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a b s t r a c t 

Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus 

disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoid- 

ance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with 

intense respiratory effort may increase risks of patients’ self-inflicted lung injury, leading to delayed intubation 

and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF 

management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as 

either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can 

improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment 

failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each 

interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological 

monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventila- 

tion. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, 

and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based 

overview of this highly relevant topic. 

I

 

h  

n  

(  

a  

l  

a  

i  

h  

s  

v  

d

‘

 

p  

t  

i  

a  

l  

a  

R  

2

 

d  

p  

e  

l  

h

R

A

C

(

ntroduction 

Optimal management of hypoxemic respiratory failure is

ighly debated. Avoidance of endotracheal intubation via

on-invasive oxygenation strategies – high-flow nasal oxygen

HFNO), non-invasive ventilation (NIV), or continuous positive

irway pressure (CPAP) – reduces risks of ventilator-induced

ung injury and other serious complications ( e.g. , ventilator-

ssociated pneumonia, diaphragmatic dysfunction, and delir-

um), improving clinical outcomes and quality of life even after

ospital discharge. [ 1–3 ] Conversely, patients with the greatest

everity might require rapid escalation to invasive mechanical

entilation to avoid worsening outcomes in cases of delayed en-

otracheal intubation. [ 4 ] 
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For these reasons, the most recent guidelines are unable to

rovide definitive recommendations on the use of NIV for pa-

ients with acute hypoxemic respiratory failure (AHRF), suggest-

ng the use of high-flow oxygen support over standard oxygen

nd NIV (although with very low certainty of evidence in the

atter comparison) and caution in choosing among the avail-

ble devices. [ 5 ] However, neither these guidelines nor those by

ochwerg et al . [ 6 ] considered patients with coronavirus disease

019 (COVID-19). 

Patients with AHRF have a dysregulated respiratory

rive, [ 7 , 8 ] which can generate high tidal volumes and promote

atient self-induced lung injury (P-SILI). [ 9 , 10 ] Strong inspiratory

fforts and lung tissue inhomogeneities can produce injurious

ung inflation patterns ( i.e. , the “pendelluft ” phenomenon) that
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an further damage already inflamed lung parenchyma, leading

o worsening clinical outcomes. [ 11 , 12 ] 

Given the risk of P-SILI, the ideal respiratory support tool

hould not only improve oxygenation but also modulate respi-

atory drive and effort. This issue was of particular interest in

ritical care even prior to the COVID-19 pandemic, which fur-

her highlighted the topic’s relevance, since an unprecedented

umber of patients are now affected by AHRF and treated in the

ost heterogeneous clinical scenarios. HFNO and NIV have been

idely exploited in the current pandemic, with varying success

ates. [ 13 ] The enormous numbers of patients with COVID-19-

ssociated respiratory failure admitted to intensive care units

ICUs) worldwide provided physicians and researchers an un-

recedented volume of data, representing a unique opportunity

o answer pressing questions that have evaded respiratory phys-

ologists and intensivists for decades. 

In this narrative review, we analyze the pathophysiology of

pontaneous breathing in AHRF, the salient features of avail-

ble non-invasive ventilatory strategies, and current evidence

upporting the use of these modalities for managing AHRF in

he context of COVID-19, highlighting lessons the last 2 years of

andemic have taught us and the remaining unresolved issues. 

isks of Spontaneous Breathing 

Aside from the benefits of avoiding mechanical ventilation

 i.e. , no sedation or muscle paralysis), maintenance of spon-

aneous breathing is advantageous for lung, heart, and di-

phragm physiology. Indeed, spontaneous breathing helps pre-

ent diaphragm dysfunction and atrophy, [ 14 , 15 ] preserves car-

iac preload and output, [ 16 , 17 ] and yields increased aeration

f the dependent lung ( i.e. , the dorsal and most atelectatic re-

ions), minimizing ventilation/perfusion mismatch and improv-

ng blood oxygenation. [ 18–20 ] 

