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Abstract

Background: Joubert syndrome is a genetically heterogeneous autosomal recessive ciliopathy characterized by the
combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles
and a deep interpeduncular fossa, known as “molar tooth sign” associated with hypotonia, respiratory control
disturbances and abnormal eye movements. To date, pathogenic variants in over 35 genes are known to cause
autosomal recessive Joubert Syndrome, while one gene is associated with X-linked recessive inheritance.

Case presentation: We describe here a non-consanguineous Vietnamese family with Joubert syndrome, a fetus
and 10-year-old developmentally delayed boy. Ultrasonography showed ventriculomegaly at 26 + 6 weeks of gestation
in the fetus. The 10-year-old-boy was diagnosed with cerebral palsy of unknown origin. Clinical physical examination at
the age of 10, he showed clinical features of Joubert syndrome including typical facial dysmorphism, ataxia, severe
psychomotor delay, oculomotor apraxia and molar tooth sign on brain MRI. Whole exome sequencing analysis
identified a novel compound heterozygous c.725A > G p.Asn242Ser and c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant
in the proband and the affected fetus. These two variants were inherited from each parent and confirmed by Sanger
sequencing. The variant c.725A > G p.Asn242Ser was previously documented in patients with JS, the novel splice-site
c.313-3 T > G p.Lys105Valfs*16 TMEM67 variant produced an aberrant transcript with the loss of four nucleotides of
exon 03.

Conclusion: This study confirms the diagnosis of Joubert syndrome in a Vietnamese family and expands the
mutational spectrum of TMEM67 sequence variations. We also highlight the importance of molecular approaches to
unravel underlying mechanisms of human genetic disorders. Early precise diagnosis could help provide further
accurate genetic counseling for recurrence-risk assessment, future diagnostic option, management as well as treatment
guidance for rare disorders.
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Background
Joubert syndrome (JS, MIM 213300) is an autosomal re-
cessive ciliopathy characterized by specific midbrain-
hindbrain malformations, recognizable on axial brain
magnetic resonance imaging, known as the “Molar
Tooth Sign”, hypotonia and developmental delays. Cilio-
pathies are a group of genetic disorders that are caused

by abnormal formation or function of cellular primary
cilia in many organs of the human body. To date, over 35
genes are known to cause autosomal recessive JS and one
gene causes X-linked JS. Typical clinical features of JS in-
clude neonatal hypotonia, abnormal breathing patterns
and eye movements, ataxia and developmental delays.
Additionally, patients with JS also exhibit variable associ-
ated clinical features including retinal dystrophy, ocular
colobomas, congenital heart disease, microcystic kidney
disease, liver fibrosis, polydactyly, cleft clip and palate [1].
TMEM67 (MIM *609884) encodes the Frizzled-like Wnt
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receptor, a transmembrane protein (meckelin) that regu-
lates canonical Wnt/β-catenin signaling pathway in the de-
veloping cerebellum. Tmem67−/− mutant mice display
cerebellar vermis hypoplasia/aplasia, deep interpeduncular
fossa and posterior fossa defects compatible with JS pheno-
type [2]. Biallelic TMEM67 sequence variations cause a
wide range of clinical features observed in ciliopathies with
multiorgan involvement and different clinical outcomes in-
cluding JS (MIM 610688), Meckel-Gruber syndrome (MIM
607361), COACH syndrome (Cerebellar vermis hypoplasia,
Oligophrenia, Ataxia, Coloboma and Hepatic fibrosis)
(MIM 216360), RHYNS syndrome (Retinitis pigmentosa,
Hypopituitarism, Nephronophthisis, Skeletal dysplasia),
polycystic kidney disease, nephronophthisis-associated cilio-
pathy (MIM 613550) [3–7] (Table 1). Moreover, TMEM67-
mutated patients with JS are also at increased risk for liver
disease development complicated by probable portal hyper-
tension in the second or third decades of life. The most
relevant genotype-phenotype correlation has been estab-
lished between TMEM67 sequence variations and the sub-
types of JS with liver disease [29]. We here describe the
clinical characteristics and mutational analysis of the first
Vietnamese family presenting clinical features of JS. Whole
exome sequencing identified a novel compound heterozy-
gous TMEM67 variant. This study expands the mutational
spectrum of TMEM67 in JS as well as underscores the im-
portance of molecular diagnosis and genetic counseling in
patients initially diagnosed with cerebral palsy in Viet Nam.

