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Abstract

With the advances of next-generation sequencing technology, the field of disease research has been revolutionized.
However, pinpointing the disease-causing variants from millions of revealed variants is still a tough task. Here, we have
reviewed the existing linkage analysis tools and presented PedMiner, a web-based application designed to narrow down
candidate variants from family based whole-exome sequencing (WES) data through linkage analysis. PedMiner integrates
linkage analysis, variant annotation and prioritization in one automated pipeline. It provides graphical visualization of the
linked regions along with comprehensive annotation of variants and genes within these linked regions. This efficient and
comprehensive application will be helpful for the scientific community working on Mendelian inherited disorders using
family based WES data.
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Introduction

Linkage analysis is a classical statistical approach employed to
find out the approximate location of disease-associated genes.
By using polymorphic markers to track the co-segregation of
genetic material with the phenotype in the enrolled family, link-
age analysis can narrow down the regions of interest and reduce
the number of candidate genes, which can largely alleviate the
workload and time of researchers. Furthermore, linkage analysis
offers statistical evidence of a variant’s involvement in disease
susceptibility [1, 2]. As shown in the workflow, where famil-
ial sample collection is followed by genotyping (by any of the
various means), linkage analysis and targeted sequencing has
been successfully applied to discover rare variants in a segment
associated with a genetic disorder [3–5] (Figure 1A).

In the last decade, the development of high-throughput
sequencing technology has revolutionized the field of human
genetics and dramatically accelerated the pathogenic variant
discovery [6–8]. At present, both whole-genome sequencing
(WGS) and whole-exome sequencing (WES) are in active practice
for discovering pathogenic variants. Since its comparatively
lower cost, along with the majority of the known Mendelian
disease-causing variants located in protein-coding regions of
the genome, WES is more widely used than WGS [7, 9]. Although
WES only targets 1% of the genomic region, still hundreds of
thousands of variants would be detected from each sample.
Therefore, it is still a great challenge to effectively screen these
large number of variants and to find out primary candidate
disease-associated variants. Sequencing familial samples and
performing variant filtration with the Mendelian inheritance
pattern is a more effective strategy as compared to using
sporadic samples. The variants following the genetic laws
are further screened by ruling out the variants with allele
frequency exceeding a certain threshold in public databases
(such as the 1000 Genomes Project [10] and ExAC [11]) and
then prioritized by pathogenicity predicted by bioinformatic
tools (such as SIFT [12], Polyphen-2 [13] and MutationTaster
[14]) (Figure 1B) However, in practice the efficiency of hard-
filtering by predefined thresholds is affected by many factors
such as the number of sequenced members, allele frequency
reference dataset quality (population size and distribution) and
selected filtering thresholds. Therefore, this WES-based filtering
approach is still insufficient to identify the disease-causing
variants, as it sometimes leads to too many candidates or failure
to find candidates. Moreover, it cannot offer statistical evidence
of a variant’s involvement in disease susceptibility [15, 16].

To improve screening efficiency, previously several studies
attempted to analyze the family samples by combining the
array-based linkage analysis with the WES-based hard-filtering
approach, which has been successfully applied to target the
pathogenic variants [17–19]. However, their linkage analysis is
based on an additional single nucleotide polymorphism (SNP)
array test, which increases the cost and time consumption. Thus,
a more efficient and cost-saving strategy is to use WES data for
linkage analysis directly and to further screen candidate variants
within the linked regions (Figure 1C).

In this study, we have systematically reviewed the classical
linkage analysis tools and discussed the feasibility of performing
linkage analysis using WES data. Moreover, we implemented an
easy-to-use web-based tool, PedMiner consisting of the following
key features: (i) ∗.VCF files of family based WES data are used
to perform linkage analysis directly; (ii) One-step automated
pipeline that integrates pedigree relationship inference, linkage
analysis, variants annotation and prioritization.

