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Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO) is a key step for energy-
yielding in support of the growth of ammonia-oxidizing bacteria (AOB). Organohydrazines
have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selec-
tive inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence
of bacterial HAO gene homolog in known ammonia-oxidizing archaea (AOA). In this study,
the effects of three organohydrazines on activity, abundance, and composition of AOB
and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine
and methylhydrazine at the concentration of 100 1μmol g− dry weight soil completely

of
suppressed the activity of soil nitrification. Denaturing gradient gel electrophoresis fin-
gerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene
(amoA) clearly demonstrated that nitrification activity change is well paralleled with the
growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation
between AOA community structure and nitrification activity was observed among all treat-
ments during the incubation period, although incomplete inhibition of nitrification activity
occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that
the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and
the mechanism of organohydrazine affecting AOA remains unclear.

Keywords: ammonia-oxidizing archaea, ammonia-oxidizing bacteria, hydroxylamine oxidoreductase, nitrification
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INTRODUCTION
Nitrification, the consecutive oxidation of ammonia to nitrate
via nitrite, is one of the central processes in the global nitrogen
cycle (Gruber and Galloway, 2008). It has been long assumed
that two groups of bacteria affiliated respectively with β- and
γ-Proteobacteria contribute exclusively to the autotrophic ammo-
nia oxidation, the first and rate-limiting step of nitrification.
Until recently, however, several cultivation studies (Könneke et al.,
2005; De La Torre et al., 2008; Hatzenpichler et al., 2008; Tourna
et al., 2011) discovered that some members of archaea can oxidize
ammonia autotrophically as well. The numerical dominance of
ammonia-oxidizing archaea (AOA) over ammonia-oxidizing bac-
teria (AOB) appears to be a common feature in a wide variety
of environments (Leininger et al., 2006; Agogué et al., 2008; Reed
et al., 2010; Wu et al., 2010). The transcriptional activity and excep-
tionally high abundance of archaeal amoA gene in various habitats
(Chen et al., 2008; Tourna et al., 2008; Church et al., 2010) have sug-
gested AOA might play a key role in ammonia oxidation, although
there are also some reports suggesting AOB dominate microbial
ammonia oxidation in nitrogen-rich environment (Jia and Con-
rad, 2009; Xia et al., 2011). As such, the relative contributions
of AOA and AOB to nitrification activity in natural environment
have attracted considerable attentions in recent years (Prosser and
Nicol, 2008).

The well-separated phylogeny indicates there are essential dif-
ferences in physiology, biochemistry, and genetics between AOA

and AOB, and results in the distinctly different responses to inhib-
itive agents (Schauss et al., 2009; Kleineidam et al., 2011). One of
the key differences between AOB and AOA is the oxidization mech-
anism of hydroxylamine, the intermediate of ammonia oxidation.
For AOB, ammonia is consecutively oxidized to hydroxylamine by
ammonia monooxygenase and to nitrite by hydroxylamine oxi-
doreductase (HAO; Arp et al., 2007). HAO is the key enzyme for
yielding energy to support the growth of AOB during active nitri-
fication. Nevertheless, to our knowledge, there is no homolog of
bacterial HAO gene (hao) in the genome of AOA isolates or enrich-
ment cultures (Hallam et al., 2006; Walker et al., 2010; Blainey et al.,
2011). If this is the general feature of AOA, ideally, application
of compounds that can inactivate HAO will inhibit the bacterial
nitrification without disturbing AOA activity.

Alkyl- and aryl-hydrazine derivatives can irreversibly inacti-
vate bacterial HAO by covalently modifying the active site of
enzyme, which was initially observed in the cell-free enzyme
extracts (Logan and Hooper, 1995). Activity of Nitrosomonas cul-
ture can be also inhibited in vivo by methylhydrazine (Kane and
Williamson, 1983). However, the effects of organohydrazines on
soil ammonia oxidizers remain unclear. In this study, we exam-
ined the effect of three kinds of organohydrazine (phenylhy-
drazine, PH; hydroxyethylhydrazine, HH; methylhydrazine, MH)
on the activity, abundance, and community composition of AOA
and AOB in soil microcosms. Our aims were to assess whether
organohydrazines can inhibit ammonia oxidation in complex
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soil, and the potential effects of them on soil AOA and AOB
populations.

