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Abstract: In this study, a graphene beam was selected as a sensing element and used to form
a graphene resonant gyroscope structure with direct frequency output and ultrahigh sensitivity.
The structure of the graphene resonator gyroscope was simulated using the ANSYS finite element
software, and the influence of the length, width, and thickness of the graphene resonant beam on the
angular velocity sensitivity was studied. The simulation results show that the resonant frequency
of the graphene resonant beam decreased with increasing the beam length and thickness, while
the width had a negligible effect. The fundamental frequency of the designed graphene resonator
gyroscope was more than 20 MHz, and the sensitivity of the angular velocity was able to reach
22,990 Hz/◦/h. This work is of great significance for applications in environments that require high
sensitivity to extremely weak angular velocity variation.

Keywords: ultrahigh sensitivity; graphene; resonance; gyroscope

1. Introduction

Resonant gyroscopes with direct frequency output can directly convert a weak Coriolis
angular velocity into a frequency-modulated wave by frequency modulation and demod-
ulate a frequency-modulated wave to calculate the input angular velocity. Compared
with the conventional amplitude modulation detection method, it has the characteristics
of high precision, good stability, low power consumption, and small drift. It can also
further improve the gyro test accuracy when new materials with excellent structural char-
acteristics are selected. The birth of graphene materials makes it possible to develop a
resonant gyroscope with a direct frequency output that is sensitive to ultraweak angular
velocity variation.

In 2004, the physicists Konstantin Novoselov and Andre Geim from the University of
Manchester successfully peeled single-layer graphene from graphite for the first time [1].
Graphene has a Young’s modulus as high as 1 TPa and a tensile strength reaching 130 GPa—
significantly higher than that of silicon (165 GPa and 5–9 GPa, respectively)—which is
commonly used in microsystem sensors [2–5]. In 2007, Bunch et al. of Cornell University
developed prototype nano-electromechanical resonators, using single- and multilayer
graphene films, as shown in Figure 1 [6]. The monolayer or multilayer graphene films
obtained by the mechanical peeling process were adsorbed onto the shallow grooves of
the SiO2 insulating layer via intermolecular van der Waals forces to form double-clamped
graphene beams. Gold electrodes set at both ends of the SiO2 layer allowed the resonator
to vibrate within the MHz range upon electric excitation. The frequency of the single-
layer graphene resonator was 70.5 MHz, and the quality factor (Q) was about 78. This
experiment provided important support for the subsequent design and experiments using
graphene resonators.

In 2009, Chen et al. of Columbia University developed a single-layer graphene
resonator with an electrical readout. The research group experimentally tested the variation
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of the resonant frequency of the graphene resonator with the additional mass, external
temperature, and voltage of the silicon electrodes [7]. In 2012, Kang et al. designed and
studied an ultrahigh-sensitivity accelerometer based on graphene nanoribbons [8]. In 2013,
Kwon et al. used molecular dynamics to study the relationship between the fundamental
frequency of double-clamped graphene resonators and the additional mass [9]. In 2013,
Natsuki et al. studied a graphene resonant nanomass sensor using continuous elastic theory
in which a double-layer graphene diaphragm was used as the resonator [10]. In 2015, Kang
et al. conducted a study on the dynamic characteristics of an accelerometer based on a
suspended cross-type graphene resonator; its theoretical model is shown in Figure 2 [11].
In 2018, Shi Futao et al. of Beihang University designed a differential graphene resonance
acceleration sensor, which is shown in Figure 3. In this paper, the Euler–Bernoulli beam
model was used to analyze the double-clamped graphene beam of graphene resonant
accelerometer. Through finite element simulation, the graphene resonant accelerometer
with ultra-high sensitivity characteristics for detecting acceleration was obtained [12].
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Figure 1. Prototype of a graphene resonator.
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Figure 3. The model of a differential resonant graphene accelerometer: (a) the substrate of the
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In summary, graphene resonators have been developed well in the fields of inertial
navigation [8,11,12] and micro-mass detection [10,13]; however, research on graphene
resonant gyroscopes for angular velocity measurement has not yet been reported.

On the basis of the principle of resonant gyroscopes for MEMS (Micro-Electro-Mechanical
System)with direct frequency output and the model of graphene resonators, a graphene reso-
nant gyroscope was designed. By simulating the influence of the length, width, and thickness
of the graphene resonant beam on the resonant frequency of the gyroscope sensor, an optimized
finite element simulation structure for the graphene resonant gyroscope was obtained.

