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TUG1 confers cisplatin resistance 
in esophageal squamous cell carcinoma 
by epigenetically suppressing PDCD4 
expression via EZH2
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Abstract 

Background:  Increasing evidence has suggested the involvement of long non-coding RNA taurine upregu-
lated gene 1 (TUG1) in chemoresistance of cancer treatment. However, its function and molecular mechanisms in 
esophageal squamous cell carcinoma (ESCC) chemoresistance are still not well elucidated. In the present study, we 
investigate the functional role of TUG1 in cisplatin (DDP) resistance of ESCC and discover the underlying molecular 
mechanism.

Results:  Our study revealed that TUG1 was up-regulated in DDP-resistant ESCC tissues and cells. High TUG1 expres-
sion was correlated with poor prognosis of ESCC patients. TUG1 knockdown improved the sensitivity of ECA109/
DDP and EC9706/DDP cells to DDP. Moreover, TUG1 could epigenetically suppress PDCD4 expression via recruit-
ing enhancer of zeste homolog 2. PDCD4 overexpression could mimic the functional role of down-regulated TUG1 
in DDP resistance. PDCD4 knockdown counteracted the inductive effect of TUG1 inhibition on DDP sensitivity of 
ECA109/DDP and EC9706/DDP cells. Furthermore, TUG1 knockdown facilitated DDP sensitivity of DDP-resistant ESCC 
cells in vivo.

Conclusion:  TUG1 knockdown overcame DDP resistance of ESCC by epigenetically silencing PDCD4, providing a 
novel therapeutic target for ESCC.

Keywords:  Esophageal squamous cell carcinoma, Cisplatin, Taurine upregulated gene 1, Enhancer of zeste homolog 
2, PDCD4
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Background
Esophageal squamous cell carcinoma (ESCC) is one 
of the most frequent gastrointestinal malignancies in 
human, a sixth most common cause of cancer-related 
death worldwide [1, 2]. Despite the development of 
surgery combined with neoadjuvant radiation and/or 
chemotherapy, the majority of patients with ESCC were 
diagnosed frequently at the advanced stage and had poor 
prognosis [3, 4]. Chemoresistance frequently occurs 
during chemotherapy, which remains a major barrier to 

achieve successful treatment for ESCC [5, 6]. Therefore, 
it is urgent to elucidate the mechanism underlying chem-
oresistance in ESCC and develop novel therapeutic strat-
egies to improve ESCC prognosis.

Long noncoding RNAs (lncRNAs) represent a class of 
endogenous non-protein-coding RNAs longer than 200 
nucleotides [7]. Emerging evidence suggests the involve-
ment of lncRNAs in normal development as well as 
tumorigenesis [8]. Dysregulated lncRNAs could act as 
oncogenic molecules and tumor suppressors in malignant 
tumors, closely associated with tumorigenesis, metasta-
sis, diagnosis or prognosis [9]. Moreover, accumulating 
documents revealed that abnormal lncRNAs were related 
to chemotherapy resistance of cancers [10–12]. LncRNA 
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taurine-upregulated gene 1 (TUG1), located on chromo-
some 22q12.2, was originally identified as a transcript 
up-regulated by taurine [13]. Recently, increasing evi-
dence had suggested that aberrant TUG1 expression was 
associated with non-small cell lung cancer, hepatocellu-
lar carcinoma, and ESCC [14–16]. Although a previous 
study reported that high TUG1 expression was signifi-
cantly correlated with chemotherapy resistance in ESCC, 
the function and mechanism of TUG1 in cisplatin (DDP) 
resistance of ESCC remains uncertain.

In this study, we aimed to investigate the expression 
and functional role of TUG1 in ESCC DDP resistance as 
well as its underlying molecular mechanism. Our study 
found that TUG1 expression was increased in ESCC tis-
sues and cell lines, especially in DDP-resistant tissues 
and cells. Functionally, TUG1 knockdown improved the 
sensitivity of DDP-resistant ESCC cells to DDP. Mechani-
cally, TUG1 improved the sensitivity of ESCC cells to 
DDP through epigenetically suppressing PDCD4 expres-
sion through recruiting enhancer of zeste homolog 2 
(EZH2). Our study revealed a novel epigenetical regu-
latory mechanism between TUG1 and PDCD4 which 
could overcome DDP resistance in ESCC.