However, critically ill patients with AHRF can have ele-

ated respiratory drive due to combined factors including in-

reased CO 2 production and alveolar dead space, reduced pul-

onary compliance, and enhanced central ventilatory response

o CO 2 . 
[ 7 ] This can shift the brain ventilatory curve toward

 lower CO 2 , and the attempt to increase minute ventilation

 i.e. , increased respiratory rate and respiratory muscle activity)

auses a stronger inspiratory effort. [ 8 ] This translates into large

wings in pleural pressure that generate high transpulmonary

ressures and tidal volumes, potentially increasing stress on aer-

ted lung tissue, which is markedly impacted by aeration loss

rom the disease process ( i.e. , “baby lung ”). [ 21 , 22 ] 

Importantly, during spontaneous breathing, limiting

ranspulmonary pressure and tidal volume alone does not

ecessarily prevent harmful ventilatory patterns unless spon-

aneous effort is reduced. [ 23 ] This illustrates that intense

nspiratory effort might be dangerous per se and should

hus be avoided. Intense swings in pleural and airway pres-

ures promote recurrent alveolar openings and closings ( i.e. ,

telectrauma [ 24 ] ), while strong negative deflections in pleural

ressure increase vascular transmural pressure and vessel per-

eability, favoring alveolar flooding and pulmonary edema. [ 25 ] 

oreover, negative pleural pressure swings are not uniformly

ransmitted throughout the lungs; some areas behave more like

 “solid ” (dependent, consolidated regions) and others more

ike a “fluid ” (non-dependent, aerated regions) in terms of their
2 
echanical response to distending stress. This inhomogeneous

ransmission of forces translates to a pleural pressure gradi-

nt, which generates an intra-tidal displacement of gas from

on-dependent to dependent lung regions at early inspiration,

 phenomenon called pendelluft [ Figure 1 ]. 

Pendelluft can result in hidden movement of gas volumes,

ith regional overdistension of the dependent lung that can-

ot be detected by conventional tidal volume monitoring by a

entilator. [ 12 ] Recently, a retrospective cohort study of 200 pa-

ients with AHRF showed that pendelluft, detected in 31% of

hose invasively ventilated, was associated with longer intensive

are stay and fewer ventilator-free days among patients with a

artial pressure of oxygen (PaO 2 ) /fraction of inspired oxygen

FiO 2 ) ratio < 200 mmHg. [ 11 ] 

In the diaphragm, strong inspiratory effort can cause mus-

le fiber inflammation, sarcolemmal rupture, and sarcomeric

isarray, leading to diaphragm dysfunction and detrimental

linical outcomes. [ 26–28 ] These physiological findings are sup-

orted by the association between persistently high inspiratory

ffort and non-invasive treatment failure. [ 29–31 ] Cumulatively,

hese data warrant careful monitoring of respiratory effort

y esophageal manometry, [ 29 , 30 ] respiratory rate, [ 32 ] and/or

igh tidal volumes. [ 31–33 ] Delayed endotracheal intubation can

orsen outcomes, especially in patients with severe hypoxemia

PaO 2 /FiO 2 < 200 mmHg). [ 34 , 35 ] 

Non-invasive respiratory support can be administered safely

nd effectively in patients with a PaO 2 /FiO 2 > 200 mmHg.

owever, the optimal balance between benefits and harms of

reserving spontaneous breathing with non-invasive respira-

ory support has yet to be fully elucidated for patients with a

aO 2 /FiO 2 ≤ 200 mmHg. This is particularly important for pa-

ients affected by COVID-19, given the high failure rate of non-

nvasive respiratory support in this context and the shortage of

quipment in such difficult circumstances. [ 13 ] Advantages and

isadvantages of the various ventilatory strategies are summa-

ized in Table 1 . 

FNO 

The HFNO system allows delivery of heated, humidified flow

p to 60 L/min at the desired FiO 2 levels, through special nasal

rongs. [ 36 ] The gas flow source can vary, such as air/oxygen

lenders, ventilators, and turbine flow generators, each allowing

elivery of a high-flow air/oxygen mixture, matching the peak

nspiratory flow and permitting precise FiO 2 delivery across a

ide range of respiratory rates and tidal volumes. [ 37 , 38 ] 

HFNO allows development of a variable positive end-

xpiratory pressure (PEEP), which depends on the set flow,

ith higher PEEP developing when patients breathe with a

losed (rather than open) mouth. [ 39 , 40 ] Although small, these

EEP levels generate some alveolar recruitment, thereby im-

roving oxygenation, as shown in both patients following car-

iac surgery [ 41 ] and those who are hypoxemic. [ 42 ] Finally, al-

hough moderate, [ 39 , 40 , 43 ] this flow-induced PEEP may be help-

ul in counterbalancing intrinsic PEEP in patients with dynamic

yperinflation, resulting in diminished work of breathing and

mproved comfort in patients with chronic obstructive pulmori-

ry disease. [ 44 ] 

