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Abstract
Cellular functions rely on a series of organized and regulated multienzyme cascade 
reactions. The catalytic efficiencies of these cascades depend on the precise spatial 
organization of the constituent enzymes, which is optimized to facilitate substrate 
transport and regulate activities. Mimicry of this organization in a non-living, arti-
ficial system would be very useful in a broad range of applications—with impacts 
on both the scientific community and society at large. Self-assembled DNA nano-
structures are promising applications to organize biomolecular components into pre-
scribed, multidimensional patterns. In this review, we focus on recent progress in 
the field of DNA-scaffolded assembly and confinement of multienzyme reactions. 
DNA self-assembly is exploited to build spatially organized multienzyme cascades 
with control over their relative distance, substrate diffusion paths, compartmentali-
zation and activity actuation. The combination of addressable DNA assembly and 
multienzyme cascades can deliver breakthroughs toward the engineering of novel 
synthetic and biomimetic reactors.
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CH  Chlorohexane
DSS  Disuccinimidyl suberate
DTPC  DNA-templated protein conjugation
DX  Double-crossover DNA tile
G6PDH  Glucose-6-phosphate dehydrogenase
GOx  Glucose oxidase
HRP  Horseradish peroxidase
IDE  Inhibitor–DNA–enzyme
LDH  Lactate dehydrogenase
MDH  Malic dehydrogenase
MTG  Microbial transglutaminase
NHS  N-hydroxysuccinimide
NiR  Nitrite reductase
ORBIT  Origami-rotor-based imaging and tracking
Paz  Pseudoazurin
Pg  Plasminogen
PLP  Pyridoxal 5′-phosphate
SK  Streptokinase
SMCC  Succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate
SPDP  Succinimidyl 3-(2-pyridyldithio) propionate
STVs  Streptavidins
TAL  Transcription activator-like

1 Introduction

Multistep enzyme pathways play critical roles in cellular metabolism that produces 
biomolecules and harvests energy for sustaining and propagating living systems. 
As of 2019, 7727 different enzymes have been recorded in the BRENDA database, 
a comprehensive enzyme information system, including enzymes found in human 
cells and bacteria. These enzymes catalyze more than 5000 different biochemical 
reactions in the human body [1]. Enzyme cascades are highly sophisticated sys-
tems that control and regulate thousands of chemical reactions in cells. Peter Roach 
described chaos reactions with a set of spatio-temporally disorganized enzymes  as 
a symphony without a conductor [2] (Fig.  1a). Enzyme cascades, therefore, can 
behave as a conductor of a symphony, controlling and guiding biochemical reac-
tions into productive and coordinated pathways. The functions of many pathways 
critically depend on the relative position, orientation and number of participating 
enzymes [3, 4]. Living things have evolved several strategies to organize and con-
fine multienzyme reactions. One such strategy is a protein scaffold, such as the 
long, glycoprotein “scaffold” used by cellulosomes to selectively integrate vari-
ous cellulases and xylanases into a proximity complex for the efficient binding and 
degradation of cellulose [5]  (Fig.  1b). Another example is substrate channeling; 
as shown in Fig. 1c, an indole tunnel observed in a tryptophan synthase α2β2 com-
plex passes indole intermediates between active sites of the alpha subunit and beta 
subunit at a very rapid rate of 1000  s−1 or faster [6]. A third biological strategy, 
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compartmentalization, shown in Fig. 1d, is used by bacterial carboxysomes to carry 
out carbon dioxide  (CO2) fixation [7].

The ability to exert control over these biochemical pathways on the nanoscale will 
not only increase our understanding of cellular metabolism, but also provide innova-
tive tools to mimic and translate cellular mechanisms into non-living artificial sys-
tems for novel applications. Recent decades have seen the development of various 
approaches to create artificial multienzyme complexes, including genetic fusion [8], 
chemical crosslinking [9], surface co-immobilization [10], polymer vesicles [11–13] 
and virus-like particles [14, 15]. However, several obstacles remain in terms of their 
broader applications, such as limited control over the spatial arrangement (sizes and 
shapes), low encapsulation yield of large proteins due to steric hindrance, insuffi-
cient access of substrates to enzyme assemblies and aggregation of vesicle shells. It 
also remains challenging to engineer biomimetic functions on nanoreactors, such as 
artificial nanopores that govern the transmembrane diffusion of molecules and the 
feedback regulation of enzyme functions.

Double-stranded DNA (dsDNA) is a self-assembling biopolymer that is directed 
by Watson–Crick base pairing. Ned Seeman first proposed and demonstrated that 
artificially branched DNA tiles could be assembled by rationally designed single-
stranded DNA (ssDNA) [16]. Such structures can have complex shapes beyond 
those attained by biological evolution and can be designed using “simple” ele-
ments, such as the “Holliday” junction (Fig.  2a) and double-crossover (DX) tiles 
(Fig.  2b) [16–19]. Two key breakthroughs in structural DNA nanotechnology are 

Fig. 1  Cellular multienzyme cascade pathways. a A cartoon of symphony performance to describe the 
integrated and regulatory function of enzyme cascades. Reproduced from Roach [2], with permission, 
copyright 1977, Trends in Biochemical Sciences. b The proximity assembly of enzymes on a protein 
scaffold in a cellulosome. Reproduced from Bayor et al. [5], with permission, copyright 2004, Annual 
Review of Microbiology. c Substrate channeling in tryptophan synthase. Reproduced from Miles et  al. 
[6], with permission, copyright 1999, American Society for Biochemistry and Molecular Biology. d 
Confined carbon dioxide  (CO2) fixation in a carboxysome. Reproduced from Yeates et al. [7], with per-
mission, copyright 2010, Annual Review of Biophysics 
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scaffolded DNA origami, invented by Paul Rothemund in 2006 (Fig. 2b) [20], and 
ssDNA tiles (SST), reported by Peng Yin in 2012 (Fig. 2c) [21, 22]. These meth-
ods have empowered the design and fabrication of complex and multidimensional 
nanostructures, including one-dimensional (1D) nanotubes, two-dimensional (2D) 
rectangular or triangular shapes [20], curved containers [23, 24], nanoscale polyhe-
drons [25], polyhedral meshes [26, 27] and periodic DNA crystals [28, 29]. Recent 
progress has been made to scale up DNA assemblies in terms of size and quantity 
[30] and to fold nanostructures with single-stranded nucleic acids [31]. To facilitate 
the design of DNA nanostructures, several computational tools, including TIAMAT 
[32], NUPACK [33], caDNAno [34] and CanDo [35], have been developed that ben-
efit researchers worldwidely.

