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Background-—Heart rate recovery (HRR) is commonly defined as the decrease of heart rate at 1 minute after cessation of exercise
and is an important predictor of all-cause mortality and death associated with coronary artery disease. However, HRR at earlier
time intervals after cessation has not been well evaluated and might better reflect PNS reactivation. We hypothesize that early HRR
indices within the first minute is better associated with all-cause and coronary artery disease mortality compared with HRR at
1 minute.

Methods and Results-—The prognostic value of HRR at 10, 20, 30, 40, and 50 seconds after cessation of exercise was
investigated in 40 727 selected UK Biobank participants (mean age 56 years, 45% male) free from cardiovascular disease. During a
median follow-up period of 6 years, 536 participants died (including 39 of coronary artery disease). In multivariable analyses,
including adjustments for aerobic exercise capacity, cardiovascular risk factors, and factors associated with mortality in general,
only HRR at 10 seconds remained predictive of both all-cause and coronary artery disease mortality. Effects of HRR were larger
and more significant when measured early after exercise cessation. Moreover, the association of change in heart rate between
10 seconds and 1 minute after exercise cessation with mortality was dependent on HRR at 10 seconds.

Conclusions-—We provide evidence that decreased HRR at 10 seconds after cessation of exercise is a superior predictor of
outcome compared with HRR at later time intervals. This observation might have important implications for the future reporting and
interpretation of exercise tests. ( J Am Heart Assoc. 2018;7:e008341. DOI: 10.1161/JAHA.117.008341.)
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H eart rate recovery (HRR), the decrease of heart rate
following cessation of exercise, has been previously

investigated and has been established as a predictor of
coronary artery disease (CAD),1,2 death from CAD,3 and
cardiovascular,4 noncardiovascular,5 all-cause mortality.1,3,6,7

Some of these studies have been conducted in a population
without a history of cardiovascular disease1,3,5,6 and others in
symptomatic patients who were referred for an exercise test.4,7

HRR is thought to reflect the balance of reactivation of the
parasympathetic nervous system (PNS), withdrawal of the

sympathetic nervous system, and possibly circulating cate-
cholamines. It has long been known that reactivation of the
PNS is the main contributor to interindividual HRR differences
and that the effect of this reactivation is strongest in the first
30 seconds after termination of exercise.8 Despite this
knowledge, HRR is commonly determined at 1 minute after
termination of exercise.1,3,6 Recently, a study by McCrory
et al9 described HRR within a 1-minute interval after an
orthostatic challenge, and found that speed of HRR in the
immediate 20 seconds was the strongest predictor of all-
cause mortality. Whether HRR measured early after exercise
cessation is also of increased value for prediction models
remains to be determined.

We hypothesized that HRR is more predictive of mortality
when measured early after exercise cessation, as this might
better reflect PNS reactivation. The purpose of this work was
therefore to systematically study HRR at multiple time
intervals after cessation of exercise as predictors of mortality.

Methods
The data, analytic methods, and study materials beyond what
is described in this article will be made available by the
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authors to other researchers for purposes of reproducing the
results or replicating the procedure upon reasonable request.

Individuals were selected from the UK Biobank resource.
The UK Biobank is a large population-based study that
recruited up to 502 713 individuals aged 40 to 69 years from
the general population between 2006 and 2010. The UK
Biobank study was approved by the North West Multi-Centre
Research Ethics Committee and all participants provided
written informed consent to participate in the UK Biobank
study. Detailed methods used by UK Biobank have been
described elsewhere.10

In total, 79 217 participants underwent an exercise ECG
test during the baseline visit that was made available for
download by the UK Biobank. Of those, 66 271 exercise ECGs
contained beat-to-beat information of the RR interval and
others contained an error related to the ECG device (“Error
reading file C:\DOCUME~1\UKBBUser\LOCALS~1\ Temp
\ONL10.tmp”). Before exercise, the participant’s risk cate-
gory was calculated based on: (1) cardiovascular risk factors
including chest pain during physical activity, chest pain at
rest, the inability to walk/cycle, high weight, high blood
pressure, or a heart condition; (2) missing information on
weight, blood pressure, or length; and (3) other factors
including pregnancy and having a pacemaker. Participants
eligible for this study (N=49 497) did not have any of these
cardiovascular risk factors at the time of the cardiovascular
test assessment and were placed in category 1. Individuals in
category 1 were allowed to cycle at 50% of their maximum
workload, which was calculated according to age, height,
weight, resting heart rate, and sex. Participants not included
in the current study were placed in category 2 (n=7654, 30%
workload: low risk), category 3 (n=1990, 0% workload:
medium risk), or category 4 (n=7130, pretest only: high risk).
During the cardiovascular test, participants were equipped

with 4 ECG electrodes placed on the right and left antecubital
fossa and wrist that recorded a 3-lead ECG at 500 HZ during
pretest (15 seconds), activity (6 minutes), and recovery
(1 minute) of exercise. The full exercise test protocol can
be found elsewhere.11