Classical linkage analysis tools
A number of tools have been developed previously to perform
linkage analysis (Table 1) [20–32]. Here, we briefly summarized
the features of existing tools regarding some specific aspects:

Type of Tools

Currently, most available linkage analysis tools are based on
command-lines that run fast and can perform batch analysis.
However, these tools are not easy-to-use for users with limited
bioinformatics skills as the task always needs to be set up on a
server to run the scripts. Additionally, users need to deal with
many confusing parameters.

Algorithm implanted

Several algorithms have been proposed and implanted in link-
age analysis tools to calculate the likelihood of observed pedi-
grees. Among them, the Elston–Stewart algorithm and the Lan-
der–Green algorithm are most commonly used [15, 33]. For the
Elston–Stewart algorithm, the time for computation increases
linearly with the size of the pedigree but increases exponentially
with the number of biomarkers. Tools developed on Elston–
Stewart algorithm like LINKAGE and SEQLINKAGE are capa-
ble of analyzing large pedigrees but the number of biomarkers
that can offer is generally limited to six to eight [34]. Con-
versely, the Lander–Green algorithm consumes computational
time that increases exponentially with the size of the pedigree
but increases linearly with the number of biomarkers. Tools
based on the Lander–Green algorithm like GENEHUNTER and
MERLIN are suitable to analyze small- or medium-sized pedi-
grees with large numbers of biomarkers [35].

Input requirement

In general, linkage analysis requires information of pedigree
relationship, phenotype, genotype and reference genetic map.
However, classical tools are developed to analyze genotype array
datasets and require their own stringent formats that are diverse
among different tools. Thus, additional format conversion tools
like MEGA2 are required to prepare the files needed for linkage
analysis [36].

Result display

Most tools show the analyzed results in plain text, which is not
intuitive for users to narrow down the linkage regions. Though
EASYLINKAGE, PLINK and SEQLINKAGE provide figures to illus-
trate the logarithm of the odds (LOD) score, these tools only
provide linkage region coordinates but without any annotations
for the genes within the linkage regions. Furthermore, because
most of the current tools are designed for linkage analysis using
genotype array data, variant annotation and filtration functions
are not accessible.

These tools have been successfully applied to locate the
disease-causing genes with genotype array data. However, in the
era of sequencing, whether the classical tools can be used to
analyze the sequence data deserves more attention and trial.

Linkage analysis for next-generation
sequencing (NGS) data
Several studies have explored the feasibility of performing link-
age analysis directly with polymorphic markers extracted from
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Figure 1. Development of the disease-associated variants identification strategy. (A) Traditional linkage analysis workflow. (B) WES-based hard-filtering approach. (C)

Perform linkage analysis using WES data directly and further screen candidate variants within the linked regions.

WES data, which point out that this combined linkage and WES-
based hard-filtering approach is feasible and powerful in reduc-
ing the number of candidate variants [16, 37]. Here, we briefly
summarized the limitations and the potential improvement of
this approach.

Marker distribution

When performing linkage analysis using polymorphic markers
extracted from WES data, the missing variants outside of exons
might be a problem for the present linkage algorithms. Gazal
et al. [16] performed linkage analysis using WES data and found
that both the false-positive and false-negative signals are quite
low even the genome coverage is not uniform in WES targeted
region. It is worth mentioning that this limitation can be over-
come by introducing advanced capture technologies. With the
application of ‘exome plus’ capture, in which extra probes are
designed and attached to an exome capture kit and a large num-
ber of variants located in non-exonic regions are obtained [6].
For example, some capture kits add probes equidistantly outside
of exon regions for copy number variants analysis and SNPs
detected by these probes are suitable to be used as polymor-
phic markers for linkage analysis. These additional non-exonic
SNP markers can further alleviate the problem of non-uniform
distribution of markers caused by the WES natural defect [37].

Genotype quality

Genotypes obtained by low-depth NGS technologies tend to have
a higher error rate than those obtained from genotyping arrays
that result in false-positive linkage peaks [38]. This problem can
be addressed by the recent advances in NGS technologies. On one

hand, to improve the variant calling accuracy of family based
sequencing data, some tools consider both linkage disequilib-
rium patterns and the constraints from the family structure
when it assigns individual genotypes to subjects. On the other
hand, the increase of sequencing depth further reduces the rate
of error in genotype calling [39–41].