Methods
Sample collection and cell culture
The paired tumor tissues and adjacent normal tissues 
(n = 42) were collected from ESCC patients who under-
went surgery resection at the Shangqiu first People’s Hos-
pital. This study was approved by the Ethics Committee 
of Shangqiu first People’s Hospital and informed consents 
were signed by all patients. The normalized RNA-seq 
data of Esophageal Carcinoma (ESCA) were downloaded 
from the TCGA data portal website (https​://cance​rgeno​
me.nih.gov/).

Human immortalized esophageal epithelial cell line 
HET-1A and human ESCC cell lines (ECA109 and 
EC9706) were purchased from ATCC (Manassas, VA, 
USA). All cells were cultured in PRMI-1640 medium 
(Gibco, Rockville, MD, USA) supplemented with 10% 
FBS (Gibco) at 37  °C with 5% CO2. DDP-resistant vari-
ants (ECA109/DDP and EC9706/DDP) of ECA109 and 
EC9706 cells were established using a repetitive pulsatile 
treatment with constant concentrations of cisplatin [17]. 
The degree of chemotherapy resistance of DDP-resistant 
variants was evaluated before transfections.

Cell transfection
Empty pcDNA3.1 vector (Vector) was obtained from 
Genepharma (Shanghai, China). TUG1 or PDCD4 
overexpressing vector pcDNA3.1-TUG1 or pcDNA3.1-
PDCD4 (TUG1 or PDCD4), small interfering RNAs 
against TUG1 (si-TUG1 #1 or si-TUG1 #2) or PDCD4 

(si-PDCD4) and their scramble negative control (si-con) 
were chemically synthesized by Genepharma (Shanghai, 
China). All cell transfections were performed using the 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

Quantitative real‑time PCR (qRT‑PCR)
Total RNA was isolated from ESCC tissues and cells 
using Trizol reagent (Invitrogen) and then reversely tran-
scribed into cDNA using PrimeScript RT Reagent Kit 
(TaKaRa, Dalian, China). TUG1 and PDCD4 expression 
levels were detected by quantitative real-time PCR with 
SYBR Green Master Mix (TOYOBO, Osaka, Japan) using 
an Applied Biosystems 7500 Real-Time PCR Systems 
(Applied Biosystems, Foster City, CA, USA). The primes 
were as follows: TUG1 forward, 5′-TAG​CAG​TTC​CCC​
AAT​CCT​TG-3′, TUG1 reverse, 5′-CAC​AAA​TTC​CCA​
TCA​TTC​ CC-3′; PDCD4 forward, 5′-GGC​CTC​CAA​
GGA​GTA​AGA​CC-3′, PDCD4 reverse, 5′-AGG​GGT​CTA​
CAT​GGC​AAC​TG-3′. Data were analyzed using the com-
parative Ct method (2−ΔΔCt) with GAPDH as an internal 
control.

Drug sensitivity assay
The cell viability of ECA109/DDP and EC9706/DDP cells 
and their parental cells was measured by 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) 
(Sigma, St. Louis, Missouri, USA) assay. DDP sensitiv-
ity was determined using the IC50 value (half maximal 
inhibitory concentration).

Flow cytometric analysis
Cell apoptosis was evaluated using Annexin V-FITC/
PI Apoptosis Detection Kit (KeyGEN Biotech, Nanjing, 
China) as described previously [18]. Briefly, ECA109/
DDP and EC9706/DDP cells with different transfection 
were treated with 20 μM DDP for 48 h, followed by dou-
ble stained with Annexin V-FITC and PI under a dark 
condition. Cell apoptotic rates were evaluated by FACSan 
flow cytometry (BD Biosciences, San Jose, CA, USA).