2. The Operating Principle
2.1. Theoretical Basis of Resonant Gyroscope with Direct Frequency Output

The concept of resonance has been well applied in the drive and detection modes of
resonant gyroscopes with direct output frequencies. Through detecting the change in the
resonant frequency of the resonator, the input can be measured, which is an FM (frequency
modulation) detection method. Unlike other MEMS sensors that detect weak capacitance
analog signals, this FM detection method converts the weak Coriolis force into FM waves
and then calculates the angular velocity load by demodulating the FM waves. Compared
with the conventional amplitude modulation detection method, this detection method has
high accuracy, a large dynamic range, low noise, and low power consumption. In 2002, the
University of California, Berkeley, designed the first integrated micromechanical gyroscope
with direct output frequency detection [14,15]; the research on resonant gyroscopes with
direct output frequency has been continuously improved since then [16,17].

As shown in Figure 4, the mass vibrates in the y-axis direction with its resonant
frequency under the action of an external driving force, while the two axisymmetric
resonators, DETF (double-end tine fork), vibrate in the reverse direction, with their resonant
frequency under the action of the driving force. When the angular velocity along the z-axis
is generated, according to the principle of the Coriolis effect, the Coriolis force is generated
on the mass along the x-axis of the plane perpendicular to the y-axis of the relative motion
direction and the z-axis of the angular velocity direction. The periodic pressure or tension
generated by the driving mass acts on both ends of the DETF such that the resonant
frequency of the DETF changes. The frequency variation of the DETF is proportional to
the Coriolis force; thus, the loading angular velocity can be demodulated. Here, y0 is the
maximum amplitude of the mass block, y is the displacement of the mass block in the
y-axis direction, wd is the driving frequency of the mass block, M is the mass of the mass
block, and Ω is the angular velocity that is set at a constant value. Combining the vector
derivative with Newton’s second mechanical equation, the Coriolis force can be expressed
as follows:

FC = 2M
→
Ω×

→
VB (1)
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VB, as the relative velocity of the mass block relative to the frame, can be expressed
as follows:

VB =
.
y = ωd · y0 · cos(ωdt) (2)

where
y = y0 · sin(ωdt) (3)

Then, the Coriolis Force Fc can be rewritten as the following:

Fc = 2MΩωdy0cos(ωdt) (4)

2.2. Theoretical Analysis of Double-Clamped Graphene Resonant Beam

At present, there is no perfect theoretical model for the study of graphene resonance
characteristics. The research methods described in the literature mainly include the tra-
ditional continuum model [18], the semi-continuum theory, and molecular dynamics
simulations [10,19,20]. For single-layer or multilayer graphene, thin plates, shells, and
other continuum or semi-continuum models are used to perform the modeling. Then, the
bending, tension, vibration, and other mechanical behaviors and mechanical properties of
graphene are analyzed, using the Euler beam and Timoshenko plate shell theories [21,22].
Numerical modeling can also be carried out using commercial finite element analysis
software, such as COMSOL/ANSYS. In this study, the continuous medium model was
used to analyze the double-clamped graphene resonant beam.

When analyzing the lateral bending free vibration of the beam, the following assump-
tions are first introduced:

(a) The central inertia axis of each section of the beam is in the same plane, and the beam
moves laterally in this plane.

(b) The ratio of the cross-sectional area size of the beam to its length is relatively small,
and the influence of shear deformation and the moment of inertia around the central
axis of the section can be ignored.

(c) The transverse vibration of the beam conforms to the assumption of small deflection
plane bending, i.e., the amplitude of the transverse vibration is very small and within
the linear range.

According to the above assumptions, the structural dimensions of the graphene
resonance beam designed in this paper are shown in Table 1; the ratio of the cross-sectional
area size of the beam to its length is relatively small (0.11× 10−9). This type of mechanical
model, which only considers the lateral deformation caused by bending and does not
consider the bending vibration of the beam due to shear deformation and the moment
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of inertia, becomes the Euler–Bernoulli beam. The forced vibration characteristics of the
beams can be analyzed using the Euler–Bernoulli beam theory as shown in Figure 5 [23].

Table 1. Initial parameters and material properties of silicon and graphene resonant beams.