Based on the above analysis, performing linkage analysis
using WES data is a feasible and promising approach to locate
the candidate variants efficiently. However, the existing linkage
analysis tools are neither suitable nor convenient to perform
analysis with WES data directly: (i) VCF format data are not
supported by current linkage tools; (ii) command-line package
type tools are not user-friendly; (iii) graphical visualization of
linkage regions, annotation and filtration of variants or genes
are not accessible. Thus, an online bioinformatics tool that can
detect and systematically annotate linkage regions with family
based WES data is urgently needed.

PedMiner
To meet the requirements mentioned above, we have developed
a web-based application, PedMiner, which is designed to perform
linkage analysis for family based WES data using the widely
implanted Lander–Green algorithm. PedMiner have two main
function modules: (i) detection and visualization of the link-
age regions; (ii) annotation and filtration of variants and genes
within the detected linkage regions (Figure 2). All the details
regarding construction, quality control and step by step detail
of how to run PedMiner with a case study has been documented
in the Supplementary material. The web server is implemented
in PHP + Python + R and is online available to all users for free at
https://mcg.ustc.edu.cn/bsc/pedminer/.

https://mcg.ustc.edu.cn/bsc/pedminer/
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Table 1. A comparison of family-based linkage analysis tools currently in use

Tool Type Algorithm Input format Results display

Linkage region Graphical
visualization

Annotation Filtration Reference

LINKAGE Package Elston-Stewart LINKAGE
Format

� × × × [20, 21]

MENDEL Package Elston-Stewart
and
Lander-Green

SNP data in
binary format

� × × × [22]

TLINKAGE Package Elston-Stewart DATAFILE
format

� × × × [23]

GENEHUNTER Package Lander-Green GENEHUNTER
format

� × × × [24]

LOKI Package MCMC LOKI format � × × × [25]
SIMWALK2 Package MCMC SIMWALK2

format
� × × × [26]

MERLIN Package Lander-Green QTDT /
LINKAGE
format

� × × × [27]

SUPERLINK Package Bayesian
networks

SUPERLINK
format

� × × × [28]

EASYLINKAGE-
Plus

Package Several
Integrated
programs
(including
GENEHUNTER)

SNP data in
plain text

� � × × [29]

PSEUDOMAKER Package Several
Integrated
programs

LINKAGE
format

� × × × [30]

PLINK Package GPS PLINK format � � × × [31]
SEQLINKAGE Package Elston-Stewart WGS data in

VCF format
� � × × [32]

PedMiner Web Lander-Green WES data in
VCF format

� � � � This study

MCMC: Markov chain Monte Carlo, GPS: Global positioning system, Tick (�): implemented in the tool, Cross (×): not available.

Preparations for analysis

Upload samples and assign parameters

PedMiner requires inputs in VCF format, and to reduce the
uploading time, VCF files compressed in ∗.tar.gz or ∗.zip format is
recommended. To initiate the analysis, users should assign the
reference SNP dataset and pedigree parameters. The reference
SNP dataset contains the genetic map and allelic frequency
information that are required to extract SNP genotypes from the
uploaded VCF files as polymorphic markers for linkage analysis.
The pedigree parameters are used to indicate the structure of
the family includes relationship, gender, subject’s phenotype
(control or patient) and sequencing status (sequenced or not).
PedMiner can generate pedigree parameters for each family
member automatically and users can directly modify it on the
web page (Figure 3A).

Specify the disease model

After completing the initial steps, users will be guided to
select the inheritance pattern, disease-allele frequency and
penetrance to specify the disease model. After this, users need
to define the expected genotype of each sample according to
the selected inheritance pattern (Figure 3B). Currently, eight
inheritance patterns are supported by this application, including
autosomal recessive and dominant, X-linked recessive and

dominant, sex-influenced recessive and dominant, sex-limited
recessive and sex-limited dominant.