MATERIALS AND METHODS
SOIL MICROCOSMS
Soil (pH 8.0) was collected from the upper 10 cm from an agricul-
tural field of State Key Experimental Station for Ecological Agri-
culture (35˚00′N, 114˚24′E) of the Chinese Academy of Sciences,
Fengqiu County, Henan province of China. The field information
has been detailed previously (Meng et al., 2005). The concentra-
tions of ammonium and nitrate in this soil were 1.13 μg NH+

4 −N
and 20.2 μg NO−

3 − N per gram dry weight soil, respectively. The
soil sample was sieved (2 mm mesh size), well mixed and stored at
4˚C in dark until use. The microcosm consisted of 5 g fresh soil and
50 ml of 1 mM phosphate buffer (pH 8.0) in sterile serum bottles.
The incubation of soil microcosm was performed at 30˚C in dark
as the commonly used protocol for determination of potential
nitrification activity (Hart et al., 1994), except that the incubation
time was extended to 2 weeks and ammonium sulfate was replaced
by ammonium bicarbonate as growth substrate. Soil slurry was
sampled at day 0, 1, 7, and 14 immediately after a brief shaking.

Soil microcosms with 11 treatments (each in three repli-
cates) were established including positive control with ammo-
nium amendment (CK-N) and negative control without ammonia
amendment (CK-0), as well as three organohydrazines as shown in
Table 1. The final concentration of NH+

4 in slurry of ammonium-
amended microcosms was 1.4 mg NH+

4 − N g−1 soil. HAO-
targeted inhibitors, i.e., phenylhydrazine hydrochloride (PH),
methylhydrazine sulfate (MH), and 2-hydroxyethylhydrazine
(HH; Tokyo Chemical Industry, Japan) were spiked into micro-
cosms at low (1 μmol g−1 soil), medium (10 μmol g−1 soil), and
high (100 μmol g−1 soil) concentration. Prior to the addition of
ammonium substrate, soil microcosms were pre-conditioned at
30˚C in dark for 3 days.

SOIL INORGANIC NITROGEN ANALYSIS
Soil slurry (5 ml) was centrifuged at 5000 × g for 10 min to sepa-
rate soil pellet and supernatant. The soil pellets were kept under
−20˚C until DNA extraction within 1 month,and the supernatants
were used for determination of nitrite and nitrate concentration
by a SAN++ continuous flow analyzer (Skalar, Breda, The Nether-
lands). The nitrification activity was calculated on the basis of the
production of nitrite and nitrate and expressed on a dry soil weight
basis as well.

SOIL DNA EXTRACTION
Soil DNA was extracted following a CTAB-based bead-beating
protocol as described previously with minor modification (Grif-
fiths et al., 2000). Briefly, about 0.5 g of soil pellets was mixed
with 0.5 ml modified CTAB buffer containing equal volumes of
10% CTAB in 0.7 M NaCl and 240 mM potassium phosphate
buffer (pH8.0), 0.5 g each of 0.5 mm and 0.1 mm silica beads, and
0.5 ml phenol:chloroform:isoamylalcohol (25:24:1). The mixture
was then subjected to vigorous shaking on a FastPrep instrument
(MP Biomedicals, Solon, OH, USA). After further purification
with chloroform:isoamylalcohol (24:1), DNA was precipitated by
PEG/NaCl solution and resuspended in 100 μl of TE buffer. The

quantity and purity of DNA were determined using a NanoDrop®

ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies).
No significant PCR inhibition was observed for 10× diluted
extracts (data not shown).

REAL-TIME QUANTITATIVE PCR ANALYSIS OF AMOA GENE
ABUNDANCE
Real-time PCR with three replicates for each sample was per-
formed to quantify the copy number of bacterial and archaeal
amoA genes using primer sets amoA-1F/amoA-2R-GG (Rot-
thauwe et al., 1997) and Arch-amoAF/Arch-amoAR (Francis et al.,
2005) with a CFX96 Optical Real-Time Detection System (Bio-
Rad Laboratories, Inc. Hercules, CA, USA), respectively. Real-time
PCR standards were generated using plasmid DNA from repre-
sentative clones containing bacterial or archaeal amoA gene, and a
dilution series of standard template over five orders of magnitude
per assay was used to optimize real-time PCR conditions. Blank
was always run with water as template instead of soil DNA extract.
The 25 μl reaction mixture contained 12.5 μl of SYBR Premix Ex
Taq (TaKaRa Biotech, Dalian, China), 0.25 μM of each primer,
and 1.0 μl 10× diluted template. Thermal profiles were the same
as those described previously (Jia and Conrad, 2009). For bacte-
rial amoA gene, PCR amplification efficiencies of 105.3–118.8%
were obtained with R2 values of 0.981–0.996. For archaeal amoA
gene quantification, amplification efficiencies of 86.2–90.2% were
obtained with R2 values of 0.992–0.997. Specificity of PCR prod-
ucts was always checked by both melting curve analysis and gel
electrophoresis.