HFNO creates a washout effect of the upper airway dead

pace, particularly with flow rates > 30 L/min. [ 45 , 46 ] This mech-
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Figure 1. Pendelluft during spontaneous breathing. Represen- 

tative patient tracings during spontaneous breathing, show- 

ing the pendelluft phenomenon between the ventral and dor- 

sal lung regions. A: Esophageal pressure tracings showing the 

start of muscular inspiration corresponding to the point of 

esophageal pressure deflection and ΔPes representing inspira- 

tory effort. B: Global ΔZ, expressed in arbitrary units, showing 

overall lung insufflation during inspiration. C–F: Ventral ROI 

ΔZ from C and D, demonstrating an initial emptying of these 

lung areas (blue rectangle), with air moving toward the dor- 

sal ROI (E and F), which are instead characterized by an in- 

creased electrical impedance tomography signal. The opposite 

phenomenon occurs during expiration. The ΔZ of each ROI, cor- 

responding to their relative tidal volume and occurring at dif- 

ferent timepoints across respiratory cycles, are highlighted by 

the red dotted lines. DD: Dorso-dorsal; MD: Mid-dorsal; MV: 

Mid-ventral; ROI: Regions of interest; VV: Ventro-ventral. 

a  

(  

i  

o

 

r  

s  

p  

c  

t  

p  

i  
nism leads to a reduction in partial pressure of carbon dioxide

PaCO 2 ), especially in patients who are hypercapnic, modulates

nspiratory effort in patients with AHRF, and provides passive

xygenation during procedural sedation. [ 47 , 48 ] 

These cumulative physiological properties improve lung

ecruitment, with higher PaO /FiO and reduced dynamic
2 2 

3 
train, improve thoracoabdominal synchrony, [ 49 ] reduce res-

iratory rate, reduce minute ventilation, and improve patient

omfort, with fewer displacements and oxygen desaturations

han standard oxygen therapy. [ 37 , 41 , 49 , 50 ] This strong patho-

hysiological rationale led to the FLORALI study, a random-

zed trial comparing HFNO, standard oxygen, and face mask
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Table 1 

Advantages and disadvantages of non-invasive respiratory support strategies. 

Non-invasive 

strategy Advantages Disadvantages 

HFNO Simplicity of use 

Possible to deliver accurate 

FiO 2 

Small PEEP effect 

CO 2 washout of upper airway 

Improved patient comfort 

Patient can speak, cough 

Possible to deliver treatment 

outside ICU 

Only minor reduction in 

inspiratory effort 

Minor improvement of 

PaO 2 /FiO 2 compared with 

CPAP and NIV 

Face mask NIV Improvement in oxygenation 

Reduction of inspiratory 

effort 

Patient discomfort 

Air leaks common 

Risk of pressure ulcers 

Synchronization between 

patient and ventilator 

increases risk of high 

transpulmonary pressure and 

tidal volume 

Helmet NIV Possible to deliver higher 

PEEP 

Patient can speak, cough 

Improved dyspnea and 

oxygenation 

Reduction of inspiratory 

effort 

Personnel training on 

interface necessary 

Inability to accurately 

monitor tidal volume 

Helmet CPAP 

Possible to deliver higher 

PEEP 

Patient can speak, cough 

Improved dyspnea and 

oxygenation 

Personnel training on 

interface necessary 

Inability to accurately 

monitor tidal volume 

No effects on inspiratory 

effort in awake patient 

CPAP: Continuous positive airway pressure; HFNO: High-flow nasal oxygen; 

NIV: Non-invasive ventilation; PEEP: Positive end-expiratory pressure; P-SILI: 

Patient self-induced lung injury. 
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IV, which showed reduced mortality among patients receiv-

ng HFNO overall, and reduced intubation among the most

evere HFNO-treated patients. [ 51 ] These data showing effi-

acy, in combination with established safety, simplicity of use,

nd tolerability, [ 37 , 45 , 50 , 52–56 ] make HFNO the first-line ther-

py for patients exhibiting AHRF in the most recent clinical

uidelines. [ 5 ] 