Subcellular fraction assays
The separation of the nuclear and cytosolic fractions of 
ECA109 cells was performed using the PARIS Kit (Life 
Technologies, Carlsbad, CA, USA) following the manu-
facturer’s instructions.

RNA pull‑down assays
TUG1 and anti-sense-TUG1 was transcribed with Tran-
scriptAid T7 High Yield Transcription Kit (Thermo 
Fisher Scientific) and then labeled with Thermo Scientific 
Pierce RNA 3′ Desthiobiotinylation Kit (Thermo Fisher 
Scientific). Pierce Magnetic RNA-Protein Pull down Kit 
(Thermo Fisher Scientific) was used to perform RNA 
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pull down assay. Briefly, labeled RNAs were bound with 
Streptavidin Magnetic Beads and then incubated with 
ECA109/DDP cell protein lysates. Then the RNA-binding 
proteins were eluted for the further western blot analysis.

RNA immunoprecipitation (RIP) assays
RIP experiments were performed using Magna RIP™ 
RNA-Binding Protein Immunoprecipitation Kit (Mil-
lipore, Bedford, MA, USA) according to the manufac-
turer’s protocol. EZH2 and IgG antibodies were obtained 
from Cell Signaling Technology (Danvers, MA, USA). 
The co-precipitated RNAs were purified and analyzed by 
qRT-PCR analysis.

Chromatin immunoprecipitation (ChIP) assays
Chromatin immunoprecipitation assay was performed 
to confirm the interaction between TUG1 and PDCD4 
gene using EZ-ChIP kit (Millipore). The chromatins were 
immunoprecipitated with antibodies against EZH2 (Cell 
Signaling Technology), H3K27me3 (Millipore) or IgG 
(Millipore). Finally, the immunoprecipitated chromatin 
was purified and analyzed by qRT-PCR analysis. Prim-
ers for PDCD4 promoter region were 5′-GGT​CTG​GGA​
AGC​TCC​GAT​TT-3′ (forward) and 5′-GCA​GTT​GGT​
GGT​CAT​CCT​CA-3′ (reverse).

Luciferase reporter assay
PDCD4 promoter sequences were inserted into pGL3-
Basic luciferase plasmid (Promega, Madison, WI, 
USA) to generate PDCD4 promoter reporter vector. 
Then, PDCD4 promoter reporter was transfected into 
ECA109/DDP cells using Lipofectamine 2000 (Inv-
itrogen) along with phRL-TK vector (Promega) and 
(Vector or TUG1) or (si-con or si-TUG1). Luciferase 
Reporter assay system (Promega) was performed to 
detect luciferase activity in ECA109/DDP cells 48  h 
post-transfection.

Western blot analysis
Western blotting was performed according to our pre-
viously reported protocol [19]. The primary antibodies 
anti-EZH2, anti-PDCD4 and anti-GAPDH were obtained 
from Cell Signaling Technology (Danvers, MA, USA).

Animal experiments
The animal experiment was performed according to 
the national standard of the care and use of laboratory 
animals and got the approval of the Ethics Committee 
of Shangqiu first People’s Hospital. ECA109/DDP cells 
were infected with sh-TUG1 or sh-con lentivirus, fol-
lowed by the sieving using puromycin (Sigma-Aldrich, 
St. Louis, MO, USA) for nearly 7  days to construct 

stable lentivirus-transfected ECA109/DDP cell line. 
Then, ECA109/DDP cells (1.0 × 107) stably infected with 
sh-TUG1 or sh-con were subcutaneously injected into 
the tail veins of BALB/c-nude mice (4 weeks old) from 
the Shanghai Experimental Animal Center of the Chi-
nese Academy of Sciences (Shanghai, China). One week 
later, mice were intraperitoneally injected with 6  mg/
kg DDP or same volume of PBS every week according 
to indicated groups (n = 5 each group): sh-con + PBS, 
sh-TUG1 + PBS, sh-con  +  DDP, sh-TUG1 + DDP. The 
tumor sizes were measured every week. After 42  days, 
the mice were killed, and the tumor weights were 
detected. qRT-PCR and western blot assays were per-
formed to detect TUG1 expression and PDCD4 protein 
levels.