DNA nanostructures are promising assembly scaffolds for positioning other ele-
ments into diverse patterns at the nanoscale [36, 37]. As shown in Fig.  2d, DNA 
scaffold-directed assembly has the advantages of programmable and prescribed 
geometry, sequence-addressable assembly and adaptability to various bioconjuga-
tions [36]. Utilizing these unique features, Researchers have used DNA nanostruc-
tures to assemble complex biomolecular systems, such as multienzyme complexes, 
protein confinement and biomimetic channeling [37, 38]. They have also been used 
to guide the assembly of synthetic vesicles, including membrane confinement [39, 
40] and transmembrane nanopores [41, 42].

In this review, we summarize and discuss the recent progress in the field of DNA 
scaffold-directed assembly of multienzyme reactions, including proximity assembly, 
confinement, biomimetic substrate channeling and regulation circuits, as well as bio-
conjugation techniques of hybrid DNA–protein structures.

2  Protein–DNA Bioconjugation

A variety of chemical methods have been developed to attach proteins to DNA 
nanostructures [37, 43]. Most DNA–protein conjugations can fall into one of three 
categories: covalent crosslinking, noncovalent binding and fusion tags (summa-
rized in Table 1). Covalent crosslinking usually involves conjugation of an existing 
amino acid group (e.g. primary amine or thiol) on the protein surface to a chemi-
cally modified oligonucleotide. For example, succinimidyl-4-(N-maleimidomethyl) 
cyclohexane-1-carboxylate (SMCC) and succinimidyl 3-(2-pyridyldithio) propion-
ate (SPDP) are two widely used crosslinkers that conjugate a primary amine from 
a lysine residue on an enzyme surface to a thiol-modified oligonucleotide [44, 45]. 
The difference between the two crosslinkers is that the disulfide linkage of SPDP is 

Fig. 2  Overview of structural DNA nanotechnology. a A four-way “Holliday” junction. Reproduced 
from Seeman [19], with permission, copyright 2003, Springer Nature. b DNA double-crossover (left) 
and triple-crossover (right) tiles. Reproduced from Zadegan and Norton [18], with permission, copyright 
2012, MDPI. c DNA origami assembly. Reproduced from Rothemund [20], with permission, copyright 
2006, Springer Nature. d Assembly of single-stranded DNA tiles. Reproduced from Wei et al. [21], with 
permission, copyright 2012, Springer Nature. e DNA scaffold-directed assembly of biomolecular com-
plexes. Reproduced from Fu et al. [36], with permission, copyright 2019, John Wiley and Sons

▸
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cleavable upon the addition of a reducing reagent, such as T-CEP or mercaptoetha-
nol, while the linkage of SMCC is not cleavable. SMCC and SPDP crosslinkers are 
generally not site-specific in their reaction with lysines due to the presence of multi-
ple lysine residues on the protein surface. The product of such non-specific conjuga-
tion is a heterogeneous mixture of DNA-tagged proteins. In some studies, SMCC or 
SPDP was used to conjugate a cysteine residue of a protein with an amine-modified 
DNA strand. This could be site-specific if there were only one cysteine displayed on 
the protein surface, such as cytochrome c [46]. Another commonly used crosslinker 
is disuccinimidyl suberate (DSS) in which the double succinimide ends can react 
with two primary amines to link them together [47]. DSS is especially useful for 
conjugating amine-modified ssDNA with organic cofactors, such as NAD or ATP 
[47–49].

Considerable progress has been made over the past two decades to improve the 
site-specificity of DNA–protein crosslinking. Click reactions (such as copper-cat-
alyzed, azide-alkyne cycloaddition) combined with non-natural amino acid incor-
poration can produce easily purified conjugates with high site-specificity and yield 
[50]. To reduce the toxic damage of copper ions, Khatwani et  al. used a copper-
free click reaction (e.g. strain-promoted [3 + 2] azide-alkyne cycloaddition) to 
produce protein–DNA conjugates [51]. Francis and coworkers reported a protein 
bioconjugation at an N-terminal amino acid via a pyridoxal 5′-phosphate (PLP)-
mediated transamination reaction [52], and Takeda et al. reported the development 
of a method to chemically modify an oligonucleotide to a N-terminal cysteine of a 
protein [53]. Proximity ligation has also been applied to site-specific labeling of an 
oligonucleotide on a protein by affinity binding-mediated conjugation [54]. Rosen 
et  al. developed a DNA-templated protein conjugation (DTPC) technique to cre-
ate site-selective DNA–protein conjugation [55]. In the DTPC technique, a guiding 
DNA strand first co-locates with a metal-binding site of a protein, followed by the 
introduction of a second DNA strand that conjugates to the lysine residues in the 
vicinity of the metal-binding site. For a more detailed discussion of site-selective 
conjugation of native proteins with DNA, the reader is referred to a recent review by 
Trads et al. [56].

Noncovalent binding may also be used to link DNA with proteins. The classic 
example is that of the strong binding of biotin to streptavidin [dissociation constant 
(Kd) < 10−12 M] to attach a biotinylated DNA to a streptavidin [57] or streptavidin-
tagged enzymes [58]. With the development of oligonucleotide aptamers, aptamer-
directed assembly has been adapted to immobilize proteins onto DNA nanostruc-
tures by site-specifically incorporating aptamer sequences into DNA nanostructures. 
This approach has been demonstrated to effectively anchor multiple protein targets 
onto rationally-designed DNA nanoscaffolds, including thrombin [59], platelet-
derived growth factor [60] and cell–cell interactions [61]. More importantly, DNA 
nanostructures can be used to organize multivalent aptamers with optimized spac-
ing distances to enhance their binding affinity [62]. These spatially optimized mul-
tivalent aptamers bind to a protein with low nanomolar—or even picomolar—Kd, 
whereas a single aptamer–protein binding is much weaker with several hundred-fold 
higher Kd [62, 63]. Similarly, short polypeptide ligands can also be positioned onto 
the surface of DNA nanostructures for protein binding (e.g. antibody, tumor necrosis 
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factor-α and transferrin) [64, 65]. In addition to aptamers, reconstituted apoenzymes 
are used to tightly bind to an organic cofactor-modified oligonucleotide [66].

Genetically modified proteins with a short peptide tag or a fusion tag offer more 
control over the site-specificity of any DNA–protein conjugation. Poly(histidine)6 is 
one widely used peptide tag that can be incorporated into either the N- or C-termi-
nus of a protein by binding to a nitrilotriacetic acid (NTA)-modified oligonucleotide 
in the presence of nickel ions [67]. In the last 20 years many techniques have been 
developed for constructing recombinant (terminus fused) proteins that can bind with 
ligand-modified nucleic acids. For example, intein-fused proteins can ligate with 
an N-terminal cysteine-tagged oligonucleotide via the formation of a peptide bond 
linkage [68]. The research group of Niemeyer and coworkers used “Halo-tag”- and 
“SNAP-tag”-modified proteins to conjugate with chlorohexane (CH) or benzylgua-
nine (BG)-modified oligonucleotides, respectively [69]. Similar examples of fusion-
mediated DNA–protein conjugation include a microbial transglutaminase (MTG) 
fusion [70], a CLIP tagging [54], a HUH tagging [71] and a DegP (serine protease) 
fusion [72]. Additionally, Dietz and coworkers recently used transcription activa-
tor–like (TAL) effector proteins to recognize and bind to specific DNA sequences 
for creating DNA–protein hybrid nanostructures [73]. These TAL effectors can be 
genetically introduced into the sequence of other enzymes for anchoring them onto 
DNA nanostructures.