Although participants in category 1 were not found to have
any cardiovascular risk factors referred to in the exercise ECG
protocol from the UK Biobank at the time of the cardiovas-
cular assessment, we assessed their medical history obtained
through hospital records and included only individuals without
a history of cardiovascular disease based on International
Statistical Classification of Diseases and Related Health
Problems (ICD) codes I00-I78 as well as operation codes
and self-reported history of cardiovascular disease, including
cerebrovascular accident; angina; cardiac surgery; percuta-
neous coronary intervention; heart failure (including
cardiomyopathy); pericarditis, myocarditis, or endocarditis;
arrhythmias; bundle branch block; valvular disease; pericardial
effusion; rheumatic heart disease; and coronary and noncar-
diac artery disease (eg, aneurisms), as previously described.12

Analysis of Exercise ECGs and Quality Control
Exercise ECG data were provided by the UK Biobank in bulk
format as an XML file per test. We used gQRS to detect QRS
waves13 followed by detection of individual QRS peaks by the
Construe algorithm.14 Reliable RR intervals were obtained
following the international guidelines from the Task Force of
the European Society of Cardiology and the North American
Society of Pacing Electrophysiology.15 Abnormal RR interval
values of RR <0286 or RR >2 seconds, corresponding to a
heart rate slower than 30 beats per minute or faster than
210 beats per minute, were discarded.15 Further data clean-
ing of abnormal RR intervals was performed according to
Chen and Liu’s method16 for automatic detection of outliers in
time series by interpolation, incorporated in the “tsclean”
function of R package “forecast v7.3”. A total of 2498
exercise ECGs were excluded for excess noise. To detect
noise ECGs, we determined the SD over a moving SD, with a
window length of 3 beats, of all RR intervals per ECG per
phase. An SD of near 0 suggests little to no noise in the RR
detection. The median SD among all exercise ECGs was
0.0065, an extreme value of >0.05—98th percentile—was
considered to be noise and confirmed by manual inspection of
the RR interval signals. Next, HRR was calculated by the
difference in maximum heart rate achieved during exercise
and mean heart rate at 10�3, 20�3, 30�3, 40�3, and
50�3 seconds after exercise. Finally, participants with an
extreme HRR (more than �5 SD from the mean) were
excluded on a per phenotype basis. Further descriptions and
the source code of the methods, including an example, are
available at https://github.com/niekverw/E-ECG.

Clinical Perspective

What Is New?

• The value of heart rate recovery to predict mortality is
greatest when measured at 10 seconds after cessation of
exercise, compared with measurements of heart rate
recovery at later time points up to 1 minute.

• These results are consistent with the theory that the
underlying pathophysiology linking heart rate recovery with
mortality may be caused by parasympathetic reactivation,
which is greatest within the first 30 seconds of exercise.

What Are the Clinical Implications?

• From a clinical perspective, these findings could be taken
into consideration for the interpretation of exercise testing
or in the application of wearable health devices.
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Primary End Points
Date of death was obtained from death certificates held by
the National Health Service (NHS) Information Centre and the
NHS Central Register Scotland for participants from England
and Wales and participants from Scotland, respectively. The
cause of death was defined according to the ninth and tenth
revisions of the ICD together with self-reported events. CAD
was defined as myocardial infarction (ICD-10 codes I21, I22,
I23; ICD-9 code 410) or other ischemic heart disease (ICD-10
codes I24, I25, Z955; ICD-9 code 414).

Statistical Models
All variables were collected during the individuals’ first visit at
one of the UK Biobank centers. Age, sex, body mass index
(BMI), systolic blood pressure, resting heart rate, duration of
the exercise test, exercise capacity, and the Townsend
deprivation index were treated as continuous variables. The
Townsend deprivation index17 is a measure of material
deprivation within a population based on unemployment,
noncar ownership, nonhome ownership, and household over-
crowding. The Townsend deprivation index was skewed in our
sample of the UK Biobank and therefore we single-inverse
normalized this variable, in line with previous research.18

History of disease and medication were treated as binary
variables, including diabetes mellitus, cancer, lung disease,
family history of cardiovascular disease, and high blood levels
of lipids as well individual self-reported usage of diuretics, b-
blockers, calcium channel blockers, and angiotensin-convert-
ing enzyme inhibitors during the nurse interview. Hyperlipi-
demia was defined as any disorder of lipoprotein metabolism
and other lipidemias according to ICD-10 code E78. Smoking
status was defined as ideal (never smoked or quit >12 months
ago), intermediate (quit smoking ≤12 months ago), or poor
(current smoker). Current physical activity was based on
questionnaires concerning do-it-yourself and exercise activities
using current guidelines for ideal cardiovascular health.19 Ideal
physical activity was defined as either ≥150 minutes per week
of moderate intensity or ≥75 minutes per week of vigorous
intensity or ≥150 minutes per week of moderate plus vigorous
intensity. Poor physical activity was defined as no physical
activity at all, while intermediate physical activity was defined
as anything in between. Covariates were selected based on
previous studies of HRR,3,9 but also on the relationship of
variables in the UK Biobank potentially related with HRR or
mortality, and which were significantly associated with HRR
(P<0.01) after age and sex adjustments (eg, blood cell
parameters or maximum heart rate).