Once all the parameters are set, users can click the ‘Submit’
button to start the analysis (Figure 3B). A web page will display
the job status and the link to the detailed results (Figure 3C).
PedMiner also provides the reanalysis option in which users can
analyze some other inheritance patterns or settings in the same
uploaded data without uploading VCF files.

Analysis of results

Once a job is completed, the parameters and detailed analysis
results will be displayed in the ‘Results’ page. These results
include relationship inference, linkage region interpretation,
variant and gene annotation and filtration.

Relationship inference

Correct relationship among the members of pedigree under
analysis is important for successfully mapping the disease locus,
PedMiner integrates a relationship inference function for users
to check the relationship among family members (Figure 4A).
Based on the zero alleles identical by state (IBS0) and coeffi-
cient relatedness statistics displayed in the ‘Results’ page, users
can infer the relationship between any samples (parent-child,
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Figure 2. The architecture of PedMiner. The linkage region detection function is based on the Lander–Green algorithm and VCF files can be upload directly. PedMiner

provides relationship inference function and graphical visualization of the linkage region. The annotation and filtration functions are provided to prioritize the

diseasing-causing variants and genes.

sibling-sibling, monozygotic twins or sample duplicates and
unrelated pairs) and true gender of each sample.

Linkage region interpretation

PedMiner provides visualization of the linkage region both
in genome-wide and at single chromosomal scale. From the
genome-wide LOD score distribution line graph, users can
rapidly acquire all linkage regions across the entire genome
(Figure 4B). Users can also get a graphical display of the linkage
region with more information (SNP markers and variants

fulfilling the selected genotype pattern) from a single chro-
mosome map (Figure 4C). Furthermore, the genomic location
of the linkage region was transformed from genetic position
into physical position, and annotation for genes and variants
within the linkage region are provided based on the physical
position. By clicking the ‘Detail’ button below each thumbnail,
detailed information will be presented in tabular format for each
linkage region, including the position on the chromosome, LOD
score, selected genotype pattern compatibility, selected marker,
genotype and quality of variants.
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Figure 3. Input page of PedMiner and parameters for the linkage region detection. (A) Upload samples and assign parameters. (B) Specify the disease model. (C)

Job-status displayed in real-time.

Figure 4. Relationship inference and linkage region interpretation result. (A) Sample relationship and sex inference. (B) Genome-wide LOD score. (C) LOD score for each

chromosome and high resolution of LOD score distribution, ‘+’ and red dots represent the selected SNP markers and variants fulfilling the selected genotype pattern,

respectively.

Variant and gene annotation and filtration

PedMiner provides comprehensive annotations for variants
and genes with information collected from multiple sources
(Supplementary Table S1). For variant, the information includes
linkage region, variant site, variant consequence, minor allele
frequency (MAF), noxiousness prediction by multiple tools,
corresponding gene and orthologous in mice (Figure 5A).

For gene, the information includes gene location, function
description, GO annotation, the phenotype of their knockout
mice and disease-related information (Figure 5B).

Based on the above-mentioned annotation, PedMiner offers
a default filtration process to set a priority hierarchy of the
candidate variants following these commands: (i) keep variants
following preset inheritance pattern; (ii) keep variants affecting
protein sequence; (iii) keep variants within linkage regions as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa077#supplementary-data
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Figure 5. Annotation and filtration page of PedMiner. (A) Detail annotation information of the variants displayed in the table. (B) Detail annotation information of the

genes displayed in the table. (C) Default three-step filtration process. (D) Variant filtration item and threshold, users can filter variants based on the variant consequence,

population frequency, noxiousness software percent, gene function annotation and linkage region. (E) Genes within the linkage region.

these variants are statistically co-segregate with the phenotype
(Figure 5C). Results for each filtration step will be displayed on
the ‘Results’ page, and users can further filter candidates via web
page directly by setting the threshold for the annotation items
(Figure 5D).