Following conjugation, the purification of DNA-conjugated proteins is espe-
cially important to produce a high-quality sample. The presence of unconjugated 
DNA or free proteins decreases the assembly yield of proteins onto DNA nanostruc-
tures. The most common purification methods include molecular-weight cutoff fil-
tration, gel electrophoresis and chromatography. Due to the negative charge of the 
DNA phosphate backbone, ion-exchange chromatography is the preferred method 
to purify DNA-conjugated proteins while separating proteins labeled with different 
numbers of DNA sidechains. Detailed procedures for purifying DNA-conjugated 
proteins have been summarized in a recently published protocol [38].

3  Spatial Organization of Multienzyme Assemblies on DNA 
Nanostructures

In cellular metabolism, the function of multienzyme cascades largely depends on 
their spatial organization, such as the relative distance, orientation, stoichiometry 
and confinements of the individual protein components [3]. Self-assembled DNA 
nanostructures are promising scaffolds on which to organize macromolecules 
because of the spatial addressability of DNA nanostructures [36]. Through various 
conjugations linking proteins with nucleic acids, DNA nanostructures are capable of 
controlling multienzyme assemblies in 1D, 2D, and three-dimensional (3D) geomet-
ric patterns that can be used to boost catalytic efficiency, improve reaction selectiv-
ity and investigate mechanistic kinetics of multienzyme reactions.

Early efforts in this field started with CM Niemeyer’s work of aligning enzymes 
on linear dsDNA scaffolds [58]. As shown in Fig. 3a, a bienzymatic NAD(P)H:FMN 
oxidoreductase (flavin reductase) and luciferase cascade were assembled together 
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onto a dsDNA scaffold via the strong binding of biotinylated enzymes with DNA-
streptavidins [58]. A similar strategy was later used to assemble a cytochrome P450 
BM3 enzyme on an adjustable dsDNA scaffold that could vary the distance between 
the two chimeras of the BMR reductase domain and the BMP porphyrin domain 
(Fig. 3b) [74]. Linear dsDNA scaffolds have also been used to guide the assembly 
of artificial cellulosomes composed of multiple cellulases [75–78]. As shown in 
Fig. 3c, the research group of Chen and coworkers used zinc-finger protein (ZFP) 
fusion to guide the assembly of two ZFP-appended proteins (an endoglucanase CelA 
and a cellulose-binding module CBM) into a bifunctional cellulosome structure for 
enhanced cellulose hydrolysis [76]. Rolling circle amplification (RCA) can produce 
long ssDNA scaffolds using a circular vector, a primer and a polymerase [77, 79]. 
As shown in Fig. 3d, these long ssDNA scaffolds produced by RCA can be used to 
anchor multiple copies of enzyme cascades via specific hybridizations between the 
section of DNA templates and the anchor DNA on the enzymes [77].

2D and 3D DNA nanostructures offer the ability to design more complex geo-
metric patterns of multienzyme systems. As shown in Fig. 4a, the  Wilner research 
group reported the self-assembly of a two-enzyme cascade array on 2D hexagonal 
DNA tiles with a controlled distance between enzymes [44]. The assembled glucose 
oxidase (GOx)–horseradish peroxidase (HRP) cascade showed a more than tenfold 
activity enhancement compared with unassembled enzymes. To precisely control 
the spacing distance between enzymes, Fu et al. organized a GOx–HRP pair on a 

Fig. 3  Assembly of enzyme cascades on linear double-stranded DNA scaffolds. a NAD(P)H:FMN oxi-
doreductase and luciferase cascade. Reproduced from Niemeyer et al. [58], with permission, copyright 
2002, John Wiley and Sons. b Engineered cytochrome P450 BM3 complex varying the distance between 
the BMR reductase domain and the BMP porphyrin domain. Reproduced from Erkelenz et al. [74],  with 
permission, copyright 2011, American Chemical Society. c Zinc finger protein (ZFP)-appended proteins 
for cellulose degradation. Reproduced from Sun et al. [76], with permission, copyright 2013, Royal Soci-
ety of Chemistry. d Rolling circle amplification (RCA ) assembly of multienzyme nanowires to promote 
cellulose degradation. Reproduced  from Sun and Chen [77], with permission, copyright 2016, Royal 
Society of Chemistry
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rectangular DNA nanostructure with controlled distances between enzymes that 
varied from 10 to 65 nm (Fig. 4b). This spatially organized assembly was used to 
probe the distance-dependent activity of enzyme cascade reactions and to enhance 
the mass transport of the  H2O2 intermediate [45]. Similarly, Morii and coworkers 
reported the assembly of an  NAD+ cofactor-coupled enzyme cascade of xylose 
reductase and xylitol dehydrogenase on a 2D DNA origami for carrying out the con-
version of xylose into xylulose (Fig. 4c) [81]. The close proximity of two enzymes 
was found to facilitate the recycling of  NAD+ to NADH, thereby increasing the xylu-
lose production rate. A subsequent study by the same group extended the assembly 

Fig. 4  Enzyme cascades organized on two-dimensional DNA nanostructures. a A glucose oxidase–
horseradish peroxidase (GOx/HRP) cascade array on two-dimensional (2D) hexagonal DNA strips. 
Reproduced from Wilner et al. [44],  with permission, copyright 2009, Springer Nature. b Organization 
of a GOx/HRP cascade on DNA origami tiles with controlled spacing. Reproduced from Fu et al. [45], 
with permission, copyright 2012, American Chemical Society. c Assembly of an NAD cofactor-coupled 
enzyme cascade (XR xylose reductase, XDH xylitol dehydrogenase). Reproduced from Ngo et al. [81], 
with permission, copyright 2016, American Chemical Society. d A three-enzyme (MDH malic dehydro-
genase, OAD oxaloacetate decarboxylase, LDH lactate dehydrogenase) cascade organized on a triangular 
DNA origami structure. Reproduced from Liu et al. [83], with permission, copyright 2016, John Wiley 
and Sons. e A rectangular DNA origami rolling into a DNA nanotube for assembly of an enzyme cas-
cade. Reproduced from Fu et al. [80], with permission, copyright 2013, American Chemical Society
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of a three-enzyme cascade converting xylose to xylulose 5-phosphate with coupled 
 NAD+ and ATP cofactors [82]. As shown in Fig. 4d, the research group of Yan and 
coworkers demonstrated a three-enzyme pathway involving malic dehydrogenase, 
oxaloacetate decarboxylase and lactate dehydrogenase on a triangular DNA origami 
[83]. The geometric patterns of these assembled enzyme complexes were found to 
affect the overall pathway activities by promoting the recycling rate of cofactors in 
the coupled reactions. Regarding 3D structures, the Fan research group developed 
a one-pot assembly of DNA nanostructures by rolling a rectangular DNA origami 
into a DNA nanotube (Fig. 4e) [80]. Using this strategy, enzyme cascade pairs were 
first anchored onto a rectangular origami, followed by structural rolling to confine 
enzymes to the exterior of a DNA nanotube, enhancing the cascade’s activity.