Statistical analysis
All data were presented as means ± standard deviation 
(SD). Student’s t-test and one-way ANOVA were used to 
calculate the statistic difference using SPSS 16.0 software 
(SPSS, Inc., Chicago, IL, USA). Differences were consid-
ered statistically significant when P value < 0.05.

Results
TUG1 was increased in DDP‑resistant ESCC tissues and cells
To explore the role of TUG1 in ESCC, we firstly detected 
the expression of TUG1 in ESCC tissues from TCGA 
databases. TUG1 expression was significantly elevated 
in ESCC tumor tissues compared with normal tissues 
(Fig.  1a). To confirm the result, we further investigated 
TUG1 expression in ESCC tumor tissues and adjacent 
normal tissues by qRT-PCR analysis. Consistently, TUG1 
was significantly up-regulated in ESCC tissues compared 
with adjacent normal tissues (Fig. 1b). Additionally, com-
pared with DDP-sensitive (n = 21) ESCC tissues, TUG1 
expression was strangely increased in DDP-resistant 
(n = 21) ESCC tissues (Fig.  1c). To further confirm the 
expression level of TUG1 in ESCC cells, qRT-PCR analy-
sis was performed in ESCC parental cell lines (ECA109 
and EC9706), DDP-resistant cell lines (ECA109/DDP and 
EC9706/DDP) and normal immortalized esophageal epi-
thelial cell line HET-1A. The results showed that expres-
sion of TUG1 was dramatically improved in ECA109 and 
EC9706 cells compared with HET-1A cells (Fig.  1d, e). 
Particularly, ECA109/DDP and EC9706/DDP cells exhib-
ited higher TUG1 level than their parental cells (Fig. 1d, 
e). Kaplan–Meier survival analysis revealed that patients 
with high TUG1 level (n = 21) had a low overall survival 
(P = 0.0079) compared with that with low TUG1 level 
(n = 21) (Fig.  1f ). All these data demonstrated that up-
regulation of TUG1 may be implicated with DDP resist-
ance in ESCC.
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TUG1 knockdown overcame DDP resistance of ESCC cells
To evaluate the DDP resistance of ECA109/DDP and 
EC9706/DDP cells, IC50 of DDP was determined by 
MTT assay in ECA109/DDP and EC9706/DDP cells 
and their parental cells. Compared with their parental 
cells, ECA109/DDP and EC9706/DDP cells presented 
poor response to DDP, as evidenced by the increased 
IC50 (Fig.  2a, b). To further investigate the role of 
TUG1 in DDP-resistant ESCC cells, TUG1 siRNAs (si-
TUG1 #1 or si-TUG1 #2) or si-con were transfected 
into ECA109/DDP and EC9706/DDP cells. qRT-PCR 
analysis discovered that TUG1 siRNAs demonstra-
bly weakened TUG1 expression in ECA109/DDP and 
EC9706/DDP cells (Fig.  2c, d). Remarkably, TUG1 
knockdown heightened the sensitivity of ECA109/DDP 
and EC9706/DDP cells to DDP (Fig.  2e, f ). To further 
determine the effect of TUG1 on DDP-induced apopto-
sis, flow cytometry analysis was carried out in ECA109/
DDP and EC9706/DDP cells exposed to 20  μM DDP. 
As expected, TUG1 exhaustion remarkably improved 
DDP-induced apoptosis in ECA109/DDP and EC9706/
DDP cells (Fig.  2g, h). Together, silencing of TUG1 
enhanced DDP sensitivity in ESCC cells.