Case presentation
This 38 year-old female first came to our clinic because
of family history of developmental delay. The fetus (II:2)
was the second child of a non-consanguineous Vietnam-
ese healthy couple, mid-trimester prenatal ultrasound at
26 + 6 weeks of gestation showed an abnormal enlarged
fourth ventricle with abnormalities of the ventricle floor
(Fig. 1a). Moreover, renal hypoplasia and polycystic kid-
ney were also noticed. She already had a first child (II:1)
with developmental delay. This 10-year-old-boy was
born at term after an uneventful pregnancy. His birth
weight, height and head circumference were respectively
3400 g (50-90th centile), 53 cm (90th percentile), 34 cm
(50th centile). Hypotonia and abnormal breathing pat-
tern were noted at birth. He was diagnosed with cerebral
palsy of unknown origin at 2 years old. Neither genetic
counseling nor molecular genetic testing was provided.
According to the clinical evaluation conducted at the
age of 10, his weight, height and head circumference
were respectively 23 kg (5th), 129 cm (5-10th) and 52 cm
(10th–25th). The proband had severe psychomotor and
language delay, began to walk at the age of 72 months
and spoke the first word at the age of 60 months. Clin-
ical physical evaluation showed a prominent forehead
with bitemporal narrowing, high arched eyebrows,

bilateral ptosis, hypertelorism, lower lip eversion, mild
clinodactyly of the fifth finger and tapered fingers
(Fig. 1b). The patient also displayed ataxic gait and
oculomotor apraxia. He had mild intellectual disability.
Family history was unremarkable. His MRI showed a
pathognomonic finding of molar tooth sign (Fig. 1c).
The couple was concerned about their pregnancy, and
thus requested genetic counseling regarding her second
pregnancy.

Genetic analysis
Conventional cytogenetics and array-CGH
Blood lymphocytes were cultured in RPMI 1640 supple-
mental with PHA (Gibco, USA) and chromosomes meta-
phases were harvested according to the laboratory
standard protocol. Conventional cytogenetics showed a
normal male karyotype 46,XY. 180 K array-CGH (Agi-
lent Technologies, Santa Clara, USA) with a median
probe spacing of 13 kb was carried out according to the
manufacturer’s instructions and required at least three
consecutive probes to make a call. Array-CGH analysis
identified no chromosomal imbalances arr(1–22)×2,(X,
Y)×1.

Whole exome sequencing
In order to find causative gene variants, we performed
whole exome sequencing in the proband (II:1). Genomic
DNA was extracted from whole blood from the family
using standard methods (QIAGEN, Germany). Five hun-
dred ng DNA was fragmented with a Biorupter (Diage-
node, Seraing, Belgium) and the fragmented DNA quality
was checked on a bioanalyser MultiNA (Shimadzu
Corporation, Kyoto, Japan). Libraries were performed
using the Ultra DNA library preparation kit (NewEngland,
Biolabs, UK), exome enrichment was performed using
TruSeq Exome Library Prep Kit (Illumina, USA) and
IDT’s xGen® Exome Research Panel (Integrated DNA
Technologies, USA). Finally, sequencing was done on an
Illumina HiSeq® 2500. The exome was covered to a mean
depth of 100, data with >10X mean coverage accounted
for 95% of the whole data. Variants were validated by
Sanger DNA sequencing using the ABI BigDye Termin-
ator v3.1 Cycle Sequencing kit and the ABI PRISM 3130xl
genetic analyzer (Applied Biosystems, CA, USA). Se-
quence alterations were reported according to Human
Genome Variation Society guidelines (HGVS) and
mapped to Human Genome Build GRCh37/UCSC hg19.
Whole exome sequencing showed novel compound het-
erozygous c.725A >G p.Asn242Ser and c.313-3 T > G
p.Lys105Valfs*16 TMEM67 variants in the proband (II:1)
(Fig. 2a). No other potentially pathogenic variants in other
genes associated with developmental delay were identified.
These two variants were interpreted as likely pathogenic
according to standards and guidelines from the American
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Table 1 TMEM67 sequence variations associated with a wide phenotype spectrum previously reported in the medical literature