In addition to DNA, RNA molecules can also be engineered into discrete and 
multidimensional nanostructures [31, 84]. Because RNA structures can be expressed 
inside cells, they offer the capability to organize metabolic pathways for in  vivo 
applications. Delebecque et al. designed and assembled multiple shapes of discrete 
1D and 2D RNA nanostructures that were formed inside cells (Fig. 5a) [85]. Using 
these RNA assemblies, they demonstrated an organized [FeFe]-hydrogenase and 
ferredoxin reaction network which enhanced the biological hydrogen production 
up to 48-fold. A continuous study from the research group of Silver and coworkers 
showed that RNA scaffolds could be used to co-localize proteins and to increase the 

Fig. 5  In vivo assembly of enzyme cascades on RNA nanostructures. a Organization of [FeFe]-hydroge-
nase and ferredoxin on one-dimensional (1D) and 2D RNA nanostructures (top) with enhanced hydrogen 
production in vivo (bottom). Reproduced from Delebecque et al. [85], with permission, copyright 2011, 
The American Association for the Advancement of Science. b Assembly of a two-enzyme pentadecane 
production pathway on RNA scaffolds (top) with enhanced pentadecane output in vivo (bottom). Repro-
duced from Sachdeva et al. [86], with permission, copyright 2014, Oxford University Press
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metabolic output of a two-enzyme pentadecane production pathway in Escherichia 
coli (Fig. 5b) [86]. Nevertheless, potential applications of RNA scaffolds face chal-
lenges in terms of in vivo stability, survival of engineered cells, and loss of RNA 
information during cell division.

DNA nanostructure-organized systems offer an opportunity for investigating the 
detailed kinetics of enzyme cascade reactions. One conception of the past several 
decades is that the proximity of enzymes promotes the mass transport of intermedi-
ate substrates between enzymes, which in turn boosts the overall activity of enzyme 
cascade reactions [6, 87, 88]. This theory/hypothesis seems to be supported by some 
recent studies of assembled enzyme cascades on DNA scaffolds [44, 45, 80, 81, 
85] and metabolon engineering [8, 89], in which multienzyme complexes reacted 
with proximity assembly more actively than did unassembled and freely diffused 
enzymes. However, this hypothesis is problematic if we consider the fact that many 
small-molecule substrates diffuse quite quickly in solution, with diffusion coeffi-
cients ranging from 100 to 1000 µm2/s. To interpret the diffusion, Fu et al. described 
the concentration profile of a  H2O2 intermediate in a coupled GOx–HRP reaction by 
Brownian motion (Fig. 6a), which was simulated based on Eq. (1): [45]

where n(r,  t) is the number of molecules at a distance r from the initial produced 
position of production, D is the diffusion coefficient and t is the time given for dif-
fusion. When the Brownian motion of  H2O2 is considered in a GOx–HRP reaction 
in the given t, τ is the average time between GOx turnovers (τ  = 1/k, where k is the 
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Fig. 6  Theoretical modeling of distance-dependent enzyme cascade reactions. a Brownian diffusion of 
 H2O2 in a GOx/HRP reaction depending on distance [n(r,  t) Number of molecules at a distance r from 
the initial produced position of production]. Reproduced from Fu et al. [45], with permission, copyright 
2012, American Chemical Society. b Concentration profiles of the reaction product as a function of 
radial distance (r) from an active site under different ratios of turnover frequency to diffusion coefficient 
(k/D). Reproduced from Wheeldon et al. [90], with permission, copyright 2016, Springer Nature
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turnover rate). The simulation of the diffusion profile showed that  H2O2 concentra-
tions varied slightly (< 5%) within a few hundred nanometers of GOx due to the fast 
diffusion of  H2O2 (D  ~ 1000 µm2/s). This simulation result suggests that the proxim-
ity between enzymes has little benefits on the diffusion of  H2O2 from GOx to HRP. 
As shown in Fig. 6b, Wheeldon et al. applied Eq. (1) to simulating the concentra-
tions of product molecules at discrete distances from the active site of an enzyme as 
a function of k/D [90]. For most enzymes, the diffusion coefficients (generally ~ 100 
to 1000 µm2/s) of the small-molecule products were much larger than the turnover 
rates (generally ~ 1–100 s−1), resulting in a small value of k/D (0 <  k/D < 1). Thus, 
product concentration profiles are spanned quite uniformly over a few micrometers 
distance, a result which also indicates the minimal effect of spatial proximity on the 
concentration of intermediates in a cascade reaction. Hess and coworkers mathemat-
ically modeled the reaction–diffusion kinetics of a GOx–HRP cascade reaction [91, 
92]. The simulation of cascade kinetics showed that proximity did not contribute to 
the activity enhancement of the assembled GOx–HRP pairs. Other more recent reac-
tion–diffusion modelings suggested that a close proximity between enzymes could 
only enhance the rate of a cascade reaction under crowding conditions where the dif-
fusion of enzymes and substrates was significantly slowed down [93]. Similar mod-
eling techniques have also been applied to in vivo metabolic pathways, which like-
wise showed that diffusion was not a rate-limiting factor for many enzyme systems 
and, therefore, proximity or substrate channeling would not significantly increase 
the overall rate of the cascade reaction at steady state [88, 93]. Thus, substrate chan-
neling is more likely used to regulate metabolite flux, improve pathway selectivity 
and protect metabolites from degradation or competing side reactions [88, 93].

Since proximity-enhanced mass-transport effect may not contribute to the activ-
ity enhancement of enzyme assemblies directed by DNA/RNA scaffolds or protein 
scaffolds, some recent studies have focused on the effects of assembly scaffolds 
themselves on altering enzyme kinetics, with the aim to provide unique microen-
vironments that favor stronger activity [88, 94, 95]. Such effects include modify-
ing the local pH [96], including a hydration layer [94] and exerting an inhibitory 
effect [97]. Scaffolded microenvironments will be discussed in more detail in next 
section  Enzyme Compartmentalization by DNA Nanocages. For non-freely dif-
fused systems (e.g. constrained diffusion on a surface or within a compartment), the 
appropriate organization of multienzyme systems is still essential to maximize the 
efficiency of the system [47]. Some recent modeling studies have provided novel 
perspectives on enzyme assemblies on surfaces [98, 99] or within compartments 
[100, 101].