TUG1 epigenetically suppressed PDCD4 expression in ESCC 
cells
Previous studies demonstrated that TUG1 could regu-
late gene expression by recruiting EZH2, leading to the 
increase of H3K27me3 level in promoter regions of target 
genes [20, 21]. Moreover, PDCD4 as a tumor suppressor 
was previously reported to be suppressed by PRC2 com-
plex via increasing the level of H3K27me3 at its promoter 
in glioma [22]. Hence, we further investigated whether 
TUG1 epigenetically suppressed PDCD4 in DDP-resist-
ant ESCC cells by recruiting EZH2. Firstly, Chipbase 
database (http://rna.sysu.edu.cn/chipb​ase/) was used to 
analyze the correlation between TUG1 and EZH2 in 195 
ESCC tissue samples from TCGA databases. The results 
showed that TUG1 expression was positively associated 
with EZH2 level in ESCC tissue samples (Fig. 3a). qRT-
PCR analysis revealed that TUG1 was mainly located in 
nucleus of ECA109/DDP cells (Fig.  3b), suggesting that 
TUG1 may exert its regulatory role at the transcriptional 
level. Western blot analysis showed that TUG1 knock-
down significantly raised PDCD4 expression in ECA109/
DDP cells (Fig. 3c). Moreover, si-EZH2 transfection sup-
pressed EZH2 and up-regulated PDCD4 expression in 
ECA109/DDP cells (Fig. 3d). To confirm whether TUG1 

Fig. 1  TUG1 was up-regulated in DDP-resistant ESCC tissues and cell lines. qRT-PCR analysis indicated the TUG1 expression levels in ESCC tumor 
or normal tissues from TCGA dataset (a), ESCC tumor or adjacent normal tissues (n = 42) (b), DDP-sensitive or DDP-resistant ESCC tissues (c), and 
DDP-resistant ESCC cell lines (ECA109/DDP and EC9706/DDP) and their parental cells (ECA109 and EC9706) or normal immortalized esophageal 
epithelial cell line HET-1A (d, e). f The overall survival was evaluated by Kaplan–Meier curve between low and high TUG1 expression groups. 
*P < 0.05

http://rna.sysu.edu.cn/chipbase/
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Fig. 2  TUG1 knockdown overcame DDP resistance of ESCC cells. a, b The cell viability was determined by MTT assay in ECA109/DDP and EC9706/
DDP cells and their parental cells exposed to different concentrations of DDP (0.1, 1, 5, 10, 20, 40, 80, 160 μM) for 48 h. c, d qRT-PCR analysis was 
performed in ECA109/DDP and EC9706/DDP cells transfected with TUG1 siRNAs (si-TUG1 #1 or si-TUG1 #2) or si-con. e, f ECA109/DDP and EC9706/
DDP cells transfected with siRNAs (si-TUG1 #1 or si-TUG1 #2) or si-con were treated with various concentrations of DDP (0.1, 1, 5, 10, 20, 40, 80, 
160 μM) for 48 h and cell viability was evaluated by MTT assay. g, h Cell apoptosis was determined by flow cytometry analysis in siRNAs (si-TUG1 #1 
or si-TUG1 #2) or si-con transfected ECA109/DDP and EC9706/DDP cells after treatment with 20 μM of DDP. *P < 0.05
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directly bound to EZH2 in ECA109/DDP cells, RNA 
pull-down and RIP assays were performed in ECA109/
DDP cells. As expected, TUG1 could pull down EZH2 
protein (Fig.  3e) and TUG1 was noticeably enriched by 

EZH2 antibody (Fig.  3f ). All these data demonstrated 
that TUG1 could directly interact with EZH2 in ESCC 
cells. To further confirm whether TUG1 transcription-
ally repressed PDCD4 expression through enrichment 

