplan et al, 2008; Gertz et al, 2009;

van Hijum et al, 2009; Schulthess et al, 2015). For synthetic genetic

circuits, the placement of multiple operators within a promoter has

been used to implement combinatorial logic, for example, to create

an X AND (NOT Y) gate for an edge detector by placing an operator

for an activator (X) and repressor (Y) within a promoter (Cox et al,

2007; Murphy et al, 2007; Ellis et al, 2009; Tabor et al, 2009; Sharon

et al, 2012; Bacchus et al, 2013; Mogno et al, 2013; Perez-Pinera et al,

2013; Rantasalo et al, 2018; Monteiro et al, 2020; Yu et al, 2021). As

a design principle, combining operators is useful for “compressing”

large logic operations to reduce the resource burden (Rondon et al,

2019; Groseclose et al, 2020). It is challenging to insert an operator

into a promoter because the change in sequence can affect the

promoter strength, an effect that can be mitigated with insulators and

computational predictions (Brewster et al, 2012; Stanton et al, 2014;

Zong et al, 2017, 2018; Hoque et al, 2021; preprint: Poole et al, 2021).

Prokaryotic promoters are small, thus making it difficult to fit multi-

ple operators and it is difficult or impossible to design operators that

bind to multiple regulatory proteins.

dCas9 can be programmed to bind to different DNA sequences

by changing the targeting sequence of its bound sgRNA (Bikard

et al, 2013; Esvelt et al, 2013; Qi et al, 2013; Jiang & Doudna, 2017).

DNA binding requires 5–10 bp sgRNA-DNA complementarity adja-

cent to an NGG PAM sequence (Boyle et al, 2017), although dCas9

can be engineered to reduce the PAM sequence requirements (Klein-

stiver et al, 2015; Hu et al, 2018; Nishimasu et al, 2018; Walton

et al, 2020; Collias & Beisel, 2021). When bound to DNA, dCas9

covers 30 bp and melts the strands to form a bubble that results in

very slow unbinding rates (Sternberg et al, 2014; Jones et al, 2017).

Thus, it can function as a repressor by sterically blocking the bind-

ing of RNA polymerase (RNAP) to a promoter or by blocking its

progression through a gene (Qi et al, 2013). When targeting consti-

tutive E. coli σ70 promoters, repression is strongest when the sgRNA

is targeted within the −10 to −35 promoter core and does not

depend on which strand is targeted (Bikard et al, 2013; Qi et al,

2013; Nielsen & Voigt, 2014). Targeting dCas9 downstream of a

promoter represses transcriptional elongation, with much stronger

repression observed when the sgRNA is targeted to the non-

template strand (Bikard et al, 2013; Qi et al, 2013). dCas9 can also

serve as an activator by fusing it to an activating domain that

recruits RNAP (Bikard et al, 2013; Zalatan et al, 2015; Dong et al,

2018; Ho et al, 2020; Kiattisewee et al, 2021). There are often tight
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spacing requirements for activation, particularly for prokaryotic

promoters. Lastly, dCas9 can also be directed to bind to the opera-

tors of protein repressors, activators, or enhancers, thus blocking

their impact on expression (preprint: Shur & Murray, 2017; Shariati

et al, 2019; Liu et al, 2021).

An advantage of using dCas9 is that its regulatory effect can be

directed to a promoter without having to insert an operator sequence.

This has been used to control the regulation of native genes, for

example, controlling enzymes at branch points to redirect flux

through a metabolic pathway (Kim et al, 2016; Moser et al, 2018;

Tian et al, 2019; Hawkins et al, 2020; Wu et al, 2020b; van Gestel

et al, 2021). It also simplifies the integration of multiple signals at a

single promoter by designing sgRNAs that target it to different posi-

tions. For instance, NOR gates have been constructed using two

sgRNAs that target different positions in the output promoter, either

of which leads to repression (Lebar & Jerala, 2016; Gander et al,

2017). When multiple sgRNAs target overlapping regions, this leads

to mutually exclusive binding (Qi et al, 2013). Tan and co-workers

harnessed this effect to control the strength and noise of an E. coli

constitutive promoter by co-transcribing different ratios of two

sgRNAs that direct dCas9 (fused to an activating domain) to overlap-

ping positions that either recruit or block RNAP (Wu et al, 2020a).

Once expressed, the regulatory effects of dCas9 only end when

the protein or sgRNA degrade or are diluted by cell division. Several

approaches have been taken to control the activity of either dCas9

or the sgRNAs after they are expressed. One is to express anti-

CRISPR proteins derived from phage genomes that bind to and inac-

tivate dCas9 (Bubeck et al, 2018; Nakamura et al, 2019). This leads

to the complete inactivation of dCas9, thus eliminating its ability to

implement any sgRNA-mediated regulation in the cell. Different sets

of genes can be controlled by expressing orthogonal dCas9 variants,

each of which binds a different set of sgRNAs (Gao et al, 2016; Kim

et al, 2019). These can be changed dynamically from being repressors

to activators by expressing the corresponding domains as separate

proteins that bind to dCas9 using modular protein–protein interaction

domains (Gao et al, 2016). Another approach is to design RNA to

bind to and augment the activity of a specific sgRNA. Antisense RNAs

will inactivate sgRNAs by targeting them for degradation via the

native bacterial Hfq system (Lee et al, 2016). The sgRNA can also be

designed to fold into an inactive hairpin, thus requiring the co-

expression of toehold RNAs to unfold and bind to dCas9 (Oesinghaus

& Simmel, 2019; Siu & Chen, 2019; Hochrein et al, 2021). Both of

these techniques require modifying the sgRNA to have additional

sequences such that it can be bound by the modulating RNA.