4  Enzyme Compartmentalization by DNA Nanocages

Many metabolic pathways are organized by confinement within membrane-delim-
ited or membrane-free compartments, such as mitochondria, lysosomes, peroxi-
somes, carboxysomes and metabolosomes [102]. Compartmentalization affects 
biochemical reactions in many ways: by increasing local concentrations, facilitat-
ing mass transport of reaction intermediates, reducing toxicity of intermediates and 
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protecting encapsulated contents from competing pathways [103]. Compartmentali-
zation also plays a functional role in the chaperone-assisted folding of tertiary and 
quaternary protein structures and by preventing proteins from aggregating under cel-
lular stress conditions [104]. Results from recent studies show that nucleoli could 
promote structure maintenance of nuclear proteins by compartmentalization in the 
presence of stressors [105].

The assembly of a DNA nanocube was first reported by the research group of 
Seeman and coworkers in 1991 (Fig. 7a) [106]. However, the constructed cage was 
not tested for the encapsulation of proteins or other large biomolecules. In 2006, 
Turberfield and coworkers designed a DNA tetrahedron with each edge comprising a 
20-bp double helix (~ 7 nm) (Fig. 7b) [107]. This tetrahedron was shown to encapsu-
late a small protein [cytochrome c (inner diameter ~ 3.5 nm)]. The research group of 
Fan and coworkers very recently reported that the electroactivity of cytochrome c is 
enhanced on tetrahedral DNA frameworks [108]. As shown in Fig. 7c, DNA polyhe-
dra have been used to organize streptavidin proteins into various 3D patterns [109]. 
To encapsulate larger proteins, DNA origami nanocages have been designed with 
larger inner cavities that range from 10 to 50 nm [110]. Zhao et al. developed a gen-
eral approach to encapsulate enzymes within a fully closed DNA nanocage (Fig. 7d) 
[94]. In their method, enzymes are first anchored onto open, half cages at a very 
high yield (> 90%), following which two half cages are combined into a closed cage 
by adding bridge strands [94]. Sprengel et al. reported the selective encapsulation 
of a protein guest into a DNA origami hollow cage by decorating multiple ligands 

Fig. 7  Development of DNA nanocages for enzyme encapsulation. a The first 3D DNA cube. Repro-
duced from Seeman [19], with permission, copyright 2003, Springer Nature. b A DNA tetrahedron for 
encapsulating a protein. Reproduced from Erben et  al. [107], with permission, copyright 2006, John 
Wiley and Sons. c DNA polyhedrons for organizing proteins (STV streptavidin). Reproduced from Zhang 
et  al. [109], with permission, copyright 2019, John Wiley and Sons. d The combination of half DNA 
nanocages for enclosing enzymes. Reproduced from Zhao et al. [94], with permission, copyright 2016, 
Springer Nature. e Protein encapsulation into a DNA host using noncovalent protein–ligand interactions. 
Reproduced from Sprengel et al. [72] under the terms and conditions of the Creative Commons Attribu-
tion 4.0 International License, copyright 2017, Springer Nature
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on the inner surface of the cage to guide supramolecular interactions (Fig. 7e) [72]. 
This noncovalent protein–ligand binding enabled the capture of very large protein 
complexes (up to  DegP24, ~ 1 million Da) into a well-defined DNA host.

Regarding smart nanoreactors, switchable DNA nanocages have been designed 
to regulate the encapsulation and release of protein payloads. As shown in Fig. 8a, 
Fan and coworkers developed a single-step wrap-over of a planar DNA origami 
sheet into nanoribbons and nanotubes  which they used to encapsulate enzyme cas-
cades [80]. The research group of Knudsen and coworkers designed a temperature-
sensitive DNA nanocage which exhibited a closed conformation at 4  °C and an 
open conformation at 37 °C (Fig. 8b) [111]. This switchable nanocage was used to 
encapsulate and release HRP in response to temperature. Kohman et  al. reported 
a light-triggered release of bioactive cargoes of proteins and small molecules from 
a DNA nanocage through the incorporation of a photolabile crosslinker (Fig.  8c) 
[112]. An o-nitrobenzyl motif was photocleavable upon ultraviolet (UV) radiation 
at 240–400 nm to release a linked cargo of protein or small molecules. Kim et al. 
designed a pH-switchable DNA tetrahedron for regulating protein stability against 
protease digestion, protein–antibody binding and enzyme activity (Fig.  8d) [113]. 
Andersen and coworkers designed a DNA nanovault to control the access of sub-
strate molecules to encapsulated enzymes by the reversible opening (accessible to 
substrate) and closing (inaccessible) of the cage (Fig. 8e) [114].

Fig. 8  DNA nanocage-regulated encapsulation and release of protein cargoes. a Single-step folding 
of DNA nanotubes for enzyme encapsulation. Reproduced from Fu et  al. [80], with permission, cop-
yright 2013, American Chemical Society. b A temperature-sensitive DNA nanocage for encapsulating 
and releasing an enzyme. Reproduced from Juul et al. [111], with permission, copyright 2013, Ameri-
can Chemical Society. c A light-triggered release of bioactive cargoes from a DNA nanocage. Repro-
duced from Kohman et  al. [112], with permission, copyright 2016, American Chemical Society. d A 
pH-switchable DNA tetrahedron for regulating protein stability and activity. Reproduced from Kim et al. 
[113], with permission, copyright 2017, American Chemical Society. e A DNA nanovault with revers-
ible opening and closing to regulate enzyme–substrate accessibility. Reproduced from Grossi et al. [114] 
under the terms and conditions of the Creative Commons Attribution 4.0 International License, copy-
right 2017, Springer Nature
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More interestingly, DNA nanoscaffolds have been found to affect the activities of 
the enzymes that were attached onto them. Figure 9 summarizes some of the DNA 
structures that have been reported to enhance enzyme activities [115], including 
a long dsDNA molecule (e.g. λDNA, ~ 1–2 fold improved activity) [116], a DNA 
structure binding to enzyme substrates (~ 1–2 fold) [117], a 2D rectangular DNA ori-
gami (~ 1–3 fold) [45], DNA nanocaged enzymes (~ 3–6 fold) [94, 118] and DNA-
crowded enzyme particles (~ 2–3 fold) [95]. To better understand these effects, sev-
eral mechanisms have been proposed to interpret DNA scaffolds-enhanced enzyme 
activities, including locally decreased pH on the DNA scaffolds [115], the presence 
of a stabilized hydration layer by DNA phosphate backbones [94], nanoconfine-
ment of water [119], enrichment of substrate molecules on DNA scaffolds [117] 
and substrate channeling [45, 47]. However, many questions still remain on just how 
DNA confinements modify the local chemical and physical environment and affect 
enzyme functions. Experiments combining experimental data with molecular mod-
eling may shed light on the chaperone-like function of DNA nanocages.