Fig. 3  TUG1 epigenetically silenced PDCD4 expression by recruiting EZH2 in ESCC cells. a Pearson correlation analysis between TUG1 and EZH2 in 
195 tumor tissue samples of ESCC from TCGA. b TUG1 subcellular location was explored in EC9706/DDP cells. GAPDH acted as a cytoplasm control 
and U6 used as a nucleus control. c PDCD4 protein levels in ECA109/DDP cells transfected with si-con or si-TUG1. d EZH2 and PDCD4 protein levels 
in ECA109/DDP cells transfected with si-con or si-EZH2. e RNA pull-down assay indicated the binding of TUG1 with EZH2. f RIP assay was performed 
in ECA109/DDP cells and the co-precipitated RNA was subjected to qRT-PCR for TUG1. g qRT-PCR analysis following ChIP was performed to evaluate 
the enrichment of EZH2 and H3K27me3 on the PDCD4 promoter in ECA109/DDP cells. h Luciferase reporter assay was performed to evaluate the 
activity of the PDCD4 promoter in ECA109/DDP cells transfected with (si-con or si-TUG1) or (Vector or PDCD4). i The correlation analysis between 
TUG1 and PDCD4 expression in ESCC tumor specimen. *P < 0.05
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of EZH2 and H3K27me3 on the PDCD4 promoter, ChIP 
assays were performed in ECA109/DDP cells. The results 
revealed that TUG1 knockdown dramatically decreased 
EZH2 recruitment and H3K27me3 levels on the PDCD4 
promoter in ECA109/DDP cells (Fig. 3g). The transcrip-
tion suppressive effect of TUG1 was further verified by 
luciferase reporter assay. As expected, TUG1 knockdown 
could enhance the activity of PDCD4 promoter, oppo-
sitely, TUG1 overexpression led to reduction of the pro-
moter activity (Fig.  3h). Moreover, PDCD4 expression 
was positively correlated with TUG1 expression (Fig. 3i) 
in ESCC tumor specimens. All these data suggested that 
TUG1 epigenetically suppressed PDCD4 expression by 
recruiting EZH2 to the promoter region of PDCD4 and 
increasing H3K27me3 level in ESCC cells.

PDCD4 overexpression enhanced DDP sensitivity of ESCC 
cells
To further investigate the role of PDCD4 in DDP-resist-
ant ESCC cells, PDCD4 overexpressing vector (PDCD4) 
or empty vector (Vector) was transfected into ECA109/
DDP and EC9706/DDP cells. qRT-PCR and western 
blot analyses indicated that PDCD4 mRNA and pro-
tein expression levels were dramatically increased in 
PDCD4 transfected ECA109/DDP and EC9706/DDP 
cells (Fig.  4a, b). Moreover, PDCD4 overexpression 
improved the DDP sensitivity (Fig.  4c, d) and inhibited 
cell proliferation capacity (Additional file 1: Figure S1A, 
B) of ECA109/DDP and EC9706/DDP cells. To further 
determine the effect of PDCD4 on DDP-induced apop-
tosis, flow cytometry analysis was performed in ECA109/
DDP and EC9706/DDP cells treatment with 20 μM DDP. 
As expected, PDCD4 overexpression extremely boosted 
DDP-induced apoptosis in ECA109/DDP and EC9706/
DDP cells (Fig.  4e, f ). Moreover, PDCD4 overexpres-
sion could also promote apoptosis of ECA109/DDP and 
EC9706/DDP cells (Additional file  1: Figure S1C, D). 
Together, up-regulation of PDCD4 improved DDP sensi-
tivity in ESCC cells.

TUG1 knockdown facilitated DDP sensitivity of ESCC cells 
through increasing PDCD4 expression
To further study whether TUG1 exerted its functional 
role in DDP resistance of ESCC cells through regulating 
PDCD4 expression, ECA109/DDP and EC9706/DDP cells 
were transfected with si-con, si-TUG1 or si-TUG1 + si-
PDCD4. qRT-PCR analysis revealed that TUG1 inhibi-
tion increased PDCD4 expression in ECA109/DDP and 
EC9706/DDP cells, which was particularly reversed by 
PDCD4 knockdown (Fig. 5a, b). MTT assay revealed that 
down-regulation of TUG1 improved DDP sensitivity of 
ECA109/DDP and EC9706/DDP cells, nevertheless, the 
inductive effect of TUG1 inhibition on DDP sensitivity 

was strikingly eliminated by PDCD4 silencing (Fig.  5c, 
d). Furthermore, introduction of si-PDCD4 particu-
larly demolished the inductive effect of down-regulated 
TUG1 on apoptosis in ECA109/DDP and EC9706/DDP 
cells (Fig. 5e, f ). Collectively, these results confirmed that 
TUG1 knockdown facilitated DDP sensitivity of ESCC 
cells through elevating PDCD4 expression.

