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Abstract
The identification and reconstruction of axonal pathways in the living brain or “ex-vivo” is promising a revolution in connec-
tivity studies bridging the gap from animal to human neuroanatomy with extensions to brain structural–functional correlates. 
Unfortunately, the methods suffer from juvenile drawbacks. In this perspective paper we mention several computational and 
developmental principles, which might stimulate a new generation of algorithms and a discussion bridging the neuroimag-
ing and neuroanatomy communities.
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Introduction

Brain sciences are undergoing a paradigm shift. After dec-
ades of attention to the organization and function of gray 
matter led by the recording of evoked potentials, single neu-
rons activity, positron emission tomography (PET), func-
tional magnetic resonance (fMRI), and by detailed analy-
sis of local cortical connectivity, the focus is now shifting 

towards the white matter and the axons traveling therein. In 
the eighteenth century, M de la Peyronie, surgeon of Luis 
XV of France (1744), had suggested that the corpus callo-
sum is the site “where the soul implements its functions”. 
That notion was controversial. However, the importance 
of the white matter in brain function was stressed by two 
influential papers: Geschwind’s “disconnexion syndromes” 
(1965a, b) and Sperry’s split-brain studies (1982). Clearly, 
lesions of cortico-cortical connections lead to deficits rang-
ing from aphasia to agnosia while the involvement of the 
white matter might underlie pathologies ranging from Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s0042 9-018-1759-1) contains 
supplementary material, which is available to authorized users.
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dyslexia (Klingberg et al. 2000) to schizophrenia (Innocenti 
et al. 2003).

Neural connections were studied with a number of inva-
sive techniques in animals, ranging from the visualization of 
degenerating fibers to axonal transport of molecules injected 
in the brain (Zaborszki et al. 2006). Among these, the ret-
rograde transport of Horse Radish Peroxidase (HRP), intro-
duced by Kristensson and Olson (1971), provided a very 
detailed, semi-quantitative picture of connections in a num-
ber of species, including the macaque monkey. The antero-
grade transport of biocytin or biotinilated dextran provided 
a detailed image of single axons, their terminal arbor geom-
etry including the size and distribution of synaptic boutons 
(King et al. 1989; Innocenti and Caminiti 2017).

More recently, the study of anisotropic water diffusion 
with MRI and the development of diffusion tractography 
algorithms provided tools to visualize neural connections 
as “streamlines” each estimating a fascicle of axons, in the 
intact brain, including the human brain (Conturo et al. 1999; 
Mori et al. 1999; Basser et al. 2000; Mori and van Zijl 2002; 
Dauguet et al. 2007; Dyrby et al. 2011, 2018; Tournier et al. 
2011; Jeurissen et al. 2017). Streamlines coursing together 
delineate bundles and several bundles correspond to tracts 
or fasciculi of classical histology, e.g. the corpus callosum, 
the corticospinal tract, the longitudinal fasciculi, etc. The 
potentials of this approach are enormous. First, the tech-
nique is non-invasive and translational between animals and 
humans (Innocenti et al. 2016, 2018; Safadi et al. 2018). 

Second, the identification of white matter pathways can be 
applied to the whole brain, is much faster than histology and, 
therefore, can be applied to groups of individuals of a given 
species. Finally, this technique could extend to the human 
what is known only in animals, in particular primates, and 
eventually, it could identify differences in neural connections 
associated with individual special skills as well as with as 
neurological and psychiatric syndromes.

It was authoritatively stated that diffusion tractography 
cannot achieve both high sensitivity and high specificity 
(Thomas et al. 2014; Knösche et al. 2015). Indeed, In spite 
of the several astute algorithms proposed to “clean” diffu-
sion tractography (Sommer et al. 2016; Schurr et al. 2018 
and references therein) the method still suffers from a num-
ber of drawbacks (Jones and Cercignani 2010; Jones et al. 
2012; Daducci et al. 2016; Maier-Hein et al. 2017). One of 
these is the generation of false negatives, i.e. connections 
which are not identified. This is largely due to “hard-to-
track” regions of the brain, which suffer from partial vol-
ume effects and poor resolution. This leads to difficulties 
in tracking narrow corridors of white matter particularly 
when axonal crossing occurs. Tractography algorithms using 
anatomical information from a high-resolution T1-weighted 
image have been proposed to guide tractography toward 
the gray matter and reduce bias in the narrow white mat-
ter pathways (Smith et al. 2012; Girard et al. 2014; Schurr 
et al. 2018). This has been shown to reduce some of the 
bias in the overall streamline reconstruction but other bias 