Si Geometric Parameters Si Material Properties

Length (µm) Width (µm) Thickness (µm) Young’s modulus (GPa) Poisson ratio Density (kg/m3)
30 3 3 130 0.28 2330

Graphene Geometric Parameters Graphene Material Properties

Length (µm) Width (µm) Thickness (nm) Young’s modulus (GPa) Poisson ratio Density (kg/m3)
3 1 0.335 1000 0.16 2200
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Figure 5. Bending model of graphene resonant beam subjected to force.

The length, width, and thickness of the graphene resonant beam are L, b, and h,
respectively. The microelement dx was chosen as the object of study; y(x, t) is the deflection
(lateral displacement) of the element at time t, and F(x, t) is the external force exerted by
the element dx at time t. The vibration equation of the graphene resonant beam can then
be approximated as follows [24]:

EI
∂4y(x, t)

∂x4 − T
∂2y(x, t)

∂x2 + ρA
∂2y(x, t)

∂t2 = F(x, t), (5)

where ρ is the density of graphene, A is the cross-section area of the beam (i.e., A = bh),
E is the Young’s modulus of the beam, I is the moment of inertia of the cross-section of the
beam to the neutral axis (i.e., I = bh3/12), and T is the axial force acting along the x-direction
of the resonant beam in the units N. The solution of the equation is given as follows:

y(x, t) = y(x)cos(ωt), (6)

where ω is the natural frequency of the resonant beam in rad/s. Combining Equation (6)
with Equation (5), the mode function becomes the following:

y(x) = A sin(λ1x) + B cos(λ1x) + C sinh(λ2x) + D cosh(λ2x). (7)

According to the boundary condition of the double-clamped beam, the natural fre-
quencies of double-clamped beams under axial force T can be derived. The first-order
bending vibration frequency is given by the following:

f (T) = f0

√
1 + 0.2949

TL2

Ebh3 = f0

√
1 + 0.2949εx

(
L
h

)2
, (8)

where f 0 represents the first natural frequency when the axial force T = 0, and εx represents
the axial strain of the beam as follows:

f0 = 4.7302h
2πL2

√
E

12ρ ,

εx = T
Ebh .

(9)
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3. Design and Simulation of Graphene Resonator Gyroscope

On the basis of the principle of resonant gyroscopes with direct frequency output
described in Figure 4 of Section 2.1, an ANSYS simulation model of a graphene resonant
gyroscope was established as shown in Figure 6a. The working principle of the graphene
resonator gyroscope is as follows:

(a) On the basis of silicon-based materials, single graphene beams are supported by
intermolecular van der Waals forces in the etched grooves of the Si transfer beams, as
shown in Figure 6b.

(b) The mass block is driven to move in a simple and harmonic way in the y-axis direction.
When the angular velocity in the z-axis direction is generated, as stated in Equation (1),
the Coriolis force is generated in the x-axis direction.

(c) The Coriolis force passes through the x-axis direction of the symmetrical Si transfer
beam, which causes the Si transfer beam to generate axial strain, which in turn causes
an axial stress change in the double-clamped graphene beam on the Si transmission
beam, effectively changing the resonant frequency state of the graphene.

(d) As stated in Equation (4), the magnitude of the angular velocity is demodulated by
tuning the direct output frequency.
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The axially symmetrical graphene beams are stretched and compressed in the work-
ing state, and the reciprocating motion realizes differential detection, which reduces the
common mode interference. The resonant frequency of graphene is very high, which can
respond to changes in the small Coriolis force, thus realizing ultrahigh sensitivity. Figure 6
shows the ANSYS simulation mode detection of the graphene resonator gyroscope. The
first mode of the graphene resonator gyroscope is the driving mode shown in Figure 6a,
while the second mode of the graphene resonator gyroscope shown in Figure 6c represents
the dual graphene resonator beam entry frequency detection.

A graphene resonant beam is the core sensitive element of a resonant sensor, so its
dynamic characteristics are very important. Since the thickness of a single graphene layer is
only 0.335 nm—much lower than the minimum meshing size in the ANSYS finite element
software—it is not possible to directly use the “Solid” module in the software for modeling.
In this study, a rectangular graphene resonant beam structure was constructed using the
“beam” or “shell” provided in the software. Its thickness value was directly set in the setup
window, which simplified the geometric modeling process and meshing, in addition to
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improving the efficiency of solving. The thickness of all silicon structures is 3um. The
geometric parameters and material properties of the silicon base and graphene resonator
beams are shown in Table 1. Furthermore, the MPC184 model was chosen, and a multipoint
constraint connection was used, as shown in Figure 6b.