IV 

NIV can be delivered through various interfaces – oronasal

asks, face masks, and helmets – and with different ventila-

ion modalities, usually pressure support ventilation (PSV) or

PAP. [ 57 ] Each interface exhibits unique features, which can

e exploited to optimize efficacy and tolerability. Traditionally,

ace masks – oronasal and full face – are used most often. The

hoice between mask type is based on patient comfort, face con-

our, and equipment availability as the difference in the internal

ead space (which is higher in full-face masks) does not affect

arbon dioxide rebreathing, minute ventilation, inspiratory ef-

ort, or clinical outcomes. [ 58 ] PEEP during face mask NIV and

PAP usually ranges from 5 cmH 2 O to 8 cmH 2 O; pressure sup-

ort, when applied, is typically set from 7 cmH 2 O to 14 cmH 2 O.

SV-NIV increases airway pressure, improves arterial oxygena-

ion, increases end-expiratory lung volume, [ 59–62 ] and augments

ardiac function by reducing left ventricular afterload and right
4 
entricular preload, [ 63 , 64 ] ultimately decreasing inspiratory ef-

ort and work of breathing. [ 60 , 65 ] 

Nevertheless, face mask NIV has some limitations. It is dif-

cult to deliver higher PEEP because of air leaks, it produces

kin necrosis with prolonged sessions, and patient discomfort

an be an issue among those with hypoxemia as high PEEP is

 suggested strategy for reducing inspiratory effort to improve

utcomes. [ 11 , 66 ] 

elmet NIV 

The helmet is a transparent hood with a soft collar that

ontacts the body at the neck and/or shoulders but does not

ontact the patient’s face. The size of the interface is deter-

ined by the patient’s neck circumference. At least two ports

re present, which are usually connected to separate tubing for

nhaled and exhaled gas ( i.e. , a double-tube circuit). A standard

-piece circuit can also be connected to a single port, although

ouble-tube circuits are superior to Y-piece circuits in terms

f ventilator pressurization performance and patient–ventilator

nteraction. [ 57 , 67 ] 

The helmet Is a unique interface and therefore requires spe-

ific ventilatory settings for optimization. Helmets have their

wn compliance and must be well distended to guarantee the

ystem’s pressurization. The ventilator-delivered pressure must

istend the compliant interface before it can pressurize the pa-

ient’s airway, making inspiratory pressurization slower than

ace masks, with its speed inversely proportional to the helmet’s

aseline compliance. When this delay is too long, respiratory

uscles may not be adequately unloaded, increasing work of

reathing. [ 68 ] For the same reason, system pressure decay after

xpiratory cycling is slower, increasing PEEP during expiration.

o optimize the system performance, the following adjustments

an be made. 

igh PEEP 

Increasing PEEP (10–12 cmH 2 O) reduces helmet compliance,

hus minimizing the amount of pressure support wasted on the

nterface and reducing airway pressurization time. In contrast to

ace masks, high PEEP reduces air leaks by forcing the helmet

gainst the patient’s shoulders for an optimized seal. [ 69 ] 

oderate high-pressure support 

Similarly, since part of the pressure support is dissipated on

he helmet surface, higher levels (10–18 cmH 2 O) can be used

o adequately unload the respiratory muscles. Moreover, higher

ressure support increases the washout flow, helping avoid CO 2 

ebreathing. 

astest pressurization time 

This setting optimizes the unloading of respiratory muscles

uring peak inspiratory effort. [ 70 ] 

as conditioning 

Gas conditioning, obtained either with heated humidifiers or

eat and moisture exchangers (HME) to reach a minimum abso-

ute humidity of 15 mgH 2 O/L, [ 71 ] is recommended during face

ask NIV. [ 72 , 73 ] However, these settings cannot be generalized

o the helmet interface. In one recent study, a double-tube cir-

uit with no humidification allowed adequate conditioning of
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nspired gas, optimal comfort, and improved patient–ventilator

nteraction. [ 74 ] The use of heated humidifiers or HME in this set-

ing resulted in increased discomfort due to excessive heat and

umidity in the interface, which was associated with more in-

ense dyspnea. [ 74 ] Humidification may be necessary when fresh

as flows > 40 L/min are applied. [ 75 ] 

voidance of CO 2 rebreathing 

The helmet has a volume around 18 L and behaves as a semi-

losed mixing chamber with its own “helmet ventilation ”. As

uch, part of the patient’s exhaled gas is not eliminated from

he helmet and mixes with gas coming from the inspiratory

imb of the circuit. [ 76–78 ] CO 2 concentration inside the helmet

epends on the relative balance between the patient’s CO 2 elim-

nation and the system’s washout flow ( i.e. , the helmet’s minute

entilation). [ 79 ] To limit this phenomenon, higher gas flows are

ecessary. [ 80 ] 