While there are many natural examples of different repressors

binding to the same operator or a repressor displacing an activator,

to our knowledge, there are no examples of a repressor’s action

being negated by a second protein binding to an overlapping opera-

tor. To this end, we have developed a mechanism for sgRNA-

specific derepression through competitive dCas9 binding to overlap-

ping regions. Transcription is blocked when a repressing sgRNA

(sgR) directs dCas9 to the first position and a second derepressing

sgRNA (sgD) directs dCas9 to a mutually exclusive second position

that does not impact transcription (Fig 1A). We find that the two

regions are competitive so long as they are within 14 bp and the

PAM sequences are between the target sites. The repression/dere-

pression switch is implemented in two ways (Fig 1B). The first is to

design the sgR to overlap the −35 σ70-binding region of promoter

and the sgD to bind just upstream. The second approach is to design

repression/derepression sites within a gene by exploiting the strand

dependence of RNAP elongation inhibition by dCas9. These results

demonstrate a new mechanism to control the activity of dCas9-

directed regulation that could be used for efficient genetic circuit

design to integrate signals in a promoter or to derepress subsets of

native genes to subregulate genome-encoded functions.

Results

Promoter control through repression/derepression

dCas9 can repress a promoter by sterically blocking the binding of

RNAP (Figs 1B and 2A) (Bikard et al, 2013; Qi et al, 2013). An

E. coli constitutive promoter can be repressed by targeting the

repressing sgRNA (sgR) to overlap the −10 or −35 σ70-binding sites

(Bikard et al, 2013; Qi et al, 2013; Nielsen & Voigt, 2014). Our

design for derepression is based on using a second sgRNA (sgD) to

recruit dCas9 to an upstream site that blocks its ability to bind to

the repressing position. Importantly, sgD cannot interfere with

RNAP binding or else it will also lead to repression. To quantify the
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Figure 1. The mechanisms of dCas9 repression and derepression.

A The footprint of dCas9:sgD blocks the binding of dCas9:sgR without
requiring that the sgRNA-binding regions overlap. The PAM-adjacent
regions of sgRNAs are shown as boxed ends.

B The sgR/sgD sequences can be targeted to the promoter or internal to a gene.
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impact of dCas9:sgRNA binding on mRNA transcription rates, we

defined a parameter α as the ratio of maximal mRNA production

rates (completely unbound DNA) to the production rate when all

DNA is bound by dCas9:sgRNA (saturated DNA). The ideal location

to target a repression/derepression sgRNA pair would correspond to

a large α for sgR (α >> 1) and α → 1 for sgD, indicating strong

repression by sgR and no repression by sgD.

A system was designed to evaluate how targeting sgR and sgD

to different positions in the promoter impacts the effectiveness of

repression and derepression. Two inducible promoters were used

to independently transcribe sgR (IPTG-inducible PTac) and sgD

(Vanillic acid-inducible PVan) encoded on a p15A plasmid. The

targeted constitutive promoter (PC1) was built based on the −35 to

+1 core of PGate08 (Zhang & Voigt, 2018) to which a randomly

generated 100-bp sequence was added upstream (Materials and

Methods). Positions in PC1 were selected to be targeted for sgR/

sgD by exploiting NGG PAM sites in the promoter sequence (Fig

2B). The sgR and sgD sequences were designed based on the same

scaffold (Zhang & Voigt, 2018), with mutations the 20-bp spacer

sequence corresponding to the target region of the promoter

(Appendix Table S2). To measure promoter activity, PC1 was

placed upstream of a ribozyme (Lou et al, 2012) and gene encoding

red fluorescent protein (rfp). From the same plasmid, dCas9 was

expressed using the aTc-inducible PTet promoter. A concentration

of 1.25 nM aTc was used for all experiments and leads to approxi-

mately 500 dCas9 molecules per cell during exponential growth

(Zhang & Voigt, 2018).

Experiments were performed to measure the promoter activity

that results when dCas9 is targeted to different positions. The plas-

mids were transformed into E. coli and cultures were grown in

defined media (EZ Rich) and induced with aTc and either IPTG or

Vanillic acid (Van) for 5.5 h (Materials and Methods). Fluorescence

was then measured using flow cytometry. First, we compared the

repression obtained by targeting the −10 (sgRP1) or −35 (sgRP2)

positions of the promoter (Fig 2B). Upon maximum sgR expression

(1 mM IPTG), both sgRs are able to repress the promoter by ˜ 30-
fold (Fig 2C). This result is consistent with previously observed

fold-repressions at these locations (Nielsen & Voigt, 2014; Zhang &

Voigt, 2018).

A model was derived to capture the repression of a promoter by

dCas9:sgR,

P þ SR ,KR

PR (1)

where P and PR are the concentrations of promoters in the

unbound and bound state, SR is the concentration of dCas9:sgR,

and KR is the association constant. The production of mRNA tran-

scripts m from the promoter is described by

dm

dt
¼ βm

1 þ α�1KRSR
1þ KRSR

þ β � δmm, (2)

where βm is the maximum transcription rate, β is the leaky tran-

scription rate, and δm is the degradation rate. Solving for steady-

state yields

m ¼ βm
δm

� �
1þ α�1KRSR
1þ KRSR

þ β

δm
: (3)

This equation can be further converted to the activity of the

output promoter PC1,

y ¼ ymax � yminð Þ 1þ α�1κRxR
1þ κRxR

þ ymin (4)

where y is in arbitrary units (au) of RFP fluorescence and ymax/ymin

are the maximum/minimum measured values. xR is the strength of

the promoter driving the expression of sgR, measured as au of RFP

fluorescence and κR is rescaled to be in the same units. This assumes

that the binding of sgR to dCas9 to form SR is in the linear (unsatu-

rated) regime. Equation 4 was fit to the sgRP1 and sgRP2 induction

curves (Fig 2C), and the parameters were extracted (Table 1).