Fig. 1  The topological organi-
zation of the entire macaque 
cortical processing system as 
then known. A total of 758 con-
nections between the 73 areas 
are represented, of which 136 
(18%) are one-way. This con-
nectivity represents 15% of the 
possible connections between 
these areas. This non-arbitrary 
structure represents in a spatial 
framework the organizational 
structure of the network of 
cortico-cortical connections of 
this animal. For the explanation 
of symbols see Young (1993). 
An upgraded version of the 
same figure exists in Young 
et al. (1995) (from Young 1993, 
modified)
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remains, such as streamlines neglecting the bank of sulci 
(Van Essen et al. 2014; Reveley et al. 2015; Donahue et al. 
2016; Schilling et al. 2018). Recently, Teillac et al. (2017) 
proposed a method to improve the coverage of the bank of 
sulci using the pial surface information to guide the white 
matter reconstruction. Although further investigation is 
needed, the method shows promising results to reduce false 
negatives using anatomical information. Another drawback 
is the generation of false positives, i.e. the reconstruction of 
connections which are not really present (Maier-Hein et al. 
2017). Methods to reduce false positives using microstruc-
tural properties of the white matter tissue are being pro-
posed (e.g. Daducci et al. 2018). These use prior information 
on the tissue, such as volume, to remove streamlines not 
correctly representing it. Such methods have the potential 
to reduce the false positives problem of tractography but 
remain exploratory and preliminary. Also, since axon diam-
eters remain constant along tracts (Innocenti et al. 2018), 
implementing biologically inspired tractography algorithm 
using diffusion MRI methods sensitive to axonal diameters 
(Assaf et al. 2008; Alexander et al. 2010; NODDI), will help 
us produce more accurate brain connectomes (Girard et al. 
2017). The limitations of axonal diameter measurements 
using diffusion MRI are the source of heated debates beyond 
the aims of the present paper.

Topological principles underlying the organization of 
cortical connections could be used to further refine dif-
fusion tractography and reduce false positives. Young 
(1992, 1993), Young et al. (1995); Fig. 1 spearheaded the 
attempt to produce cortical wiring diagrams by applying 
graph theory to the organization of cortical networks. 
His work and a later rich literature (Stephan et al. 2000; 
Chcklovskii et  al. 2002; Klyachko and Stevens 2003; 
Markov et al. 2014; Wang and Clandinin 2016, among 
others) have established two principles of cortical wiring: 
(i) intercortical connections establish clusters of heavily 
interconnected areas, e.g., the somatomotor cluster, the 
visual cluster, the prefrontal cluster, etc. These clusters are 
characterized by massive connectivity between areas and 
are more sparsely connected with each other. Sparse con-
nectivity is detected by specialized algorithms and might 
vary across individuals correlating with individual perfor-
mance in neuropsychological tasks (Betzel et al. 2018). 
Therefore, it may not provide the ultimate mean for the 
refinement of tractography data. Nevertheless, in addi-
tion, (ii) Cortical connectivity obeys principles of econ-
omy, that is, it tends to minimize the volume occupied by 
axons. This principle was already stated by Cajal as: “loi 
de l’economie de protoplasma nerveux transmetteur et de 
temps de transmission” (law of the economy of neural pro-
toplasm and of transmission times; Ramon y Cajal 1909) 
and was supported by other observations, among these the 
fact that gyration leads to economy of wiring (Innocenti 

1990) and that the economy of wiring in evolution leads 
to limited increase in the diameter of cortical axons (Inno-
centi 2017) with consequential slowing down of cortico-
cortical connectivity and increased dispersion of delays 
(Caminiti et al. 2009). It may also have led to relative 
loss of long connections as between mouse and monkey 
(Horvát et al. 2016). A third (iii) principle is that cortical 
areas with similar cytoarchitectonic features, essentially 
neuronal density, appear to be more frequently intercon-
nected (Beul et al. 2017) while the distance between areas 
or cortical thickness are weaker predictors of connectivity.

The existence of functionally defined clusters can be 
used to accept or reject streamlines but with the limita-
tions mentioned below. The principle of economy could 
also be used to eliminate streamlines whose length grossly 
deviates from the bulk of the others in the same bundle. 
Also, streamlines who grossly violate principles of econ-
omy in a diffusion MRI tractogram should be handled with 
skepticism.

Fig. 2  Axons are organized in tight fascicles in their initial trajec-
tory. a Shows BDA labeled axons originating from an injection site 
near the areas 9/46 border in a macaque. b, c show enlarged views of 
the axonal fascicle. In c some axonal segments are down for clarity. 
The axons defasciculate further down along their course (see Fig. 1 in 
Caminiti et al. 2009)
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The three principles mentioned above are rooted in devel-
opmental constraints and further advances in tractography 
for estimating brain connections might be achieved by 
exploiting some fundamental similarities between the dif-
fusion tractography algorithms and those implemented in 
the development of neural connections. Below we list some 
of the similarities.