Despite the use of optimal settings, asynchronies often oc-

ur during helmet ventilation; however, they usually do not

ffect its performance [ 70 , 81 ] and may even exert a protec-

ive function since pressurization delay at inspiration causes

ncoupling between the pleural pressure (patient effort) and

irway pressure (pressure support), thus reducing positive

ranspulmonary pressure swings. Delays in expiratory cycling

ncrease end-expiratory pressure, contributing to increase alve-

lar recruitment. [ 29 ] Moreover, isometric inspiratory effort is

ot possible, even in cases of ineffective effort, due to the high-

olume gas reservoir. 

One important helmet limitation is that tidal and minute ven-

ilation cannot be reliably monitored since a substantial portion

f the inflation volume reflects distention of the helmet, rather

han lung inflation. The “minute ventilation ” displayed by the

entilator (and the flowby) represents the system’s washout

ow, rather than patient ventilation. 

These cumulative helmet interface properties offer several

dvantages. First, patient comfort is improved compared with

ace mask NIV, in that it allows eating, coughing, and speaking,

nd avoids pressure ulcers. [ 82 ] Improved tolerability allows hel-

et use for longer periods, even 48 continuous hours, [ 83 ] mini-

izing the need for interruptions and the risk of NIV failure. [ 84 ] 

econd, higher PEEP levels can be used with minimal leak or

ye irritation. [ 85 ] It is uncommon to reach PEEP levels higher

han 5–8 cmH 2 O during face mask NIV, [ 86 ] while levels of 12–15

mH 2 O are easily achievable with a helmet. [ 70 , 85–87 ] This repre-

ents a major physiologic advantage since higher PEEP may be

rucial to minimize P-SILI and avoid endotracheal intubation in

HRF, particularly in patients with intense baseline inspiratory

ffort and more severe oxygenation impairment (PaO 2 /FiO 2 ra-

io < 150 mmHg). [ 88–90 ] 

ontinuous positive airway pressure 

Given the strong physiological rationale behind PEEP appli-

ation during spontaneous breathing, CPAP has been proposed

s an alternative to PSV-NIV in patients with hypoxemia. [ 88–91 ] 

n this context, CPAP has been regarded as a tool to increase

nd-expiratory lung volume without adding pressure support,

hich could increase the transpulmonary pressure and tidal vol-

mes. It was proposed as the first-line treatment for de novo hy-

oxemic respiratory failure > 20 years ago, in addition to treat-
5 
ent of cardiogenic pulmonary edema. [ 6 ] With the COVID-19

andemic, its application in patients with hypoxemic respira-

ory failure has become increasingly common. [ 92 ] Traditionally,

PAP is administered through a high-flow generator (turbines,

enturi systems, or air/oxygen blenders) delivering fresh gas

ow in an inlet port, and an adjustable PEEP valve connected to

n outlet port. Its simplicity makes CPAP highly cost-effective in

he emergency context and easily used outside of intensive care

ince ventilators are not strictly necessary. CPAP can be applied

hrough face masks or helmets. When used with the helmet in-

erface, flows of 35–40 L/min should be used to guarantee ac-

eptable washout of the interface and avoid CO 2 rebreathing. [ 80 ] 

n the COVID-19 context, CPAP has become a common tool

n standard and sub-intensive care. While this tool has helped

he healthcare system face the pandemic emergency, it should

e stressed that patients with hypoxemia who are treated with

PAP should be closely monitored by experts for signs of treat-

ent failure. As described before, the face mask interface can

e uncomfortable for long sessions when high levels of PEEP

re applied, decreasing treatment adherence and causing signif-

cant air leaks. To overcome these limitations, helmet CPAP has

een proposed. [ 85 , 93 , 94 ] 