We then designed experiments to determine the constraints of

targeting dCas9:sgD to the promoter without evoking repression

(Fig 2D). Seven positions were selected between −28 and −66
regions of the promoter, including orientations that target both

strands (Fig 2B). The promoter activity was measured for each posi-

tion when sgD is expressed (100 µM Van) and unexpressed (0 µM
Van), and these data were used to estimate α as the ratio of these

values (Fig 2D and E). We observed that α continuously decreases

as the sgD targets regions farther from the promoter core, indicating

weaker repressive abilities (Fig 2E). When sgD targets regions

upstream of −60, negligible repression was observed.

It has been previously shown that dCas9:sgRNAs will compete

for binding when their target regions overlap (Qi et al, 2013; Wu

et al, 2020a). However, the distance constraints we measured

showed that it would not be possible to obtain repression/derepres-

sion by targeting overlapping regions. Even if we used the upper-

bound on TSS distance for the repressing sgRNA (30 bp) and the

lower-bound on distance for the derepressing sgRNA (60 bp), the

sgRNA target sequences would still have to be 10 bp away from

each other. We hypothesized that while we could not utilize sgRNA

target overlap, we may still be able to harness steric hindrance

effects from overlap of the dCas9 protein footprint on DNA. To

investigate this, we examined a crystal structure of the dCas9-

sgRNA-DNA complex (Nishimasu et al, 2014), which shows that

dCas9 has an overhang of ˜ 9 bp on the PAM-proximal binding side,

but only a ˜ 1 bp overhang on the PAM-distal side of the sgRNA

target. This indicated that we might be able to obtain competitive

dCas9 binding without overlapping the sgRNA binding regions if we

oriented two sgRNAs with their PAM sequences facing each other.

To test this hypothesis, we redesigned the system to express sgRP2

from a choline (Chol)-inducible promoter and sgDP5 from a Van-

inducible promoter (Fig 2F). These promoters were chosen because

they are not predicted to append disruptive 50 sequences onto the

sgRNAs (Qi et al, 2013; Meyer et al, 2019). In accordance with the

crystal structure estimation of dCas9’s DNA footprint, we designed

sgDP5 to be 14 bp from sgRP2. To bind sgDP5 at this distance, we had

to introduce a 3-bp mutation from −60 to −62 of PC1 to create a PAM

site for sgDP5, resulting in PC2. We screened for derepression by fully

inducing sgRP2 with 9 mM Chol and titrating the expression of sgDP5

from 0 to 100 µM Van. Derepression occurred in a graded manner as

more sgRNA is expressed, ultimately returning the promoter activity

to its unrepressed state (Fig 2G).

We then determined the promoter response when different

amounts of sgR and sgD are expressed. This response can be viewed

as a cis-regulatory logic operation (Mayo et al, 2006), where the
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signals from these regulators are integrated by the promoter. To

obtain this function, 60 combinations of sgRP2 and sgDP5 induction

levels were measured. These data are shown in Fig 2H as circles,

where their colors are the output values of the circuit and each data

point is positioned at the respective promoter activity values for sgR

and sgD (error bars for each measurement are provided in

Appendix Fig S4). Output from the promoter increased with sgD

induction and decreased with sgR expression.

It has been shown that the co-expression of multiple sgRNAs

titrates a shared dCas9 resource away from the co-expressed

sgRNAs (Zhang & Voigt, 2018; Huang et al, 2021). This could

complicate the interpretation of the derepression data, where the

expression of sgD could deplete the dCas9 pool, thus indirectly

reducing the concentration of dCas9:sgR in the cell. To test for this

effect, we performed a control experiment where we maximally

expressed a sgR and then titrated in either a non-targeting sgRNA

(sgN) (does not bind to the promoter or genome) or an off-target

sgRNA (sgO) (binds to an inert region of the plasmid) (Appendix Fig

S2). Neither of these sgRNAs showed derepression, indicating that

the derepression we observed was not due to dCas9 titration.

Our model was then expanded to include derepression. Equation

1 can be modified to include the competitive reaction of dCas9:sgD

(SD) binding to the promoter to form PD,

PD þ SR ,KD

P þ SR þ SD ,KR

PR þ SD (5)

where KD is the association constant between SD and P. The

production of mRNA transcripts m from the promoter is described

by

dm

dt
¼ βm

1þ α�1
R KRSR þ α�1

D KDSD
1þ KRSR þ KDSD

þ β � δmm (6)

◀ Figure 2. Repression and derepression targeted to a promoter.

A The interactions between dCas9:sgR and dCas9:sgD and RNAP are shown. The dashed arrow and blunt-end indicate RNAP’s inability to bind the promoter and non-
ideal repression of RNAP-binding by a sgD, respectively.

B Positions of PC1 tested for targeting sgR and sgD. The boxes on the sgRNAs mark the PAM-adjacent regions, the orientation of which determines which strand is
targeted.

C Repression by the expression of sgRs. The experiments are performed with plasmids pDAA043 and pDAA656 for sgRP1 and sgRP2, respectively. Both plasmids contain
sgDP2 (uninduced for these experiments). The curve was fit to Equation 4, yielding the parameters shown in Table 1. The x-axis is converted from the concentration
of inducer (IPTG) to promoter activity as described in the Materials and Methods. Inducer concentrations: 0, 0.977, 1.95, 3.91, 7.81, 15.6, 31.3, 62.5, 125, 250, 500, 1,000
µM IPTG.