TMEM67 sequence variations (NM_153704) Disease(s) Reference(s)

c.DNA nomenclature Protein change Exon

c.41G > A p.Trp14* E1 JS [8]

c.175G > C p.Ala59Pro E2 CK and DPM* [6]

c.245C > G p.Pro82Arg E2 JS [4, 9]

c.270 T > G p.Asn90Lys E2 JS [10]

c.274G > A p.Gly92Arg E2 MKS [11]

c.297G > T p.Lys99Asn E2 JS, COACH [4, 9]

c.300C > A p.Cys100* E2 JS, COACH [4, 10]

c.329A > G p.Asp110Gly E3 JS [12, 13]

c.370G > A p.Glu124Lys E3 JS [10]

c.383_384delAC p.His128fs*140 E3 MKS [11]

c.387 T > A p.Cys129* E3 MKS [10]

c.389C > G p.Pro130Arg E3 COACH [4]

c.395G > C p.Gly132Ala E3 JS, COACH [12, 14]

c.434 T > G p.Leu145Trp E4 COACH [15]

c.442G > T p.Ala184Ser E4 JS [12]

c.475 T > C p.Ser159Pro E4 JS [12]

c.515G > A p.Arg172Gln E5 COACH [4]

c.517 T > C p.Cys173Arg E5 JS [16]

c.579delA p.Gly195Aspfs*27 E6 MKS [10]

c.579_580delAG p.Gly195Ilefs*13 E6 JS [9, 17]

c.622A > T p.Arg208* E6 RHYNS, MKS, JS, NPHP, ICHF, COACH [4, 5, 7–9, 18–20]

c.641A > G p.Tyr214Cys E6 ICHF [18]

c.647delA p.Glu216fs*221 E6 MKS [11]

c.675G > A p.Trp225* E8 COACH, MKS [4, 10]

c.722C > G p.Ala241Gly E8 JS [12]

c.725A > G p.Asn242Ser E8 JS, COACH [4, 21, 22]

c.730A > G p.Thr244Ala E8 JS [1]

c.748G > A p.Gly250Arg E8 JS [9]

c.755 T > C p.Met252Thr E8 JS, MKS, NPHP [4, 7, 9, 10, 20]

c.769A > G p.Met257Val E8 JS, COACH [4, 9, 10]

c.797A > C p.Asp266Ala E8 JS [8]

c.869G > T p.Trp290Leu E8 NPHP [23]

c.903C > G p.Asp301Glu E9 JS [10]

c.934 T > C p.Ser312Pro E9 JS [16]

c.950C > G p.Thr317Arg E9 JS [9, 17]

c.986A > C p.Lys329Thr E10 NPHP [7]

c.1027 T > G p.Phe343Val E10 CK and DPM* [6]

c.1045 T > C p.Leu349Ser E10 NPHP [7]

c.1046 T > C p.Leu349Ser E10 COACH, MKS [4, 10, 20]

c.1063C > T p.Gln355* E10 CK and DPM* [6]

c.1073 T > C p.Pro358Leu E11 JS, COACH [4, 10]

c.1077_1078del p.Thr360Argfs*18 E11 JS [10]

c.1081G > T p.Glu361* E11 JS, COACH [4, 9]
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Table 1 TMEM67 sequence variations associated with a wide phenotype spectrum previously reported in the medical literature
(Continued)