5  Biomimetic Assembly of Macromolecular Complexes

Biomimetic systems represent one of the most exciting research frontiers in the 
twenty-first century. Life on earth has been diversifying for nearly four billion years, 
evolving into complex and diverse species. All living organisms have developed the 
appropriate functions and solutions to address the challenges of Earth’s environ-
ment. Living systems have inspired humanity and provided the principles to solve 
problems and explore questions both in and out of the laboratory. Biomimetic mate-
rials have shown exciting potential in applications ranging from catalysis and energy 
transformation to smart materials, diagnostic tools and therapeutics [120]. Equally, 
structural DNA nanotechnology has been applied to engineering artificial systems 
mimicking cellular structures and biological functions. In the following paragraphs 
we list several examples of DNA-scaffolded biomimetic assemblies.

The swinging arm, or the covalently attached prosthetic group, is a key functional 
structure in substrate channeling in multistep catalytic transformations within met-
abolic pathways [121]. For example, a lipoyl-lysine arm is found in the pyruvate 

Fig. 9  Enhancement of enzyme activity by DNA nanostructures. Reproduced from Zhang and  Hess 
[115], with permission, copyright 2017, American Chemical Society
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dehydrogenase complex (Fig.  10a); this arm transfers acetyl CoA and carries out 
oxidation and reduction between three enzymes [122]. To mimic this, Fu et  al. 
designed an  NAD+-modified DNA arm that facilitated the hydride transfer between 
two dehydrogenases [47]. As shown in Fig.  10b, a two-enzyme cascade consist-
ing of a glucose-6-phosphate dehydrogenase (G6PDH) and a malate dehydroge-
nase (MDH) was displayed on a DX tile. An  NAD+-modified poly(T)20 was placed 
halfway between G6PDH and MDH. The activity of the cascade was enhanced by 
approximately 90-fold by substrate channeling of one  NAD+ arm (Fig. 10c). Adjust-
ing the number of swinging arms produced even more activity enhancement. As 
shown in Fig. 10d, the reaction specificity of the G6PDH–MDH cascade was also 
increased in the presence of a competing enzyme of lactate dehydrogenase (LDH). 
 NAD+-modified DNA arms have also been successfully used to regulate the path-
way direction between G6PDH–MDH and G6PDH–LDH [123], with the directional 
regulation of enzyme pathways controlled by DNA strand displacement [123] or 
the photo-responsive reaction (Fig.  11a) [124]. Additionally, swinging arms have 
been used to organize  NAD+ transfer in a 2D enzyme array of G6PDH and LDH 
(Fig. 11b) [125].

DNA-based swinging arms can also facilitate electron transfer in bioelectroactive 
systems. The research group of Wilner and coworkers used a DNA scaffold to organ-
ize the spatial interaction of a GOx enzyme with an electrode surface to generate an 

Fig. 10  Biomimetic assembly of swinging arms. a Swinging domains in pyruvate dehydrogenase com-
plex. Reproduced from Perham [121], with permission, copyright 2000, Annual Review of Biochemistry. 
b An artificial swinging arm to transfer  NAD+ cofactor between two dehydrogenases (G6PDH glucose-
6-phosphate dehydrogenase and MDH)  on DNA nanoscaffolds. c Enhanced enzyme cascade activity by 
swinging arms. d Improved reaction selectivity by swinging arms. Reproduced from Fu et al. [47], with 
permission, copyright 2014, Springer Nature
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anodic electrocatalytic current (Fig.  12a) [126]. In this organized system, a ferro-
cene-modified ssDNA served as a relay to transfer electrons between the enzyme 
redox center and the electrode surface. As shown in Fig. 12b, Armand Tepper used 
DNA scaffolds to organize the electrochemical contact of redox enzymes and the 
electrode surface by immobilizing the copper enzyme of nitrite reductase (NiR) and 
its natural electron-exchange partner, pseudoazurin (Paz), onto a gold electrode by 
DNA scaffold-directed assembly [127]. Electron-transfer patches were realized by 
conjugating enzymes to specific ssDNA tags that allowed them to swing and per-
form nitrite reduction by accepting electrons from the gold electrode. As shown in 
Fig. 12c, Cha and coworkers used DNA scaffolds as a structure-directing template 
to organize  TiO2 and CdS nanocrystals [128]. Enhanced hydrogen production was 
achieved when a benzoquinone (BQ)-modified ssDNA was used to transfer electrons 
between a  TiO2 and a CdS.

Fig. 11  Large biomolecular nanostructures organized by artificial swinging arms. a  NAD+ arms for regu-
lating pathway activity between the G6PDH–MDH cascade and the G6PDH–LDH cascade. Reproduced 
from Ke et al. [123], with permission, copyright 2016, John Wiley and Sons. b 2D enzyme arrays of the 
G6PDH–MDH reaction with  NAD+ swinging arms. Reproduced from Yang et  al. [125], with permis-
sion, copyright 2018, John Wiley and Sons
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DNA-based molecular arms have also been useful in engineering nanorobotic 
systems and assembly lines. The research group of Simmel and coworkers studied 
the diffusive transport of DNA cargo strands that were bound to a DNA origami 
surface (Fig. 13a) [129]. These authors concluded that a more rigid DNA arm trans-
ferred cargo more efficiently than a more flexible, hinged arm. Based on this result, 
they developed a nanoscale robotic arm on a rectangular DNA origami tile, the rota-
tion of which was driven and controlled by an electrical field (Fig. 13b) [130]. As 
shown in Fig. 13c, two research groups, namely those of Zhuang and coworkers and 
Yin and coworkers, collaborated to develop a DNA origami rotor that was driven by 
the unwinding function of a helicase (RecBCD complex) during the transcription 
process [131]. These authors introduced a method of origami-rotor-based imaging 
and tracking (ORBIT) to track DNA rotation at the single-molecule level with a time 
resolution of milliseconds.