D The position dependence of repression. The dashed blunt-end arrow indicates non-ideal repression by a derepression sgRNA. The experiments are performed with
plasmids pDAA042, 043, 050, 051, 654, 052, and 044 for sgDP1-sgDP7 (Appendix Table S1). The circuits also contain sgRP1 (uninduced for these experiments). The
pDAA654 plasmid testing sgDP5 used the promoter PC2, all other sgDs used PC1.

E “sgRNA distance” is the distance from the +1 site of the promoter to the closest DNA–RNA base pair in the sgRNA sequence. The lower subpanel shows values of α
for the sgDs tested in (D) as function of their distance from the +1 site. The horizontal dashed line is drawn at α = 1 (ideal α value). The arrow marks sgDP5, which
was selected to build the repression/derepression circuit. The error bars were calculated as σ = |A/B|((σA/A)

2 + (σB/B)
2]1/2, where A and B are the means with 0 and 100

µM Van sgD induction, respectively, and σA and σB are the standard deviations of these measurements. Upper subpanel shows a schematic representation of how
“sgRNA distance” values are calculated.

F Genetic circuit schematic of the circuit based on sgRP2 and sgDP5 circuit, encoded on a single plasmid (pDAA107). Part sequences are provided in Appendix Table S2,
and the full plasmid sequence is in Appendix Table S3.

G Derepression induction curve for sgDP5 with full sgRP2 induction. The line is a fit to Equation 8 with parameters in Table 1. Dashed lines indicate RFP expression for
uninduced (0 mM Chol, 0 µM Van) and fully induced (9 mM Chol, 0 µM Van) sgRP5. The x-axis is converted from the concentration of inducer (Van) to promoter
activity as described in the Materials and Methods. Inducer concentrations: 0, 0.0977, 0.195, 0.391, 0.781, 1.56, 3.13, 6.25, 12.5, 25, 50, 100 µM. The upper subpanel is a
genetic circuit schematic of the sgRP2 + sgDP5 circuit (full schematic shown in F).

H Two-dimensional response function for the induction of sgRP2 and sgDP5. The circles are experimental measurements colored by the mean fluorescence values of
three biological replicates performed on different days (standard deviations in Appendix Fig S4). The continuous color in the background is the model prediction from
Equation 8, R2 = 0.87 (Appendix Fig S4). Inducer concentrations: [0, 0.195, 0.391, 0.781, 1.56, 3.13, 6.25, 12.5, 25, 50, 100 µM Van] and [0, 37.0, 111, 333, 1,000, 3,000,
9,000 µM Chol]. 27-fold repression was observed with 0.195 µM Van and 0 / 9 mM Chol applied. 29.5-fold derepression was observed with 9 mM Chol and 0.195 / 100
µM Van applied.

Data information: Representative cytometry distributions for all parts are shown in Appendix Fig S3. For panels (C), (E), (G), and (H), data points are the means of three
biological replicates performed on different days. For panel (D), all data points are shown. In panels (C), (E), and (G), the error bars are the standard deviations of these
measurements.

Table 1. Model parameters.

Parameters

Mechanism sgRNAsa ymin ymax κR κD αR αD

Promoter sgRP1 1.2 7,700 0.10 150

Promoter sgRP2 16 6,800 0.043 120

Promoter sgRP2+sgDP5 16 6,800 0.043 0.063 120 1.0

Elongation sgRO1 37 4,200 0.019 27

Elongation sgRO1+sgDO2 37 4,200 0.019 0.0077 27 1.0

aSingle sgRNA experiments were fit to Equation 4 and dual-sgRNA experiments were fit to Equation 8.
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where βm/αR and βm/αD are the maximum transcription rates when

either SR or SD are bound to the promoter. Solving for steady-state

yields

m ¼ βm
δm

� �
1þ α�1

R KRSR þ α�1
D KDSD

1þ KRSR þ KDSD
þ β

δm
(7)

As described for Equation 4, this can be further converted to the

activity of the output promoter PC2,

y ¼ ymax � yminð Þ 1þ α�1
R κRxR þ α�1

D κDxD
1þ κRxR þ κDxD

þ ymin (8)

This equation was then fit to the 2-dimensional response of the

promoter to the expression of sgR and sgD (Fig 2H). This fit was

performed while keeping the parameters previously fit to Equation 4

for sgRP2 (κR, αR, ymin, and ymax) constant. The fit is shown as the

heatmap coloration in Fig 2H, the parameters for which are

provided in Table 1. The newly fit association constant κD for sgD is

similar to κR indicating that sgRP2 and sgDP5 have similar apparent

binding strengths. Additionally, the observed αD of 1 is consistent

with sgDP5 having little repressive effect on its own.

Dynamics of derepression

Qi et al (2013) showed that, in exponentially growing E. coli, the

dynamics of sgRNA-based repression of RFP was identical to the

cellular growth rate. This is consistent with complete repression of

protein expression and first-order degradation of the protein due to

dilution by cell division (Del Vecchio & Murray, 2015; Potvin-

Trottier et al, 2016). However, when the authors removed the

repressing sgRNA, RFP fluorescence increased with a doubling time

slower than the cellular growth rate.

We monitored the dynamics of repression and derepression for

the promoter repression/derepression sgRNA pair sgRP2 + sgDP5 over

the course of 8 h (Materials and Methods). Starting with uninduced

cells in exponential phase, we diluted cells into repressing conditions

(10 mM Chol, 1.25 nM aTc). Consistent with previous work, RFP flu-

orescence reduced at the rate of cellular division (Fig 3). After 6 h,

RFP expression was 100-fold lower than the initial uninduced condi-

tion. We then washed the cells and diluted them into fresh media

inducing only the derepression sgRNA, sgDP5 (1.25 nM aTc and 100

µM Van). This led to 47-fold derepression within 2 h.