DENATURING GRADIENT GEL ELECTROPHORESIS ANALYSIS OF AMOA
GENES
For denaturing gradient gel electrophoresis (DGGE) analysis, PCR
amplification of bacterial and archaeal amoA genes was carried out

Table 1 | Experimental treatments.

Treatment Abbreviation Treatment

NH+
4

addition* Inhibitor (μmol g−1)

Positive control CK-N + 0

Negative control CK-0 − 0

PHENYLHYDRAZINE (PH)

Low PH-L + 1

Medium PH-M + 10

High PH-H + 100

METHYLHYDRAZINE (MH)

Low MH-L + 1

Medium MH-M + 10

High MH-H + 100

2-HYDROXYETHYLHYDRAZINE (HH)

Low HH-L + 1

Medium HH-M + 10

High HH-H + 100

*The final concentration of ammonium was 1.4 mg NH+
4 − N g−1 soil in NH+

4 -

amended microcosms.
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using the same primers as above, except that the forward primer
of bacterial amoA was attached with a 27 bp GC-clamp (Nico-
laisen and Ramsing, 2002). The PCR reaction was performed in a
25 μl mixture containing 2.5 μl 10× PCR buffer, 0.25 μM of each
primer, 200 μM (each) deoxyribonucleoside triphosphate, 1.5 U
of Taq DNA polymerase, and 0.5 μl of soil DNA. The PCR was
run in a Thermal Cycler Dice (Takara Bio, Shiga, Japan) following
the thermal profiles described previously (Nicolaisen and Rams-
ing, 2002; Francis et al., 2005). PCR products were run on 1.5%
agarose gel to check their specificity, and the concentrations were
spectrophotometrically measured.

About 150 ng PCR products from each sample was subjected
to DGGE analysis as described previously (Wu et al., 2010).
Dominant bands in the DGGE fingerprints were excised and
re-amplified. For AOA, the purified PCR products were directly
sequenced (Invitrogen, Shanghai, China), while sequences of
some AOB DGGE bands were obtained by standard cloning
technique, as previously described (Jia and Conrad, 2009). The
sequences of DGGE bands, as well as their closest relatives obtained
by BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi), were
aligned using CLUSTAL X 1.83 (Thompson et al., 1997). Phyloge-
netic trees were constructed using the neighbor-joining method
based on the Jukes–Cantor correction with MEGA (Molecu-
lar Evolutionary Genetics Analysis) version 4 (Tamura et al.,

2007). Bootstrap support was calculated (999 replications). The
sequences generated in this study were deposited in the GenBank
database under the accession numbers JN408200–JN408210.

RESULTS
NITRIFICATION ACTIVITY
The concentrations of nitrite and nitrate (NO−

x ) in soil micro-
cosms were determined at day 0, 1, 7, and 14 to assess the kinetics
changes of nitrification activity (Figure 1). In the absence of
organohydrazines, near-linear accumulation of NO−

x indicated
that active ammonia oxidation occurred in soil microcosms upon
ammonium fertilization (CK-N), whereas in soil microcosms
without ammonium amendment (CK-0), there was only slight
increase in NO−

x after incubation for 14 days. Therefore, the seem-
ingly high concentration of nitrite and nitrate in CK-N could
have resulted from the consumption of ammonium added to soil
microcosms rather than released from soil mineralization.

Nitrification rates varied greatly among soil microcosms in the
presence or absence of organohydrazines (Figure 1). When com-
pared to CK-N treatment, organohydrazines at low concentration
of 1 μmol g−1 soil showed no inhibition on nitrification activity,
although it seemed that 31 and 16% of nitrification activity was
eliminated under elevated concentration of 10 μmol organohy-
drazines g−1 soil for PH-M and MH-M microcosms, respectively.