TMEM67 sequence variations (NM_153704) Disease(s) Reference(s)

c.DNA nomenclature Protein change Exon

c.1115C > A p.Thr372Lys E11 JS, COACH [4, 8, 10]

c.1126C > G p.Gln376Glu E11 JS, COACH [4, 9]

c.1127A > C p.Gln376Pro E11 MKS [11]

c.1285C > T p.Gln429* E12 JS [10]

c.1289A > G p.Asp430Gly E13 RHYNS, NPHP [5, 19]

c.1319G > A p.Arg440Gln E13 MKS [10, 20]

c.1321C > T p.Arg441Cys E13 COACH [4]

c.1322G > T p.Arg441Leu E13 MKS [10]

c.1336G > C p.Asp446His E13 MKS [20]

c.1351C > T p.Arg451* E13 JS, NPHP, COACH [4, 7, 9]

c.1387C > T p.Arg463* E13 NPHP [7]

c.1392C > T p.Arg441Cys E13 MKS [11]

c.1438A > G p.Tyr513Cys E15 COACH [4]

c.1453C > T p.Pro458Ser E15 COACH [4]

c.1536_1537del p.Tyr513* E15 JS [12]

c.1538A > G p.Tyr513Cys E15 JS, COACH [4, 9, 10, 24]

c.1538_1539delAT p.Tyr513* E15 MKS [10]

c.1634G > A p.Gly545Glu E16 JS [24]

c.1645C > T p.Arg549Cys E16 MKS [11, 25]

c.1706G > A p.Gly569Asp E17 JS [10]

c.1715C > T p.Ala572Val E17 CK and DPM* [6]

c.1769 T > C p.Phe590Ser E17 JS [10]

c.1675-?_2241 +?del p.T559_Q747del E17_E21 MKS [20]

c.1843 T > C p.Cys615Arg E18 JS, COACH, NPHP, MKS [4, 7, 9, 23, 26]

c.1847C > T p.Ala616Val E18 JS [10]

c.1975 T > C p.Ser659Pro E20 JS, COACH [4]

c.2002 T > C p.Trp668Arg E20 MKS [10]

c.2018 T > C p.Val673Ala E20 NPHP [7]

c.2086C > T p.Leu696Phe E20 JS [1]

c.2290C > T p.Arg764* E22 JS [12]

c.2301delT p.Asp768Ilefs*5 E23 MKS [10]

c.2311 T > C p.Ser771Pro E23 JS [12]

c.2345A > G p.His782Arg E23 JS [27]

c.2357G > A p.Gly786Glu E23 MKS [10]

c.2368C > A p.His790Asn E23 JS [1]

c.2413C > T p.Arg805* E23 JS, COACH [4]

c.2439G > A p.Ala813Ala E23 MKS [20]

c.2461G > A p.Gly821Ser E24 NPHP [23]

c.2497 T > C p.Ile833Thr E24 COACH [4]

c. 2498 T > C p.Ile833Thr E24 JS, COACH, NPHP [4, 7–10, 19]

c.2522A > C p.Gln841Pro E24 JS, COACH [4, 9, 12, 28]

c.2528A > G p.Tyr843Cys E24 MKS [10]
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Table 1 TMEM67 sequence variations associated with a wide phenotype spectrum previously reported in the medical literature
(Continued)