Control of transcriptional elongation through repression/
derepression

dCas9 can block transcription when it is directed to bind internally

to a gene by physically interfering with the progression of RNAP

(Fig 4A). However, being located in a gene complicates the design

of a derepressing sgRNA position, which must bind to disrupt the

repressing sgRNA without itself blocking elongation. To this end,

we exploited the strand dependence of dCas9-based elongation

repression, where it has been found that RNAP elongation is more

likely to terminate when it collides with the PAM-proximal side of a

dCas9-DNA complex (Fig 4B) (Bikard et al, 2013; Qi et al, 2013;

Vigouroux et al, 2018). Similar to the promoter repression/derepres-

sion mechanism, these constraints on sgR and sgD repressive effects

can be captured empirically with the parameter α, which is the

maximum fold-repression of mRNA production rates under saturat-

ing conditions.

A genetic system was constructed to test this design. dCas9

produces stronger repression when it is directed to the 5’-end of the

gene (Bikard et al, 2013; Qi et al, 2013), so we selected a position at

+232 to be targeted by a repressing sgRNA (sgRO1) (Fig 4C). This

location was chosen because it has two adjacent PAM sites that

could be used for targeting sgD, one of which has the same 14 bp

spacing as was found to be optimal when derepressing a promoter

(sgDO2). sgRO1 was placed under the control of a Chol-inducible

PBetI promoter. It has been observed that elongation repression can

be weaker with stronger promoters, presumably due to dislodge-

ment of dCas9 by RNAP (Vigouroux et al, 2018). To evaluate this

effect, we used an IPTG-inducible promoter (PTac) to drive the tran-

scription of the rfp reporter. When the promoter is strong (1 mM

IPTG), we observed an 8-fold repression of RFP upon the maximum

induction of sgRO1 (10 mM Chol) (Fig 4D). While we initially devel-

oped the models in Equations 4 and 9 for the promoter repression/

derepression mechanism, these models can be generalized to the

elongation repression/derepression mechanism if the promoter

states P, PR, and PD are instead considered to be general DNA states.

Therefore, the data for sgRO1 were fit to Equation 4 (Table 1). The α
for sgRO1 is 4-fold lower than that from promoter repression (Table

1), indicating a limitation of elongation repressive control at this

location. The dependence of repression on the PTac activity was then

measured (Fig 4E). Repression by sgRO1 initially increased with

promoter strength, but then levels off at 30-fold repression (Fig 4E).

Previous work showed that elongation repression is promoter-

strength invariant for saturating levels of dCas9 and for strong

promoters (Vigouroux et al, 2018).

Two sgDs were designed to target positions up- (sgDO2) and

down-stream (sgDO1) of the sgRO1 position (Fig 4C). These were
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placed under the control of a Van-inducible promoter, as before. We

initially attempted to calculate α for these derepressing sgRNAs;

however, induction of sgDO2 resulted in higher, rather than lower,

RFP expression. This effect was likely due to leaky sgRO1 expression

of sgRO1 from PBetI which is derepressed when sgDO2 is induced (Fig

4F). Nonetheless, we tested the derepression capabilities of sgDO1

and sgDO2 (Fig 4G). To do this, sgRO1 was maximally expressed (10

mM Chol) with the strongest induction of the rfp reporter (1 mM

IPTG). Maximum expression of sgDO2 (100 µM Van) showed 4-fold

derepression (Fig 4G). This derepression was confirmed to not be a
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result of the titration of dCas9 (Appendix Fig S2). In contrast, sgDO1

did not show any derepression and instead its expression slightly

reduces the expression of the reporter, implying it may have its own

repressing effect.

The regulatory logic for the co-expression of sgRO1 and sgDO2

was then determined (Fig 4H). Similar to promoter repression/dere-

pression, the elongation mechanism exhibited increasing expression

with sgD induction and decreasing expression with sgR induction

(error bars for each measurement are provided in Appendix Fig S4).

Equation 8 was then fit to the 60-point sampling of the system, with

xR corresponding to PBetI activity and xD corresponding to PVan activ-

ity values. The fit parameters imply that the derepressing sgRNA

association constant κD was 2.5-fold lower than the repressing

sgRNA association constant κR (Table 1).

The dependence of derepression on the PTac promoter strength

was then measured by varying IPTG (Fig 4E). Similar to the promoter

strength test for relative repression, we normalized the fluorescence

to that of the PTac-only plasmid (pDAA040). For each level of PTac
induction, the relative expression during derepression was calculated

as the ratio of the RFP fluorescence from the PTac-only plasmid to the

RFP fluorescence from the circuit plasmid with maximal sgRO1 and

sgDO2 induction (10 mM Chol and 100 µM Van). From this experi-

ment, we observed that derepression is invariant over a wider range

of transcription rates than that observed for repression.

Ratiometric performance of the repression/derepression

Ratiometric signal processing describes a circuit that responds to the

relative value of two inputs, as opposed to their absolute magnitude.

Naturally occurring ratiometric responses have been observed in

ATP/ADP management (Atkinson, 1968), X versus autosomal

chromosome levels (Madl & Herman, 1979), circadian clock determi-

nation (Li et al, 2016), cancer cell clinical resistance (Raisova et al,

2001), and sugar source utilization in yeast (Escalante-Chong et al,

2015). To examine the ratiometric performance of our repression/

derepression mechanisms, we looked at the circuit outputs relative to

the ratio of promoter activities producing sgD and sgR (PVan / PBetI).