In addition to swinging arms, DNA nanostructures can also be used to engineer 
artificial membrane transporters to facilitate the diffusion of ions and small mol-
ecules across lipid membranes [36]. Ohmann and co-workers recently designed a 

Fig. 12  DNA swinging arms for facilitating bioelectroactive reactions. a A GOx–ferrocene–electrode 
contact. Reproduced from Piperberg et al. [126], with permission, copyright 2009, American Chemical 
Society. b A nitrite reductase–pseudoazurin (NiR-Paz) system (SAM self-assembled monolayer). Repro-
duced from Tepper [127], with permission, copyright 2010, American Chemical Society. c A  TiO2–CdS 
complex for  H2 production. Reproduced from Ma et  al. [128], with permission, copyright 2015, John 
Wiley and Sons
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synthetic scramblase built from DNA nanostructures [132]. As shown in Fig. 14a, 
the lipid-scrambling DNA nanostructure was made by the self-assembly of eight 
ssDNA with two cholesterol prosthetic groups to stabilize the inserted DNA struc-
ture in the lipid bilayer. Figure  14b shows molecular dynamic simulations of the 
lipid scrambling process catalyzed by DNA nanostructures; this DNA-based scram-
blase could flip  107 lipids per second, which is much faster than a natural enzyme 
(~ 3 × 104 lipids per second).

DNA scaffolding has also shown its value in more complex synthetic systems. 
Photosynthesis, for example, is an essential process that provides energy and oxy-
gen for most living organisms on earth. The development of artificial photosynthetic 
systems, therefore, would present great opportunities in such areas as food and fuel 
production, energy transformation and catalysis, with broad social and economic 
impact. DNA nanostructures have been applied to engineering these artificial pho-
tosynthetic systems, particularly light-harvesting complexes. As shown in Fig. 15a, 

Fig. 13  DNA arm-based nanorobotic system. a Double-stranded DNA (dsDNA) arms for fluorescent 
cargo transport. Reproduced from Kopperger et  al. [129], with permission, copyright 2015, American 
Chemical Society. b A nanoscale robotic arm driven by an electric field. Reproduced from Kopperger 
et al. [130], with permission, copyright 2018, The American Association for the Advancement of Sci-
ence. c DNA origami rotor driven by a motor protein (left), atomic force microscopy images of a DNA 
rotor (middle) and origami-rotor-based imaging and tracking (ORBIT) for tracking DNA rotation (right). 
Reproduced from Kosuri et al. [131], with permission, copyright 2019, Springer Nature

Fig. 14  Synthetic scramblase built from DNA. a The structure of a DNA-based scramblase with two 
cholesterol prosthetic groups. b Molecular dynamic simulation of the lipid scrambling process. Repro-
duced from Ohmann et al. [132] under the terms and conditions of the Creative Commons Attribution 
4.0 International License, copyright 2018, Springer Nature
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Tinnefeld and coworkers were the first to report a multi-fluorophore array on a DNA 
origami tile; these researchers controlled the spacing distance and the position of 
each fluorophore to direct the energy transfer [133]. Yan and  coworkers constructed 
an artificial light-harvesting antenna by assembling multiple donor/acceptor pairs 
on a seven-helix DNA bundle (Fig. 15b) [134]. In this system, stepwise funneling 
of the excitation energy was directed from the primary donor array (pyrylium [Py] 
dye) to the acceptor core (Alexa Fluor® [AF] dye) through the intermediate donor 
(cyanine [Cy3] dye). In a collaboration with the research group of Woodbury and 
coworkers, Yan and coworkers also assembled a tunable artificial light-harvesting 
system which used a three-arm DNA nanostructure instead of a the seven-helix bun-
dle (Fig. 15c). This structure was conjugated to a photosynthetic center protein and 
served as an antenna to transfer energy to the reaction center [135]. Recently, the 
research groups of Bathe and coworkers and Yan and coworkers worked together to 
develop a strategy to organize Cy3 dye aggregates on rigid dsDNA scaffolds. These 
dye/DNA aggregates showed a tunable absorption spectrum and strongly coupled 
exciton dynamics similar to that of natural light-harvesting systems (Fig. 15d) [136]. 
These DNA-templated dye aggregates can be used to engineer long-range, direc-
tional photo-energy transfer and harvest [137].

Fig. 15  Artificial photosynthetic systems organized by DNA nanoscaffolds. a Multicolor fluorophore 
array for photo-energy transfer. Reproduced from Stein et  al. [133], with permission, copyright 2011, 
American Chemical Society. b Artificial light-harvesting network. Reproduced from Dutta et al. [134], 
with permission, copyright 2011, American Chemical Society. c A DNA-directed light-harvesting/reac-
tion center. Reproduced from Dutta et  al. [135], with permission, copyright 2014, American Chemi-
cal Society. d A synthetic DNA-based excitonic circuit based on J-aggregates (PIC pseudoisocyanine). 
Reproduced from Boulais et al. [136], with permission, copyright 2017, Springer Nature
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6  Regulation of Proximity Interactions in Biochemical Reactions

DNA nanostructures can be used to mediate the proximity assembly of enzymes and 
catalytic cofactors in order to regulate their reaction activities. Ghadiri and cowork-
ers engineered an artificial allosteric enzyme by tethering a metalloprotease with 
an inhibitor-conjugated ssDNA, which they called an inhibitor-DNA-enzyme (IDE) 
construct (Fig. 16a) [138]. Due to the flexible ssDNA linker, the inhibitor was able 
to bind to the active site of an enzyme. The activation of this IDE was triggered 
by hybridizing the ssDNA linker with a complimentary ssDNA to form a dsDNA 
segment. The relatively rigid dsDNA blocked the inhibitor from binding to the 
active site, thus permitting the enzyme to function. This IDE structure was subse-
quently used to engineer molecular logic circuits by programmable DNA hybridi-
zations [139]. As shown in Fig. 16b, the IDE was used to regulate the fibrinolytic 
activity that resulted from the binding of a streptokinase (SK) to the plasma proen-
zyme plasminogen (Pg) [140], with the result being a DNA-linked protease inhibi-
tor bound with a SK–Pg complex that inhibited fibrinolytic activity. Specific DNA 
inputs disrupted the inhibited binding complex, releasing an active SK–Pg complex. 
The research group of Merkx and coworkers used DNA-mediated assembly and 
disassembly to regulate enzyme–inhibitor binding to reversibly switching enzyme 
activity on and off (Fig. 16c) [141]. As shown in Fig. 16d, Tan and coworkers used 
a cis–trans photoisomerization of an azobenzene prosthetic group to regulate the 
binding of a thrombin with its aptamer [142]. In the cis-form of azobenzene, a 

Fig. 16  DNA hybridization-regulated enzyme activity. a An enzyme–inhibitor interaction (ssDNA Sin-
gle-stranded DNA). Reproduced from Saghatelian et al. [138], with permission, copyright 2003, Ameri-
can Chemical Society. b Streptokinase–plasminogen (SK–Pg) complex for regulating fibrinolytic activity. 
Reproduced from Mukherjee et al. [140], with permission, copyright 2018, American Chemical Society. 
c Enzyme actuation (E enzyme, I inhibitor). Reproduced from Janssen [141], with permission, copyright 
2015, American Chemical Society. d Photo-regulated thrombin-aptamer complex. Reproduced from Kim 
et al. [142], with permission, copyright 2009, National Academy of Sciences
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thrombin was bound to an DNA aptamer which inhibited thrombin-mediated coagu-
lation. Upon UV irradiation, azobenzene switched the from cis-form to the trans-
form, exposing a regulatory domain that disrupted the thrombin–aptamer complex, 
allowing the unbound thrombin to induce blood coagulation [142].