Indeed, helmet CPAP can rapidly improve the PaO 2 /FiO 2 

atio of patients affected by AHRF, possibly via alveolar re-

ruitment and decreased pulmonary shunt. [ 95 ] On this basis, a

mall, randomized controlled trial demonstrated that compared

ith standard oxygen therapy, helmet CPAP reduced the intu-

ation rate among patients with hypoxemia. [ 96 ] In the 2000s,

he first randomized controlled trial comparing CPAP delivered

ith face masks with standard oxygen therapy found no signifi-

ant difference in endotracheal intubation rates likely because of

articipant heterogeneity, small sample size, and interface. [ 97 ] 

CPAP was widely used at the outset of COVID-19, with con-

icting results. [ 92 , 98 ] Recently, a large adaptive, parallel group

andomized clinical trial showed reduced intubation rates in pa-

ients treated with CPAP compared with a standard oxygen ther-

py group. [ 99 ] Furthermore, Perkins et al. [ 99 ] used the NIV venti-

ator module in the CPAP mode for almost 40% of their patients.

hile this may be a reasonable approach with the face mask in-

erface, it should be avoided with the helmet since the latter

as comparatively poorer performance in maintaining the de-

ired PEEP level due to its higher system compliance. [ 93 ] Thus,

igh continuous flows should be used, both to match the pa-

ient’s peak inspiratory flow and to ensure adequate interface

O 2 washout. [ 80 ] 

atient monitoring during NIV 

Patients treated with NIV must be carefully monitored and

ontinuously assessed to identify early signs of treatment fail-

re, to allow promptly proceeding to endotracheal intubation

nd ensuring protective ventilation. [ 35 ] Worsening or lack of im-

rovement in gas exchange, signs of respiratory muscle fatigue,

eeling of unbearable dyspnea, development of respiratory aci-

osis, presence of unmanageable tracheal secretions, and hemo-

ynamic instability are validated criteria for determining treat-

ent failure; these are easily assessed at the bedside and have

een used in clinical trials. [ 51 , 83 ] In addition to absolute values,

rends in these parameters over time may be even more valu-
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ble for correct patient assessment. Oxygenation improvement

as also been associated with NIV success. [ 80 , 100 ] 

Various predictive scores for non-invasive respiratory sup-

ort have been developed in ongoing efforts to integrate differ-

nt physiological parameters. The HACOR scale (based on heart

ate, acidosis, consciousness, oxygenation, and respiratory rate)

llows dynamic monitoring of intubation risk during face mask

IV. [ 101 ] There are currently no validated scores for predicting

elmet NIV failure, although post hoc analyses from a random-

zed clinical trial identified dyspnea score (assessed with a visual

nalog scale [VAS]) as predictive of treatment failure with both

elmet NIV and HFNO. [ 102 ] 

Finally, tidal volume and inspiratory effort are useful tools

or guiding clinical decisions during NIV. An expired tidal vol-

me > 9–9.5 mL/kg PBW is a predictor of failure during face

ask PSV NIV. [ 31 , 33 ] Distinct from face masks, tidal volume

onitoring during helmet PSV-NIV is impossible as the ventila-

or display value includes the gas volume needed to distend the

nterface, not that which reaches the patient’s lungs. Monitor-

ng esophageal pressure instead may help identify patients who

ill benefit from the support provided by both the helmet and

ace mask. One physiologic study showed that lack of reduced

nspiratory effort over time is an early, accurate predictor of NIV

ailure. [ 30 ] Strong inspiratory effort ( > 10 cmH 2 O) is one of the

ain determinants of P-SILI and may be the ideal monitoring

ool during NIV. However, it requires esophageal balloon place-

ent which, unfortunately, is not available in everyday practice.

espite its unreliability as an index of inspiratory effort, [ 103 ] the

espiratory rate is still commonly used as a surrogate of respira-

ory drive, with low or decreasing respiratory rates associated

ith successful non-invasive support. [ 101 , 104 ] 

Monitoring remains paramount, and comprehensive patient

valuation that considers all of these factors should be per-

ormed routinely when using NIV as no clear-cut criteria are

urrently available to guide clinical decisions about whether –

r when – to escalate treatment and/or proceed to endotracheal

ntubation. 