From this, we observed that the promoter repression/derepression

circuit effectively responded to over 2 orders of magnitude of sgD/

sgR ratios with a 50-fold dynamic range (Fig 5A). In contrast, the

elongation mechanism had a smaller overall dynamic range (10-fold)

and the circuit did not perform predictably across all ratios (Fig 5B).

Discussion

This work introduces a new mode of regulatory control, where the

binding of a repressor is displaced by the binding of a nearby dere-

pressor. This motif, where both repressor and derepressor bind to

the same operator, has not been observed in natural systems. This

may be due to the difficulty of designing a common operator that

binds to multiple proteins and a derepressing protein that blocks the

repressor, but not RNAP. The programmability of CRISPRi makes

the design of multiple sgRNAs binding nearby sites almost trivial

and the size of dCas9, and its melting of DNA, simplifies its use to

sterically inhibit the binding or elongation of RNAP. Note that the

off-rate of dCas9 binding DNA is very slow, effectively irreversible,

until it is displaced by DNAP or RNAP (Sternberg et al, 2014; Jones

et al, 2017; Vigouroux et al, 2018). In our repression/derepression

mechanism, this makes it unlikely that dCas9:sgD can displace

dCas9:sgR when it is already bound. Rather, it depends on which

binds first, with DNAP replication (and to a lesser-extent RNAP

▸Figure 4. Repression/derepression by blocking RNAP progression within a gene.

A The interaction between RNAP and dCas9:sgR and dCas9:sgD are shown. Transcription is “ON” when full-length transcripts are produced. The dashed lines indicate
non-ideal repression by sgD.

B When dCas9 is bound to the non-template strand, the PAM is proximal to RNAP, and dCas9 tends to stay bound after collision. When dCas9 is bound to the template
strand, the PAM is distal to RNAP collision and RNAP can continue to elongate.

C Repressing and derepressing sgRNA binding sites tested relative to rfp.
D Repression of transcriptional elongation by sgRO1. The circuit is encoded on plasmid pDAA056, which also includes sgDO2 (uninduced in these experiments). The curve

was fit to Equation 4, yielding the parameters shown in Table 1. The x-axis is converted from the concentration of inducer (Chol) to promoter activity as described in
the Materials and Methods. Inducer concentrations: 0, 9.77, 19.5, 39.1, 78.1, 156, 313, 625, 1,250, 2,500, 5,000, 10,000 µM Chol.

E The dependence of sgRO1 repression and sgDO2 derepression on the strength of the promoter controlling the repressed gene (PTac). “Relative expression” was
calculated as the ratio of the fluorescence obtained in the absence of a guide RNA (pDAA040) by the fluorescence obtained by the expression of the guide RNAs
shown in the legend (10 mM Chol or 10 mM Chol/100 µM Van, using pDAA056). The lines are a visual guide. The x-axis is converted from the concentration of
inducer (IPTG) to promoter activity as described in the Materials and Methods. Inducer concentrations: 0, 0.977, 1.95, 3.91, 7.81, 15.6, 31.3, 62.5, 125, 250, 500, 1,000 µM
IPTG. The error bars were calculated as σ = |A/B|((σA/A)

2 + (σB/B)
2]1/2, where A is the mean of the PTac-only expression, B is the mean of the circuit with either sgRO1 or

sgRO1 + sgDO2 induction, and σA and σB are the standard deviations of their measurements.
F Fully induced PTac activity with and without induction of sgDs. Plasmids pDAA057 and pDAA056 were used for the sgDO1 and sgDO2 experiments, respectively. sgRO1

was present but uninduced.
G Derepression induction curves with full sgRO1 induction. The curve was fit to Equation 8, yielding the parameters shown in Table 1. The x-axis is converted from the

concentration of inducer (Van) to promoter activity as described in the Materials and Methods. Inducer concentrations: 0, 0.0977, 0.195, 0.391, 0.781, 1.56, 3.13, 6.25,
12.5, 25, 50, 100 µM Van.

H Two-dimensional response function for the induction of sgRO1 and sgDO2. The circles are experimental measurements colored by the mean fluorescence values of
three biological replicates performed on different days (standard deviations in Appendix Fig S4). The continuous color in the background is the model prediction
using Equation 8, R2 = 0.87 (Appendix Fig S4). The x-axis and y-axis are converted from Van and Chol to promoter activity, respectively (Materials and Methods).
Inducer concentrations: [0, 0.195, 0.391, 0.781, 1.56, 3.13, 6.25, 12.5, 25, 50, 100 µM Van] and [0, 37.0, 111, 333, 1,000, 3,000, 9,000 µM Chol]. 8-fold repression was
observed with 0.195 µM Van and 0 / 9 mM Chol applied. 4-fold derepression was observed with 9 mM Chol and 0.195 / 100 µM Van applied.

Data information: Representative cytometry distributions for all parts are shown in Appendix Fig S3. For panels (D) and (G), data points are the means of three biological
replicates performed on different days. For panel (F), all data points are shown. In panels (D) and (E), the error bars are the standard deviations of the three separate
measurements.
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elongation) “resetting” the DNA state at the rate of plasmid replica-

tion (cellular growth rate) and RNAP elongation (promoter strength)

(Jones et al, 2017; Vigouroux et al, 2018). Thus, the kinetics of the

system reaching steady state are expected to be dependent on

growth phase and may impact their use in circuits with components

with faster dynamics (Mishra et al, 2014; Takahashi et al, 2015; Ali

Al-Radhawi et al, 2019; Westbrook et al, 2019).