TUG1 knockdown enhanced DDP sensitivity in tumors 
in vivo
To further confirm the functional role of TUG1 in DDP 
resistance in  vivo, ECA109/DDP cells infected with sh-
con or sh-TUG1 were subcutaneously injected into the 
nude mice to generate xenograft, followed by treatment 
with DDP or PBS. The data revealed that TUG1 knock-
down or DDP treatment significantly suppressed tumor 
growth, evidenced by the diminished tumor volume 
(Fig.  6a) and tumor weight (Fig.  6b). Moreover, TUG1 
knockdown combined with DDP treatment led to a more 
distinct reduction on tumor growth, suggesting down-
regulation of TUG1 enhanced the DDP sensitivity of 
ESCC cells in  vivo (Fig.  6a, b). Additionally, qRT-PCR 
assay revealed that TUG1 mRNA levels were lowered, 
while PDCD4 expression was elevated in tumors after 
sh-TUG1 introduction or DDP treatment (Fig. 6c), espe-
cially after combination of sh-TUG1 introduction and 
DDP treatment. Western blot analysis revealed that 
TUG1 knockdown or DDP exposure pointedly increased 
PDCD4 protein level in tumor tissues (Fig. 6d). The com-
bination of TUG1 knockdown and DDP exposure led to 
much higher PDCD4 protein expression (Fig.  6d). All 
these data proved that TUG1 knockdown improved DDP 
sensitivity of ESCC cells in vivo.

Discussion
Acquiring chemoresistance have restricted treatment 
outcome for ESCC patients in the clinic. Hence, it is 
essential to investigate the molecular mechanism under-
lying chemoresistance and identify novel targets for 
chemoresistance therapy. In this study, we found that the 
expression level of TUG1 was significantly elevated in 
DDP-resistant ESCC tissues and cells. Moreover, TUG1 
knockdown re-sensitized ECA109/DDP and EC9706/
DDP cells to DDP by promoting DDP-induced apopto-
sis. More importantly, TUG1 conferred DPP resistance to 
ESCC cells via epigenetically silencing PDCD4 via EZH2. 
Therefore, TUG1 may be a promising therapeutic target 
for DDP resistance in ESCC.

Elucidating the molecular mechanism underlying 
chemoresistance could contribute to develop reasonable 
and effective therapies to overcome chemoresistance. 
Our results demonstrated that TUG1 expression level 
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was elevated in DDP-resistant ESCC tissues and cells, 
and down-regulation of TUG1 re-sensitized ECA109/
DDP and EC9706/DDP cells to DDP. Apart from our 
findings, dysregulated TUG1 has been reported to be 
implicated with chemoresistance in other cancers. For 
example, TUG1 was overexpressed in small cell lung 
cancer, and TUG1 down-regulation sensitized lung can-
cer cells to chemotherapeutic drugs (DDP, Adriamycin 
and Etoposide) by epigenetically suppressing LIM-kinase 
2b (LIMK2b) expression through EZH2 [21]. Moreo-
ver, TUG1 knockdown re-sensitized MTX-resistant 

colorectal cell lines to MTX through acting as a competi-
tive endogenous RNA (ceRNA) to sponge miR-186 and 
release the miRNA target CPEB2 [23]. On the contrary, 
TUG1 expression was down-regulated in triple negative 
breast cancer, and overexpression of TUG1 enhance DDP 
sensitivity in MDA-MB-231 and BT549 cells by spong-
ing miR-197 [24]. All these findings suggested that the 
TUG1 could be used as a promising therapeutic target 
for chemoresistance in cancers.