• First. Axons tend to grow in tight fascicles in their ini-
tial trajectory (Fig. 2) although they can de-fasciculate 
further in their course when encountering other guiding 
cues (see Fig. 1 in Caminiti et al. 2009).

• Second. Neural connections develop when the brain is 
rather different from the adult. Growing axons navigate 

in the white matter led by attractive and repulsive cues 
(Kolodkin and Tessier-Lavigne 2011). At the time of 
axonal growth gyri and sulci have not formed yet and, 
when they do, they alter the already established trajectory 
of axonal fascicles.

• Third. The white matter is structured; it contains “guide-
post” cells, pioneer axons, as well as glial fascicles 
(Rakic 1972), all of which orient the progress of growth 
cones (Norris and Kalil 1991; Fig. 3) and other axonal 
projections (Molnar et al. 1998) to which growing axons 
fasciculate.

Algorithms akin to development are already implemented 
in diffusion tractography.

Fig. 3  Schematic representa-
tion of radial glia at the time 
of neuronal migration and of 
axonal ingrowth. The left part 
of the figure is borrowed from 
Rakic (1972). The right part of 
the figure is reproduced from 
Norris and Kalil (1991)
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First. Attracting and repulsive ROIs are usually inserted at 
chosen locations to guide the trajectories of streamlines. A good 
example is the MAGNET approach recently developed for bet-
ter optic radiation reconstruction (Chamberland et al. 2017), or 
more recent bundle specific tractography (Rheault et al. 2017).

Second. Aberrant streamlines, whose trajectory devi-
ates from the bulk of a given projection are eliminated by 
inspection or by algorithms which tend to preserve the bun-
dling of axons (Côté et al. 2015; Prieto et al. 2016; Meesters 
et al. 2017). These algorithms also achieve economy of 
connections.

Third. The gyral bias can be corrected by implement-
ing the “cortical flow” algorithm (Fig. 4). This approach 
is loosely related to previous attempts to modify cortical 
geometry in order to resolve cortical layers (Waehnert et al. 
2014). Essentially it regresses the cortical geometry to when 
gyri and sulci have not fully formed yet, and to when axons 
are guided by radial glia (St-Onge and Descoteaux 2018, 
St-Onge et al. 2018).

Further perspectives

In early development, axons grow directionally, from origin 
to target. In doing so, as mentioned above, they often follow 
pioneer axons who found their way using cellular and molec-
ular cues in the substrate. Diffusion MRI could implement 
a similar strategy to guide streamlines in the white matter.

The elimination of false positives remains particularly 
challenging. Many transient (exuberant) projection form 
in development and are later eliminated (reviewed in Inno-
centi and Price 2005; Luo and O’Leary 2005). The selec-
tion of which axons will be maintained and which will be 
eliminated involves two sets of cues, axon-target recogni-
tion, probably due to molecular affinities (as for retinotectal 
projection) and activity, the lack of which leads to axonal 
elimination.

Indeed one can inform tractography with additional 
priors inspired by brain development. One possibility is 
that connections might conform to the molecular (genetic) 
heterogeneity of the brain, at least of the cortical mantle 
(Richiardi et al. 2015). This, in turn, could cause similari-
ties in neuronal proliferation and migration, hence in cyto-
architectonics (Beul et al. 2017). Another is that connections 
should link functionally complementary brain sites, e.g. 

Fig. 4  The cortical flow algo-
rithm reproduces to some extent 
the growth of axons into the 
gray matter in early develop-
ment. a Shows the initial 
gyration, b the gyration after 
applying the cortical flow algo-
rithm, c is the initial stage of 
streamline ingrowth, d the final 
stage of streamline ingrowth. 
See also Online animation: 
cortical flow.gif
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(Huntenburg et al. 2018). Functional criteria are at the basis 
of the clusterization of cortical areas, mentioned above. Two 
of us used functional criteria to accept the probable exist-
ence of an interhemispheric parieto-striatal connection in 
humans, which is less evident or absent in the monkey, but 
which might be involved in language (Innocenti et al. 2016). 
For sure, connections dealing with language are easier to 
accept in humans although they might be missing in other 
primates (Rilling et al. 2008).

Unfortunately, both molecular and functional criteria 
might lead to the rejection of connections inconsistent with 
a priori theoretical views, that is, the rejection of interesting, 
because unexpected, connections.

Eventually, in humans, coherent cortical activity revealed 
by EEG and MEG (Carmeli et al. 2005; Deslauriers-Gauth-
ier et al. 2017) might provide the best tool to identify con-
nected sites, particularly when the possibility that coherent 
activity might be generated by shared input, rather than by 
interconnections could be ruled out.
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