Repression/derepression could be applied to design synthetic

circuits that perform new signal integration functions. As simple cis-

regulatory logic, the operation performed by these circuits is A

IMPLY B where sgD (B) overrides the regulation imposed by sgR

(A) (Figs 2G and 3G). If instead the displaced regulator were an acti-

vator (based on dCas9 recruiting RNAP (Dong et al, 2018; Fontana

et al, 2020a; Ho et al, 2020; Villegas Kcam et al, 2021)), this logic

would be A NIMPLY B.

However, this digital combinatorial logic does not capture the

potential for new signal integration performed by these mecha-

nisms. The signal integration follows a graded, rather than switch-

like transition (Figs 2H and 3H), and this can be used to build useful

analog functions. The circuit based on the repression/derepression

of a promoter (sgRP2 and sgDP5) is capable of responding to tran-

scriptional input ratios over two orders of magnitude (Fig 5A).

Ratiometric signal processing is common in natural regulatory

systems and is usually achieved by a motif where two species

compete for a third component and only one of the bound species

results in the output (Atkinson, 1968; Madl & Herman, 1979;

Raisova et al, 2001; Berg et al, 2009; Daniel et al, 2013; Escalante-

Chong et al, 2015; Li et al, 2016; Antebi et al, 2017; Cherry & Qian,

2018; Lopez et al, 2018; Liu et al, 2019). For example, this

competition can occur at a DNA binding site where an activating

transcription factor competes with an inactive or repressive tran-

scription factor (Perli & Lu, 2017; Zeng et al, 2019). Ratiometric

circuits can be used to determine which of two continuously vari-

able signals is larger. The sgRP2/sgDP5 circuit in log-space is

performing a (sgD – sgR) calculation, which if connected to a coop-

erative switch-like output could act as a single neuron in a neural

network (Li et al, 2021).

Another consideration is the transfer of this repression/derepres-

sion mechanism for transcriptional control in organisms other than

E. coli. Repression of transcriptional elongation via dCas9 binding

has been shown to work in a variety of different bacterial species

(Peters et al, 2016, 2019; Rock et al, 2017), so we expect the elonga-

tion repression/derepression mechanism to be applicable to other

species. Transferring this mechanism to eukaryotes is more difficult

because dCas9 is only capable of modest elongation repression in

eukaryotic systems (Gilbert et al, 2013; Qi et al, 2013). Repression

in eukaryotic systems is often accomplished through the fusion of

chromatin-remodeling proteins to dCas9, which are capable of

robust and reversible repression of transcription (Gilbert et al, 2013,

2014; Zalatan et al, 2015; Mandegar et al, 2016). Derepressing these

systems could be accomplished by targeting a dCas9 lacking the

fused repression domains to the same DNA location. This approach

would require two different dCas9 species, which could be accom-

plished using dCas9 orthologs (Esvelt et al, 2013; Kim et al, 2019;

Gasiunas et al, 2020) or by encoding repression domain recruitment

within the sgRNA scaffold (Zalatan et al, 2015).

Various approaches have been developed to place native genes

under synthetic regulatory control through the insertion of synthetic
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Figure 5. Ratiometric performance of repression/derepression circuits.

A, B (A) Promoter repression/derepression circuit experimental results with a ratiometric interpretation. The upper subpanel is a genetic circuit schematic of the sgRP2 +
sgDP5 circuit (full schematic shown in Fig 2F). Lower subpanel is the data from Fig 2H replotted as the ratio of the two inputs. The x-axis values are derived by
taking the ratio of PVan activity to PBetI activity. (B) The upper subpanel is a genetic circuit schematic of the sgDO2 + sgRO1 circuit. The lower subpanel is the
elongation repression/derepression circuit data (Fig 4H) replotted as the ratio of the two inputs. For both parts, the x-axis values are derived from converting Chol
(sgR) and Van (sgD) values to promoter activity (Materials and Methods) and then dividing sgD promoter activity by sgR promoter activity. Inducer concentrations:
[0, 0.195, 0.391, 0.781, 1.56, 3.13, 6.25, 12.5, 25, 50, 100 µM Van] and [0, 37.0, 111, 333, 1,000, 3,000, 9,000 µM Chol]. Ratios below 1 are shown in gray. For both
panels, data points are the means of three biological replicates performed on different days and the error bars are the standard deviations of these measurements.
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promoters (e.g., that respond to T7 RNAP) or other regulatory

motifs (Warner et al, 2010; Wang et al, 2012; Na et al, 2013).

CRISPRi has been rapidly adopted because it can exert regulatory

control without having to mutate the target; however, it only

imparts a single on/off signal. To this end, depression/derepression

can be used to inactivate the effects of CRISPRi in the control of

native genes (Nielsen & Voigt, 2014; Weinberg et al, 2017; Moser

et al, 2018; Henningsen et al, 2020). For example, CRISPRi/a has

been used to dynamically repress or activate enzymes to control

carbon flux in metabolic engineering applications (Moser et al,

2018; Peng et al, 2018; Lu et al, 2019; Tian et al, 2019; Fontana

et al, 2020b). Derepression allows for the disruption of a subset of

the genes being influenced by an activating or repressing sgRNA; in

effect, this would introduce cis-regulatory logic into the native genes

without needing to insert operators. In this work, we had to deal

with the challenge of identifying or designing PAM sites so that the

sgR and sgD binding sites are appropriately positioned to satisfy the

distance constraints. This restricts their utility in the control of

genome-encoded genes, where the likelihood of PAM sites being

appropriately positioned in a promoter is small or restricts where

the regulation can occur within a gene. This is likely why the effect

that we observed for the blockage and release of elongation is small.