To engineer more complicated regulatory systems, DNA-based nanomachines 
were developed to regulate the spatial interactions between components of biochem-
ical reactions. Liu and coworkers designed DNA nanotweezers to regulate the spac-
ing distance between a G6PDH and a  NAD+ cofactor that were anchored on the 
two arms of DNA tweezers (Fig. 17a) [48]. By switching the DNA tweezers from 
the open to closed state, the activity of the enzyme and its cofactor was turned on. 
As shown in Fig. 17b, Liu and coworkers used similar DNA tweezers to regulate 
the spacing distance between a GOx and HRP with tunable activities [143], while 
Wilner and coworkers reported DNA nanomachines that could perform “ON/OFF” 
switchable activation and deactivation of a three‐component biocatalytic cascade 
(Fig. 17c) [144]. When the tweezers were closed, the cascade reaction was activated 
by the formation of a hemin/G‐quadruplex‐bridged structure, but when the tweezers 

Fig. 17  DNA nanotweezers-regulated enzyme reaction. a A G6PDH/NAD+ pair. Reproduced from Liu 
et al. [48], with permission. Copyright 2013, Springer Nature. b A GOx/HRP cascade. Reproduced from 
Xin et al. [143], with permission, copyright 2013, John Wiley and Sons. c A three-component biocata-
lytic cascade of β-Gal/GOx/hemin. Reproduced from Hu et al. [144], with permission, copyright 2014, 
John Wiley and Sons. d Distance regulation of a GOx/HRP pair. Reproduced from Kou et al. [145], with 
permission, copyright 2018, American Chemical Society. e A trident-shaped DNA nanomachine with 
several conformational states for regulating an enzyme cascade. Reproduced from Xing et al. [146], with 
permission, copyright 2018, American Chemical Society
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were opened, the hemin/G-quadruplex was disrupted. DNA nanotweezers were also 
used by Kou et  al. [145] to regulate the electrochemical response of a GOx/HRP 
cascade reaction (Fig. 17d). Yang and coworkers constructed a trident-shaped DNA 
nanoactuator that could switch between four distinct structural conformations [146]. 
As shown in Fig.  17e, different GOx/HRP activities could be achieved with each 
conformation of the trident-shaped DNA nanomachine. However, because many 
enzyme cascade reactions (e.g. GOx/HRP cascade) are not sensitive to enzyme 
proximity, as discussed previously [92], only small differences of enzyme cascade 
activities were observed for these four conformations of DNA tweezers. In contrast, 
DNA nanomachines were more efficient in regulating enzyme/cofactor pairs (which 
do rely on proximity interaction), with enhanced activities ranging from a few fold 
up to 100-fold or more [48, 49].

Using a simpler approach, Fu and coworkers reported a method of using a DNA 
hairpin structure to mediate the proximity assembly of biochemical reactions 
(Fig. 18a) [49]. The self-folded DNA hairpin carried a cofactor that was not able to 
interact with its partner enzyme, resulting in very low catalytic activity. A triggered 
opening of the DNA hairpin was subsequently assembled with an enzyme to bring 
together the enzyme/cofactor pair for actuating the reaction with a 100-fold more 
activity. Based on this result, a biochemical sensing circuit was designed which com-
bined a sensing module (made of DNA structural switches) with a triggered proxim-
ity assembly of an enzyme/cofactor pair. When the sensing module was activated 
by a target molecule, the enzyme could bind to the cofactor and catalyze a reaction 
to produce a detectable signal (Fig. 18b). This DNA-based sensing circuit could be 
used either for detecting microRNA (via strand displacement) or small-molecule 
metabolites, such as adenosine (using an aptamer) (Fig. 18c). DNA nanostructure-
regulated enzyme assemblies provide a new approach to programming enzyme 

Fig. 18  DNA hairpin-mediated proximity assembly of an enzyme and a cofactor. a Enzyme activities for 
a hairpin-locked cofactor, opened cofactor and co-assembled enzyme/cofactor pair. b A design chart of 
a biochemical sensing circuit. c Detection of microRNA and adenosine. Reproduced from Oh et al. [49], 
with permission, copyright 2018, John Wiley and Sons
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activities. This may lead to the development of a new generation of enzyme-based 
diagnostic tools and therapeutics. They may also be used as a basis for developing 
protein feedback loops or allosteric regulation as an alternative or complementary 
technology to protein engineering.

7  Conclusions and Future Perspectives

Structural DNA nanotechnology has enabled the design and fabrication of various 
nano-objects with prescribed geometry and regulated spatial interaction. The combi-
nation of DNA nanostructures with enzyme–DNA conjugation provides an efficient 
approach for engineering artificial biomolecule complexes with finely controlled 
spatial arrangement and confinement. Considering these advantages together, it can 
be concluded that DNA nanostructures have the potential to deliver breakthroughs 
toward the engineering of more sophisticated biomimetic systems, such as synthetic 
cells, artificial subcellular components and photosynthetic and energy-harvesting 
structures. For example, DNA scaffolds can be used to organize multilevel assem-
blies for the construction of a synthetic reactor, including membrane confinement, 
artificial transmembrane nanopores and encapsulated biochemical reaction pathways 
[36]. Another potential use of DNA nanotechnology is the design and construc-
tion of dynamic and regulated structures with conformational switches triggered 
by external inputs. Dynamic nanostructures may find utility in the development of 
feedback-regulated biochemical systems. Some early examples have already dem-
onstrated the feasibility of using DNA nanostructures to regulate enzyme activities, 
including inhibitor–DNA–enzyme structures, DNA tweezers and DNA swinging 
arms. It is possible to design substrate cooperativity or product feedback inhibition 
by incorporating aptamer switches into enzyme inhibition and activation complexes. 
Finally, diagnostic applications provide great challenges and opportunities to design 
DNA-based molecular circuits for sensing various molecular targets in  vitro or 
in vivo. Smart DNA circuits can be adapted to various point-of-care diagnosis plat-
forms, such as paper strips and color-change-based assays. This will fit the growing 
need for fast, sensitive and easy detection of infectious diseases, such as the recent 
outbreaks of coronavirus, Ebola and Zika virus that resulted in Public Health Emer-
gencies of International Concern as announced by the World Health Organization. 
Overall, DNA-scaffolded enzyme assemblies will have a bright future and be useful 
in various applications of biocatalysis, functional biomaterials and novel theranostic 
medicine.
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