TMEM67 sequence variations (NM_153704) Disease(s) Reference(s)

c.DNA nomenclature Protein change Exon

c.2542G > T p.Glu848* E24 MKS [10]

c.2557A > T p.Lys853* E25 MKS [20]

c.2561dupA p.Asn854Lysfs*5 E25 MKS [10]

c.2689_2690insTA p.Leu897Ilefs*64 E26 MKS [10]

c.2758delT p.Tyr920Thrfs*40 E26 JS, COACH [14, 21, 22]

c.2801G > A p.Gly934Glu E27 JS [1]

c.2802delA p.Gly934Glyfs*26 E27 JS, COACH [4, 9]

c.2825 T > G p.Phe942Cys E27 COACH [4]

c.2879C > T p.Ala960Val E27 JS [9]

c.2891C > T p.Thr964Ile E27 NPHP [7]

c.3145C > T p.Arg1049* E28 COACH [4]

c.3347C > T p.Thr1116Met E28 COACH [4]

Abbreviation: JS Joubert syndrome, MKS Meckel-Gruber syndrome, COACH cerebellar vermis hypoplasia, Oligophrenia, Ataxia, Coloboma, Hepatic fibrosis, RHYNS
Retinitis Pigmentosa, Hypopituitarism, Nephronophthisis, Skeletal dysplasia, CK and DPM Cystic kidneys and ductal plate malformations (*distinct prenatal form of
nephronophthisis), NPHP Nephronophthisis, ICHF Isolated congenital hepatic fibrosis

Fig. 1 a Ultrasound at 26 + 6 weeks of gestation showing an abnormal enlarged fourth ventricle (red asterisk) and the ventricle floor is abnormal.
b Photographs of the face (left image) and right profile (middle image) showing typical facial features of Joubert syndrome including prominent
forehead, high arched eyebrows, bilateral ptosis, hypertelorism, lower lip eversion (left and middle image), mild clinodactyly of the fifth finger and
tapered fingers (right image). c Axial MRI through the cerebellum and brain stem showing cerebellar vermis hypoplasia, thick and elongated
superior cerebellar peduncles (red arrows, left image) and absence of the cerebellar vermis, deep interpeduncular fossa and the fourth ventricle
has a bat-wing configuration (red arrows, right image)
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College of Medical Genetics and Genomics. The variant
c.725A >G has a MAF < 0.01 (PM2: Extremely low fre-
quency). It was previously reported in patients with JS
(PM3: For recessive disorders, detected in trans with a
pathogenic variant and PP1:Co-segregation with disease in
multiple affected family members) and predicted to be
deleterious by in silico prediction (PP3: Multiple lines of
computational evidence support a deleterious effect on
the gene or gene product). The novel splice-site variant
has never been documented (PM2: Absent from controls)
and produces an aberrant splicing transcript (PVS1: Null
variant). Sanger sequencing confirmed that the variant
c.725A>G p.Asn242Ser was paternally inherited and the
splice-site variant c.313-3T>G p.Lys105Valfs*16 was of
maternal origin (Fig. 2b, c). Prenatal diagnosis was
performed on genomic DNA extracted from amniocytes
and Sanger sequencing identified the same compound

heterozygous variant c.725A>G p.Asn242Ser and c.313-
3T>G p.Lys105Valfs*16 in the fetus (II:2).

Reverse transcriptase PCR for alternative splicing study
(RT-PCR)
Total RNA from blood sample was extracted using Qia-
gen RNeasy blood mini kit according to the manufac-
turer’s instruction (Qiagen, Germany). One microgram
of RNA was used for Reverse-Transcriptase PCR (RT-
PCR) (Quantabio, USA). RT-PCR was performed with
primers spanning exons 1 and 5. PCR products were
separated on agarose gel 2% and sequenced using the
ABI BigDye Terminator v.3.1 Cycle Sequencing kit and
the ABIPRISM 3500 XL genetic analyzer (Applied Bio-
systems, CA, USA). Splicing study demonstrated that the
novel splice-site variant produced an aberrant transcript
with the loss of four nucleotides of exon 03 (Fig. 2d).