The precise mechanism by which TUG1 up-regu-
lation contributed to DDP resistance in ESCC was 

Fig. 4  PDCD4 overexpression improved DDP sensitivity of ESCC cells. ECA109/DDP and EC9706/DDP cells were transfected with Vector or PDCD4, 
followed by determination of PDCD4 expression by qRT-PCR and western blot analyses (a, b), IC50 of DDP by MTT assay (c, d), and cell apoptosis by 
flow cytometry analysis (e, f). *P < 0.05
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unclear. Hence, the functional mechanism of TUG1 was 
further investigated in the present study. Previous stud-
ies found that about 20% of lncRNAs can bind to poly-
comb repressive complex 2 (PRC2), which subsequently 
induced the silence of targeted genes through harbor-
ing methyltransferase activity [25]. Moreover, TUG1 
has been proved to regulate genes expression by binding 
with EZH2 in human non-small cell lung cancer, gastric 
cancer and hepatocellular carcinoma [14, 26, 27]. EZH2, 
a vital catalytic subunit of PRC2, is a histone methyl-
transferase that epigenetically represses gene expres-
sion by promoting histone H3 lysine 27 trimethylation 
(H3 K27me3) [28, 29]. PDCD4, a tumor suppressor, was 
recently demonstrated to be negatively regulated by 
CASC15, via recruiting EZH2 and subsequently chang-
ing H3  K27me3 level in melanoma [30]. Therefore, we 
further investigated whether TUG1 could regulate 
PDCD4 expression by recruiting EZH2. Our western 
blot assays indicated that TUG1 or EZH2 knockdown 
elevated PDCD4 protein levels. Moreover, RNA pull-
down and RIP assays further validated that TUG1 could 
bind to EZH2. ChIP and luciferase reporter assays fur-
ther proved that TUG1 knockdown enhanced the pro-
moter activity of PDCD4 by attenuating the recruiting 

of EZH2 on PDCD4 promoter region. These data dem-
onstrated that TUG1 epigenetically silencing PDCD4 
via recruiting EZH2 in ECA109/DDP cells. PDCD4 
has been identified as a tumor suppressor in multiple 
cancers [31, 32]. Moreover, PDCD4 could improve the 
sensitivity of cancer cells to chemotherapy drugs such 
as docetaxel and cisplatin [33, 34]. Particularly, over-
expression of PDCD4 induced apoptosis and enhanced 
chemosensitivity to cisplatin in ESCC [35]. Consist-
ently, our data also revealed that PDCD4 overexpres-
sion could overcome DDP resistance in ECA109/DDP 
and EC9706/DDP cells. Furthermore, PDCD4 inhibi-
tion reversed the inductive effect of TUG1 knockdown 
on the sensitivity of ECA109/DDP and EC9706/DDP to 
DDP. All these data demonstrated that TUG1 inhibition 
sensitized DDP-resistant ESCC cells to DDP through 
epigenetically silencing PDCD4 in ESCC.

Conclusions
In conclusion, our study demonstrated that TUG1 
knockdown enhanced DDP sensitivity of ESCC cells. 
Importantly, the enhancive effect of TUG1 inhibi-
tion on DDP sensitivity might be mediated by PDCD4 
through an epigenetic mechanism in ESCC cells, 

Fig. 5  PDCD4 knockdown reversed the enhancive effect of down-regulated TUG1 on DDP sensitivity of ESCC cells. ECA109/DDP and EC9706/DDP 
cells were transfected with si-con, si-TUG1 or si-TUG1 + PDCD4, followed by determination of PDCD4 expression by qRT-PCR analysis (a, b), IC50 of 
DDP by MTT assay (c, d), and cell apoptosis by flow cytometry analysis (e, f). *P < 0.05
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providing a promising therapeutic strategy to overcome 
DDP resistance in ESCC.

Additional file

Additional file 1: Figure S1. PDCD4 overexpression suppressed prolifera-
tion and induced apoptosis of ESCC cells. ECA109/DDP and EC9706/DDP 
cells were transfected with Vector or PDCD4, followed by determination 
of cell proliferation by MTT assay (A and B), and cell apoptosis by flow 
cytometry analysis (C and D). *P < 0.05.
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