However, recent efforts to engineer dCas9 to not require a PAM site

have made progress (Kleinstiver et al, 2015; Hu et al, 2018; Nishi-

masu et al, 2018; Walton et al, 2020; Collias & Beisel, 2021). Collec-

tively, these advances will allow the programming of cis-regulatory

logic to be applied to any gene in the genome without having to

insert or modify genomic DNA.

Materials and Methods

Strains, plasmids, media, and chemicals

Escherichia coli NEB 10-beta (C3019I, New England BioLabs, Ipswich,

MA, USA) was used for all routine cloning. All genetic circuit

measurements were done using E. coli K-12 MG1655 * [F- λ- ilvG-
rfb-50 rph-1 Δ(araCBAD) Δ(LacI)] (Blattner et al, 1997; Nielsen &

Voigt, 2014). Cells were grown in in MOPS EZ Rich Defined Medium

(Teknova, M2105) with 0.2% glucose (Teknova, G0520). Kanamycin

(50 µg/ml, GoldBio, K-120-5) was used to maintain plasmids. Chemi-

cal inducers used the following: vanillic acid (Van) (Millipore Sigma,

94770); isopropyl β-d-1-thiogalactopyranoside (IPTG) (GoldBio,

I2481C); anhydrotetracycline (aTc) (Millipore Sigma, 37919); and

choline chloride (Chol) (Millipore Sigma, C7017). DNA oligos and

genes were ordered from Integrated DNA Technologies (Coralville,

IA) and Twist Biosciences (San Francisco, CA). All plasmids were

constructed from the parental pDAA038 backbone (Appendix Table

S3) using TypeIIS assembly to insert circuit components between BsaI

sites. A table of genetic parts and full plasmid sequences are provided

in Appendix Table S2 and S3. Key plasmid maps are shown in

Appendix Fig S5.

Computational methods

The random 100-bp sequence within PC1 was generated using the

online Random DNA Sequence Generator (http://www.faculty.ucr.

edu/˜mmaduro/random.htm) with the GC content set to 50%. Non-

linear fitting was completed with the Python scipy.optimize.curve_-

fit() function.

Induction assays

All growth was performed in 96-well V-bottom plates (Roskilde,

Denmark, #249952) at 1,000 rpm in a microplate shaker (ELMI,

#DTS-4). The day before, individual colonies were inoculated into

150 µl EZ Rich media and Kan for overnight (16 h) growth at 37°C.
The next day, cultures were diluted 200-fold by adding 0.75 µl of
overnight culture into 150 µl of EZ Rich media and Kan. After 2-h

growth, cultures were diluted 1,000-fold into inducing conditions by

adding 6 µL of culture into 198 µl fresh media and Kan and then 5 µl
of that dilution into media with inducers and Kan. To induce dCas9,

aTc was added to a final concentration of 1.25 nM in all experi-

ments. Growth was performed for 5.5 h, after which samples were

prepared for flow cytometry.

Flow cytometry analysis

Fluorescence characterization was performed using a BD LSR

Fortessa flow cytometer with the HTS attachment (BD, Franklin

Lakes, NJ). Samples were prepared by aliquoting 40 μl of cell

culture into 160 μl of PBS containing 200 µg/ml Kan. All samples

were run in standard mode at a flow rate of 2 μl/s. RFP fluorescence

measurements were made using the green (561 nm) laser, and all

data were derived from the PE-Texas Red-A channel (PMT voltage

of 700 V). The FSC and SSC voltages were 650 and 270 V, respec-

tively. At least 10,000 events were collected for each sample, and

the Cytoflow Python package (https://github.com/cytoflow/

cytoflow) was used for analysis, including gating. The geometric

mean fluorescence is calculated for all cytometry distributions.

Promoter input calculations

The following procedure was followed to convert inducer concentra-

tions (e.g., [IPTG]) to the activities of the inducible promoter (e.g.,

PTac) reported in RFP fluorescence (au). This approach has been

described previously (Nielsen et al, 2016; Zhang & Voigt, 2018).

Using a separate plasmid based on pDAA038, the response function

of the inducible system was measured separately by measuring RFP

fluorescence using cytometry. The RFP fluorescence values in au for

the inducer concentrations were then plotted as “Promoter Activ-

ity”. The response functions used are shown in Appendix Fig S1.

Repression/derepression dynamics

All growth was performed at 37°C and 350 rpm in an Innova44

(Eppendorf, NY, USA) with a 1-inch throw. The day before the

experiment, a starter culture was initiated by inoculating a colony

into 2 ml EZ-rich media with Kan in a 15-ml test tube. The next day,

this culture was diluted to an OD600 of 0.025 into 40 ml of fresh EZ-

rich media with Kan. This was allowed to grow for 2 h in a 250-ml

Erlenmeyer flask to bring the cells to OD600 = 0.5. At this point, a

time point was taken for t = 0 and cells were diluted to OD600 =

0.00035 in an Erlenmeyer flask using fresh media with 10 mM

Choline and 1.25 nM aTc. After 2 h of growth, 30-min time points

were taken. At each time point, 1 ml of culture was removed, spun
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down (1 min at 16,000 g), and then resuspended in 300 µl of PBS
and 2 mg/ml Kan and analyzed by cytometry. To transfer into de-

repressing conditions, 28 ml of culture was washed twice by

centrifugation at 12°C at 4,300 g for 5 min. Then, the cultures were

diluted to OD600 = 0.035 in 40 ml of media with 100 µM Van, 10

mM Choline, and 1.25 nM aTc.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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