Fig. 2 a Familial pedigree with Joubert syndrome shows a novel compound heterozygous TMEM67 variant in the case-index and the fetus while
the parents were heterozygous. b, c Sang sequencing showing the proband and his father were heterozygous for TMEM67 c.725A > G
p.Asn242Ser variant. Moreover, the proband and his mother were heterozygous for a novel TMEM67 splice-site variant c.313-3 T > G
p.Leu105Valfs*16. d Reverse transcriptase PCR showing alternative splicing effect with the deletion of 4 bps in exon 03 in the mRNA resulting in
an aberrant transcript with premature codon stop. The last nucleotide in exon 2 is yellow highlighted
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Discussion and conclusion
In the era of clinical genomics in Viet Nam, clinical gen-
etics testing is still relatively new and clinicians have
very little knowledge about current approaches to gen-
etic disorders. Many developmentally delayed children
suffering from genetic disorders were diagnosed with
cerebral palsy and they have not benefited from a mod-
ern multi-disciplinary care model. We report a Vietnam-
ese family including a 10-year-old child diagnosed with
cerebral palsy without etiologic diagnosis and a fetus
with central nervous system malformations. Physical
examination of the age of the 10-year old showed typical
clinical features of JS and an MRI showing the pathog-
nomonic finding of a molar tooth sign, which confirms
the JS diagnosis. Whole exome sequencing identified
compound heterozygous TMEM67 variants in the pro-
band (II:1). The variant c.725A > G p.Asn242Ser was
previously documented in patients with JS and predicted
to be pathogenic by SIFT, Polyphen-2 and Mutation
Taster [21]. This variant was considered as founder mu-
tation in Eastern Iranian population. The novel splice-
site variant c.313-3 T > G p.Lys105Valfs*16 has never
been documented in the medical literature and the nu-
cleotide T at this position is highly conserved across
multiple species (Additional file 1: Figure S1). Moreover,
alternative splicing study demonstrated that the variant
c.313-3 T > G p.Lys105Valfs*16 produced an aberrant
transcript with the loss of the first four nucleotides of
exon 03 leading to a premature stop codon.
TMEM67 sequence variations were associated with a

large clinical spectrum and sequence variants were dis-
tributed throughout the entire coding region (Table 1).
However, several peculiar phenotypes might be pre-
dicted, i.e., TMEM67 missense variants falling in exon 8
to 15, especially combined with a truncating variant
would predict to give rise to Meckel-Gruber syndrome.
In addition, most of TMEM67 sequence variants were
predominantly located in 8 of 28 exons (2, 6, 8, 11, 13,
15, 18, 24) [10]. Based on the review of TMEM67 se-
quence variations previously recorded in the medical lit-
erature, our report also showed several mutational
hotspots, which were consistent with the result docu-
mented by Lannicelli et al., 2010. The most TMEM67
frequently mutated hotspot was exon 8, followed by
exons 24, 18, 6, 13, 11, 2, 15 (Table 1).
Prenatal molecular diagnosis was carried out on DNA

extracted from amniocytes and the fetus (II:2) harbored
the same compound heterozygous TMEM67 variants
found in the 10-year-old sibling. The parents were re-
ferred for genetic counseling for the current pregnancy
and the pregnancy was terminated at 32 weeks of gesta-
tion. Furthermore, the proband was recommended to
follow annual surveillance of hepatic functions as well as
evaluation of kidney function [30]. The couple was

offered pre-implantation genetic diagnosis or prenatal
diagnosis options for the future pregnancy. In conclu-
sion, our study reports the first Vietnamese family of JS
and expands the TMEM67 mutational spectrum in JS.
Furthermore, we also stress the important role of mo-
lecular approaches in order to identify the causative
gene. Accurate diagnosis would further help in genetic
counseling, early management of genetic disorders as
well as offer prenatal diagnostic options for future
pregnancy.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12881-020-0962-0.

Additional file 1: Figure S1. Multiple sequence alignment of TMEM67
sequences across species showing that the nucleotide c.313-3 T variant is
well conserved throughout evolution (red box).
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