FIGURE 1 | Concentration of NO
−
2

− N and NO
−
3

− N in soil microcosms

incubated for 14 days at various concentrations of phenylhydrazine

hydrochloride (PH), methylhydrazine sulfate (MH), and

2-hydroxyethylhydrazine (HH). The designations of PH-L, PH-M, and PH-H
represent PH in the microcosms at low (1 μmol g−1 soil), medium (10 μmol g−1

soil), and high (100 μmol g−1 soil) concentration, respectively. Each point
represents the mean of triplicate microcosms with some error bars smaller
than the symbol size. The inserts show the same data on a smaller scale. The
values in gray box refer to nitrification rate during the 14 day incubation
(mean ± SE, μg NO−

x − N g−1).
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Complete inhibition was observed at only high concentration of
100 μmol PH or MH g−1 soil, whereas a 7.2% of nitrification
activity remained in HH-H microcosm. In microcosms with 1
and 10 μmol HH g−1 soil nitrification was not significantly higher
(21.3 and 19.2%, respectively, P > 0.05 with Student’s t -test) than
that in CK-N treatment.

AOA AND AOB ABUNDANCE IN SOIL MICROCOSMS
Abundance of soil AOB and AOA was assessed by enumerating the
copy number of bacterial and archaeal amoA genes in soil micro-
cosms (Figure 2). For CK-N treatment, the bacterial amoA gene
copy number increased from 3.51 × 107 to 6.32 × 108 g−1, while
the archaeal amoA gene copy number decreased from 9.41 × 107

to 3.13 × 107 g−1 after incubation for 14 days. Consequently, the
ratio of bacterial to archaeal amoA gene copy number increased
from 0.3 at zero time to 17.9 after 14 day incubation. Similar
results were obtained from soil microcosms in the presence of
HAO-targeted inhibitors at low (1 μmol g−1 soil) or medium
(10 μmol g−1 soil) concentrations. However, high concentration
of PH and MH at 100 μmol g−1 soil appeared to suppress the pop-
ulation sizes of both AOB and AOA. For example, the copy number
of bacterial amoA gene in PH-H microcosm was 22 times lower
after 14 day incubation than at zero time, while a 5.9-fold decline
was observed for archaeal amoA gene abundance in MH-H micro-
cosms. In contrast, the population sizes of AOB and AOA remained
relatively stable in soil microcosms with 100 μmol HH g−1 soil.

CHANGES IN THE COMPOSITION OF AOB AND AOA IN SOIL
MICROCOSMS
The variation of AOB and AOA community was assessed by
DGGE finger printing of respective amoA gene in soil micro-
cosms without organohydrazine addition (CK-N) and with high
concentration of organohydrazines treatments (Figures 3 and 4).
Dominant DGGE bands were excised and subjected to sequencing
analysis to infer the phylogeny of AOB and AOA. Compared to
zero time samples, AOB community in HH-H and MH-H micro-
cosms remained largely unchanged, while bacterial amoA gene in
PH-H microcosms was not analyzed due to the extremely low
PCR amplification efficiency (Figure 3A). By contrast, DGGE fin-
gerprints in CK-N microcosms after incubation for 14 days were
dominated by bands B4–B6 within the Nitrosospira cluster 3 and
the newly emerged band B2 within the Nitrosomonas europaea
lineage (Figure 3B). The DGGE band B2 indeed appeared after
incubation for 7 days (data not shown), suggesting that the rapid
growth of this N. europaea-like AOB might be responsible for the
strong nitrification activity in CK-N microcosms (Figure 1). This
was further supported by the absence of DGGE band B2 in MH-H
and HH-H microcosms in which nitrification activity was deeply
inhibited.

DGGE fingerprints of archaeal amoA gene remained largely
unchanged in soil microcosms after incubation for 14 days regard-
less of organohydrazine treatment (Figure 4A). Phylogenetic
analysis indicated that the amoA gene sequences of dominant

FIGURE 2 | Changes of bacterial amoA copy number (A), archaeal amoA copy number (B), and of bacterial to archaeal amoA ratio (C) in the soil

microcosm incubated for 14 days. All designations are the same as those in Figure 1.
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FIGURE 3 | Denaturing gradient gel electrophoresis fingerprints (A) and phylogenetic tree (B) of bacterial amoA gene in soil microcosms.

FIGURE 4 | Denaturing gradient gel electrophoresis fingerprints (A) and phylogenetic tree (B) of archaeal amoA gene in soil microcosms.