In case of the indirectly sequenced pathogenic variants in
the gene exons of the linkage regions, PedMiner further pro-
vides the annotations of all genes in the linkage region, so
that the user can select candidate pathogenic genes based on
their known functions (Figure 5E). Thus, users could perform
targeted sequencing to detect candidate variants in the non-
exonic regions (such as promoter or enhancer region) of these
genes in the follow-up experiments.

Case study
Here we are presenting our unpublished data where we have
performed WES for an infertile patient and his mother from a
Pakistani consanguineous family (Figure 6A). WES identified 14
670 variants that follow the autosomal recessive inheritance
pattern. By eliminating the variants that do not affect the

protein-coding sequence, 1031 variants were kept. Linkage
analysis highlighted a region in chromosome 10 with LOD
score > 1 that is statistically more likely contains the disease-
causing variant (Figure 4B). After keeping variants located
in the linkage region, the number of candidate variants is
further reduced from 1031 to 65. For the remaining variants,
59 variants were eliminated due to high MAF (>0.05). For the last
six variants, three variants were eliminated due to less than
half noxious software predict it to be harmful. Those filter
processes left three variants. Based on the gene annotation
information, we found that a splice site variant located in the
CFAP43 gene is most likely the disease-causing variant (Figure 6B
and C). Detailed analysis results and the filtration process
can be accessed at http://mcg.ustc.edu.cn/bsc/pedminer/resu
lt.php?job_id=576938593887. Furthermore, the co-segregation
of this CFAP43: c.1442 + 1G > A variant in the pedigree was
experimentally confirmed by Sanger sequencing (Figure 6D).
By using PedMiner, the pathogenic variant identification
process has been simplified as it has improved the screening
efficiency and make extensive literature research and Sanger
sequencing work unnecessary, which will save time and money
of researchers.

http://mcg.ustc.edu.cn/bsc/pedminer/result.php?job_id=576938593887
http://mcg.ustc.edu.cn/bsc/pedminer/result.php?job_id=576938593887
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Figure 6. A splice site variant in CFAP43 that causes oligoasthenotspermia in a Pakistani consanguineous pedigree was identified by PedMiner. (A) Pedigree of the

Pakistani consanguineous family with two patients affected with oligoasthenotspermia. (B) Flow chart of WES data analysis based on PedMiner. (C) Function annotation

information of CFAP43. (D) Sanger sequencing chromatograms of the CFAP43 splice site variant in family members.

We also applied PedMiner to an already published data
without the use of this tool and we successfully identified
the same disease-causing variant as originally published [42].
The details have been documented in the supplementary
material.

Conclusion
Disease gene and variant identification are critical to under-
standing the genetic basis of biological processes and improving
human health. Here, we have shown that performing linkage
analysis directly with polymorphic markers extracted from WES
data is a feasible and promising solution to improve variants
filtering efficiency, reduce analysis complexity as well. However,
current linkage analysis tools are designed to perform linkage
analysis using array-based genotyping data, which is not conve-
nient to integrate those linkage analysis tools into the WES data
analysis pipeline. Additionally, current linkage analysis tools are
not user-friendly and functionally incomplete. Thus, we present
PedMiner, which integrates linkage analysis, disease-associated
variant annotation and prioritization for family based WES data.
This combined strategy rejuvenates the tradition linkage analy-
sis as well as improves the efficiency of the WES data filtering
process. PedMiner will meet the great need for fundamental
research and clinical diagnosis.

Key Points
• Systematically reviewed the traditional linkage analy-

sis tools and WES-based hard-filtering approach, and
summarized the limitations and potential improve-
ment of performing linkage analysis with WES data.

• Provided an easy-to-use web-based application, Ped-
Miner, the one-step automated pipeline that inte-
grates linkage analysis using family based WES data,
linkage region visualization, variant/gene annotation
and prioritization.

• PedMiner successfully identified a splicing variant
in CFAP43 as the candidate oligoasthenotspermia-
causing variant in a Pakistani consanguineous family.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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