Residual stress is generated during the preparation of graphene materials and the
transfer of graphene materials to the Si substrate. Such residual stress has a great influence
on the detection of the resonant frequency of the graphene material; hence, it is necessary
to optimize the process during the preparation and transfer process to reduce the influence
of the residual stress. At the same time, due to the influence of the processing technology,
the residual stress of the graphene materials produced by each batch of processing is not
completely identical, and the influence of the residual stress can be reduced but cannot
be completely eliminated. In this study, we minimized the effect of residual stress on the
resonant frequency of graphene, and we simulated and analyzed the situation where the
most ideal stress was 0. To verify the validity of this method, experimental data from
published papers were compared, as shown in Table 2. The error was within the allowable
controllable range, thus proving the feasibility of this method.

Table 2. Comparison of experimental data and finite element simulation.

Size (Length, Width, and Thickness) Resonant Frequency of
Experimental Data (MHz)

Resonant Frequency of Finite
Element Simulation (MHz) Error

1.1 µm× 1.93 µm × 0.3 nm 5.4 [6] 5.4983 1.82%

2.8 µm × 0.5 µm × 6 nm

17 [25]
(The first frequency) 16.933 0.39%

46 [25]
(The second frequency) 46.992 2.1%

2.8 µm × 0.3 µm × 11 nm 31 [25] 30.986 0.04%

Using the above model, the influence of the structure parameters of graphene resonator
beams on the angular velocity sensitivity was studied. In Figure 7a, the resonant frequency
of a 2–5.5 µm-length graphene beam was simulated with a fixed width of 1 µm and
thickness of 0.335 nm. With increasing length, the resonant frequency decreased, the
sensitivity of the resonator decreased, and the degree of nonlinearity decreased. The
resonant frequency of a graphene beam with a fixed length of 3 µm and width of 1 µm was
simulated, and the results are shown in Figure 7b. Here, the thickness increased from one
layer (0.335 nm) to 10 layers, and the resonant frequency of the beam increased gradually
under the same load, while the sensitivity gradually decreased. The linearity of layers 1–5
was good, and the change in the resonant frequency of layers 6 and above was relatively
gentle, in contrast to the Euler–Bernoulli beam theory. This trend may be caused by a
variety of reasons, and it will be further explored. As shown in Figure 7c, the width of
the graphene beam was varied with a fixed length of 3 µm and thickness of 0.335 nm. At
different widths, the curves of the uniform load and the resonant frequency of the beam
almost coincided, indicating that the width of the graphene beam had little influence on
the sensitivity of the resonator.

Through the simulation analysis of the angular velocity sensitivity of the geometric
size of the graphene resonator beam, it was found that the length change in the graphene
resonator beam had a greater influence on the angular velocity sensitivity. When the
angular velocity was converted to the Coriolis force acting on the graphene resonator beam,
with M = 1.058× 10−11 kg, ωd = 22431 Hz, y0 = 3.15 µm, the results of the simulation
and using Equation (4), the curve of the resonant frequency of the graphene resonator
beam with different lengths under angular velocity was obtained as shown in Figure 8. The
resonant frequency of the graphene resonator beam with different lengths showed the same
trend with an increase in angular velocity, that is, the slope decreased, and the sensitivity
decreased. As shown in Figure 9, the angular velocity sensitivity significantly decreased
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with the increasing length of the graphene resonator. Under the structural conditions of
length = 2 µm, width = 1 µm, and thickness = 0.335 nm, the graphene resonant gyroscope
had a sensitivity of up to 22,990 Hz/◦/h.
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4. Conclusions

In this study, a graphene resonant gyroscope structure with a graphene beam resonator
was designed. Theoretical analyses and finite element simulations of the graphene resonant
beam structure and the graphene resonant gyroscope were carried out. The fundamental
frequency of the graphene resonant gyroscope was determined to be more than 20 MHz,
and the sensitivity of the angular velocity was able to reach 22,990 Hz/◦/h. It was found
that the length and thickness of the graphene resonant beam both affected the sensitivity of
the sensor. The sensitivity decreased upon increasing both the length and the thickness of
the graphene resonant beam. This work provides a theoretical basis for the design of an
ultrahigh-sensitivity graphene resonator gyroscope that is sensitive to very weak angular
velocity variation.
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