ummary of Current Evidence and Future Perspectives 

Several randomized clinical trials have compared these in-

erfaces in attempts to identify optimal non-invasive respiratory

upport parameters. Frat et al . [ 51 ] compared standard oxygen

ith HFNO and face mask NIV sessions in patients with AHRF,

emonstrating superiority of HFNO in terms of overall sample

ortality and endotracheal intubation among patients with a

aO 2 /FiO 2 < 200. One year later, Patel et al . [ 86 ] compared NIV

elivered with a helmet or face mask, showing a significant re-

uction in intubation and mortality in the former group; im-

ortantly, helmet treatment was characterized by higher PEEP,

onger continuous treatment, and decreased discomfort. These

ndings were confirmed by a recent meta-analysis by Ferreyro

t al . [ 105 ] who highlighted the potential superiority of helmet

IV compared with other interfaces in terms of endotracheal

ntubation rate. 

Last year, the first direct comparison of helmet NIV and

FNO in patients with hypoxemia failed to detect any dif-

erences in respiratory support-free days after 28 days (the

rimary outcome) in patients with moderate-to-severe AHRF

rom COVID-19. [ 83 ] Nevertheless, early, continuous treatment
6 
ith helmet NIV with specific settings (PEEP 12 cmH 2 O and

ressure support 10–12 cmH 2 O) reduced the rate of endotra-

heal intubation, increased the number of invasive mechanical

entilation-free days after 28 days, and improved oxygenation

nd dyspnea. No between-group mortality rate differences were

etected. 

Another recent randomized clinical trial (the RECOVERY-RS

rial) compared CPAP, HFNO, and conventional oxygen on a

omposite of mortality and endotracheal intubation among pa-

ients with AHRF from COVID-19. [ 99 ] CPAP treatment was supe-

ior to standard oxygen therapy, with endotracheal intubation

riving the primary outcome difference. However, that study’s

imitations make interpreting the CPAP vs. HFNO comparison

uite difficult. These limitations include wide inclusion criteria;

nclusion of many patients treated outside the ICU, or who re-

ained within the ward but without comprehensive monitoring;

on-specified CPAP interfaces and settings; an adaptive design;

ubstantial treatment crossover (17.1% of the overall sample,

ith 23.6% in the standard oxygen group); and lack of stan-

ardized intubation criteria. 

Thus, to provide a clearer picture of this controversial topic,

arger studies must directly compare the effects of non-invasive

espiratory support tools on rate of endotracheal intubation and

ortality, with careful patient selection. [ 106 , 107 ] 

Post hoc analyses of some of the randomized controlled trials

escribed previously have attempted to identify predictive vari-

bles for clinical guidance. A post hoc analysis of the HENIVOT

rial showed that moderate-to-severe dyspnea, assessed with

 VAS, was associated with increased endotracheal intubation

ates, fewer respiratory support-free days, longer ICU and hos-

ital stays, and higher in-ICU and in-hospital mortality; it thus

onstitutes an alarming sign. [ 102 ] Moreover, in the same sam-

le (comparing helmet NIV and HFNO), pretreatment PaCO 2 

 35 mmHg or PaO 2 /(FiO 2 × VAS dyspnea) < 30 (an index based

n oxygenation impairment and dyspnea) identified a clinical

henotype (i.e., those with higher inspiratory effort) in whom

elmet NIV produced the greatest clinical benefits. [ 108 ] In other

ords, PaCO 2 values and the PaO 2 /(FiO 2 × VAS dyspnea) in-

ex during low-flow oxygen therapy differentiated patients who

ould especially benefit from initial treatment with helmet NIV

rom those in whom HFNO would instead suffice. While more

esearch is needed to definitively end this controversy, progress

s being made toward that goal. 

onclusions 

Various respiratory support tools are currently available for

reating patients with AHRF. COVID-19-induced AHRF has put

lobal healthcare systems under enormous stress, emphasiz-

ng the need for conclusive evidence regarding best practices

mong the available strategies in specific contexts. HFNO, NIV,

nd CPAP, with different interfaces, have been widely applied

oth before and during the pandemic, with variable success

ates. [ 13 , 105 ] These strategies have unique characteristics that

hould be understood and exploited toward optimizing treat-

ent. Considering the unique features of each respiratory sup-

ort tool, personalized treatments based on specific patient

eeds are ideal. [ 106 ] Moreover, particular attention must be paid

o patient monitoring, to promptly recognize signs of treatment
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ailure and avoidingdelayed endotracheal intubation and pro-

ective ventilation. [ 34 , 35 ] 
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