DGGE bands exclusively clustered with the soil Group 1.1b
(Figure 4B). It is noteworthy that the intensities of several
bands were apparently higher at the bottom of DGGE gel
for HH-H microcosms (denoted by asterisks in Figure 4A),
in which nitrification activity was not completely inhibited
(Figure 1). However, these sequences could not be retrieved
despite the huge efforts for PCR amplification of the excised DGGE
bands.

DISCUSSION
HAO purified from N. europaea could be inactivated by organohy-
drazines (Logan and Hooper, 1995). Our results demonstrate
that organohydrazines could inhibit bacterial ammonia oxida-
tion in complex soil environment as well. When applied at
100 μmol g−1 soil, the three organohydrazines tested in this study
hindered the growth of a N. europaea-like species (band B2
in Figure 3) as well as the rapid accumulation of NO−

x in

respective soil microcosms (Figure 1), suggesting the inhibi-
tion by organohydrazines of bacterial ammonia oxidation in soil
microcosms.

The response of AOA to organohydrazines is especially interest-
ing because AOA presumably lack the bacterial hao homolog (Hal-
lam et al., 2006; Walker et al., 2010; Blainey et al., 2011). Organohy-
drazine inhibition of microbial ammonia oxidation may thus
provide clues to the physiological features of this recently discov-
ered archaeal ammonia oxidizer. The AOA population remained
highly stable in terms of size and composition (Figures 2 and 4) in
the presence of 1 or 10 μmol g−1 soil organohydrazines. Upon the
addition of high concentration of PH and MH, however, drastic
decline in archaeal amoA abundance rather than minor compo-
sitional changes was observed, suggesting the general inhibition
of both organohydrazines on AOA. The AOA species presented in
this soil mostly fall within Group 1.1b (Figure 4), of which the cul-
tured Candidatus Nitrososphaera viennensis and Ca. N. gargensis
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have been reported to lack the hao gene (personal communication
with Professor Christa Schleper at University of Vienna), similar
to those representative cultures in Group 1.1a. As such, assuming
that there is no homolog of hao in genome of AOA, we speculate
that unknown mechanism might have been involved in the inhibi-
tion of AOA by PH and MH. For example, some organohydrazines
have shown the toxic effect on bacteria that lack hao (Reinhartz
et al., 1987), and their mechanism of action on AOA merits further
study.

A minor nitrification activity was observed in HH-H micro-
cosms, accounting for 7.2% of the observed activity in CK-N
microcosms without HH (Figure 1). The abundance and com-
position of both AOB and AOA provided no evidence about
the role of these two guilds. However, in HH-H microcosms,
the cell-specific nitrification rates (CNR) of AOB (Table A1 in
Appendix), which are inferred from nitrification activity and
the copy number of amoA gene, fall well within the ranges
reported for pure cultures (Belser, 1979; Ward et al., 1989) and
environmental samples (0.2 − 15.6 fmol NO−

x cell−1h−1; Okano
et al., 2004). In contrast, the cell-specific rate of AOA dur-
ing 7–14 day (1.63 fmol NO−

x cell−1h−1; Table A1 in Appen-
dix) was 4.2-fold higher than that of Nitrosopumilus viennensis
(0.39 fmol NO−

3 cell−1h−1, see Appendix) obtained under optimal
conditions (Tourna et al., 2011). This implies that AOA alone can
not account for the nitrification presented in HH-H microcosms.
It is therefore plausible that AOB were not completely inhibited
and likely contributed to the nitrification activity, potentially along
with AOA in HH-H microcosms.

Nitrification activity is correlated well with AOB rather than
AOA community structure in this study, suggesting that AOB dom-
inate nitrification process in soil microcosms tested. This finding
is consistent with previous observations on a German agricul-
tural soil microcosm (Jia and Conrad, 2009) and a Chinese paddy
soil (Wu et al., 2011). In this study, ammonium was supplied
at 10 mM NH+

4 − N. This relatively high concentration signif-
icantly stimulated nitrification activity (Figure 1) and growth

of AOB (Figure 2). In the meantime, the abundance and com-
position of AOA stayed largely unchanged (Figures 2 and 4).
The increasing lines of evidence suggest that AOB are favored
in high ammonium environment, while AOA may play an impor-
tant role in ammonium-poor environment (Gubry-Rangin et al.,
2010; Zhang et al., 2010). However, there is also evidence that
AOA pure culture may grow at the concentration up to 15 mM
ammonium (Tourna et al., 2011). Thus we can not exclude the
possibility that AOA actively catalyze ammonia oxidation in this
study. In combination with inhibition techniques, stable isotope
probing (SIP) would provide more robust evidence for relative
contributions of AOA and AOB to nitrification activity in com-
plex environments. For example, recent study has demonstrated
active transcription of archaeal amoA gene in a German agri-
cultural soil by mRNA–SIP (Pratscher et al., 2011), while the
chemolithoautotrophic growth of AOA was shown by DNA–SIP
in combination with pyrosequencing (Xia et al., 2011). In addi-
tion, the recently cultured Ca. Nitrososphaera viennensis might
provide an ideal model for understanding the inhibition mech-
anism of archaeal nitrifiers by organohydrazine (Tourna et al.,
2011).

Taken together, the results of this study demonstrate that bac-
terial ammonia oxidation in soil can be effectively inhibited by
organohydrazines as previously shown in cell extracts. Organohy-
drazines seem to affect the population sizes of AOA, suggesting
their inhibition on archaeal nitrification. Further study is needed
to elucidate the HAO-targeted inhibition mechanism of soil nitri-
fication, and to develop new assays for a better understanding of
nitrification kinetics in complex soil.
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APPENDIX

Table A1 | Estimated cell-specific nitrification rates of AOA and AOB in soil.

Group Nitrification rate (μg NO−
x − N g−1h−1) Cell-specific nitrification rate (fmol NO−

x cell−1h−1)

AOA* AOB*

0–1 day 1–7 days 7–14 days 0–1 day 1–7 days 7–14 days 0–1 day 1–7days 7–14 days

CK-N 0.22 3.10 3.13 0.19 3.42 4.76 0.56 1.3 0.81

CK-0 0.12 NA 0.05 0.11 NA 0.06 0.63 NA 0.48

PH-L 0.18 3.16 2.83 0.21 3.61 3.16 0.61 1.2 0.43

PH-M NA 1.16 3.00 NA 2.03 8.30 NA 1.88 3.06

PH-H 0.03 NA 0.00 0.05 NA 0.00 0.2 NA 0.01

MH-L 0.60 2.83 3.37 0.59 3.27 5.33 1.36 1.73 1.02

MH-M 0.02 2.68 2.55 0.03 6.33 8.45 0.05 2.86 0.75

MH-H NA NA NA NA NA NA NA NA NA

HH-L 0.88 3.71 3.74 0.88 5.89 15.31 1.86 3.77 3.49

HH-M 0.36 3.41 3.95 0.46 7.04 19.98 0.77 2.92 2.72

HH-H NA NA 0.46 NA NA 1.63 NA NA 2.08

*The cell-specific nitrification rate of AOA and AOB was calculated by dividing the production of nitrite and nitrate by the mean population size between two sam-

pling points assuming each AOA and AOB cell contains 1 and 2.5 amoA gene copy, respectively. Cell-specific rate of AOB has a wide range for pure cultures

(0.9 fmol NO−
x cell−1h−1; Belser, 1979; Ward et al., 1989) and for environmental samples (0.2 − 15.6 fmol NO−

x cell−1h−1; Okano et al., 2004). AOA cell-specific rate of

Nitrosopumilus viennensis was estimated to be 0.39 fmol NO−
3 cell−1h−1 (Tourna et al., 2011).

NA means cell-specific nitrification rate not applicable due to the absence of nitrification activity.

CALCULATION OF THE CELL-SPECIFIC NITRIFICATION RATE FOR NITROSOPUMILUS VIENNENSIS UNDER OPTIMAL GROWTH
CONDITIONS (TOURNA ET AL., 2011)
Tourna et al. (2011) reports that the fastest growth of Nitrosopumilus viennensis through day 6–10 coupled well with significant accu-
mulation of nitrite and depletion of ammonia, suggesting the exponential growth phase of Nitrosopumilus viennensis under optimal
conditions. Thus Nitrosopumilus viennensis may show the highest CNR in this period.

Approximately, the net accumulation of nitrate during day 6–10 was:
Δ Nitrate = 890 − 330 = 560 μM
Approximately, the mean cell abundance of Nitrosopumilus viennensis was:
Abundance = (3.4 − 0.4) × 107/2 = 1.5 × 107 cells ml−1

The cell-specific nitrification rate in this period was estimated by:
CNRNitrosopumilus viennensis = Δ nitrate/abundance/time = 0.39 fmol NO−

2 cell−1h−1
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