Four Cox regression models were used to systematically
study the predictive value of HRR on mortality at multiple time
intervals: (1) a univariable model; (2) a multivariate model
correcting for the known confounders including age, sex, BMI,

and exercise capacity; (3) an extended multivariate model
based on previous studies on HRR after exercise3 with
traditional cardiovascular risk factors that included age, sex,
BMI, exercise capacity, exercise duration, systolic blood
pressure, diabetes mellitus, hyperlipidemia, smoking behavior,
current physical activity behavior, and a family history of
cardiovascular disease; and (4) another extended multivariate
model to adjust for risk factors associated with all-cause
mortality as well,9 including age; sex; BMI; exercise capacity;
exercise duration; systolic blood pressure; hyperlipidemia; use
of diuretics, b-blockers, calcium channel blockers, or
angiotensin-converting enzyme inhibitors; ever receiving a
doctor diagnosis of cancer, lung disease, or diabetes mellitus;
smoking behavior; physical activity behavior; a family history
of cardiovascular disease; the Townsend deprivation index;
and resting heart rate.

All statistical analyses were performed in Stata/SE 14
(StataCorp). Hazards ratios (HRs) and corresponding 95%
confidence intervals (CIs) for each primary outcome were
estimated in separate Cox proportional hazard models.
Schoenfeld residuals were calculated and found significant if
the P value of the Schoenfeld test exceeded 0.05. Residual
plots were visually inspected in case of a significant
Schoenfeld test to assess whether it was caused by the large
sample size,20 known to bias the test statistics, or a violation
of the proportionality assumption. Phenotypes of HRR were
standardized to a mean of 0 and SD of 1 to allow for
comparisons between the different HRR measurements.

Results
A total of 40 727 participants were included in this study who
met our criteria of cycling at 50% of the maximum workload,
completing the full course of exercise (including 50 seconds
of recovery) and having a cardiovascular disease–free history.
The cohort was on average aged 56 years, consisted of 45%
of men and cycled on average for 428 seconds at an exercise
capacity of 88 watts. Detailed baseline characteristics and
descriptive statistics of the participants are depicted in
Table 1. There were no differences between those included in
the current study compared with the individuals without
analyzable ECGs (P>0.05). After a median follow-up of 5.8
(range 5.5–6.1) years, 536 died of all causes and 39 of CAD.
Compared with the surviving study population, deceased
participants were older, more likely male, and had higher
levels of BMI, systolic blood pressure, and comorbidities.

HRR as a Predictor of Mortality
The association between HRR and all-cause and CAD mortality
are presented in Table 2. HRR was associated with all-cause
and CAD mortality in the univariate Cox regression analyses.
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HRR in the early phase after exercise cessation was a
stronger predictor of mortality, compared with HRR measured
at later time points. In multivariate analysis, HRR remained

predictive of all-cause mortality after correction for cardio-
vascular risk factors (model 2 and 3). In multivariate analyses,
in which we corrected for both traditional cardiovascular risk

Table 1. Baseline Characteristics

Sample All-Cause Mortality CAD Mortality

No. 40 727 536 39

Age, y 56.1�8.1 61.2�6.6 60.4�5.9

Sex (male) 44.6 56.3 79.0

BMI, kg/m2 26.8�4.3 27.1�4.2 28.3�4.7

Exercise capacity, W 88.0�22.8 84.5�22.4 93.4�19.2

Exercise duration, s 428.0�32.4 421.3�52.1 427.4�23.9

Systolic blood pressure, mm Hg 129.9�15.8 135.1�15.8 139.2�13.8

Diabetes mellitus, % 3.8 7.1 12.0

Hyperlipidemia, % 12.9 19.6 23.0

Smoking behavior, %

Ideal 57.5 42.0 51.0

Intermediate 33.5 41.8 28.0

Poor 9.0 16.2 21.0

Physical activity behavior, %

Ideal 71.3 67.2 67.0

Intermediate 23.3 25.0 18.0

Poor 5.4 7.8 15.0

Family history of CVD, % 39.3 42.4 49.0

CVD, % 0 0 0

Pulmonary disease, % 12.4 14.4 10.0

Malign cancer, % 9.2 26.1 5

Benign cancer, % 7.2 9.1 15

b-Blockers, % 1.5 2.4 -

Calcium channel blockers, % 4.0 6.0 5.0

ACEIs, % 5.2 8.0 10.0

Diuretics, % 4.1 7.5 8.0

Townsend deprivation index �0.003�0.979 0.035�0.937 0.191�1.001

Resting heart rate, beats per min 71.3�11.2 73.4�12.7 73.8�15.0

Maximum heart rate, beats per min 119.0�13.5 118.2�13.0 116.4�14.3

Hemoglobin concentration, g/dL 14.3�1.2 14.4�1.3 15.0�1.2

White blood cell count, 91011 cells/L 7.0�1.9 7.4�2.5 7.4�2.2

Heart rate recovery at 10 to 50 s

HRR10, beats per min 18.4�7.7 15.6�7.6 13.0�5.6

HRR20, beats per min 24.2�8.9 20.8�9.1 18.8�7.3

HRR30, beats per min 28.6�9.6 24.7�9.6 22.6�9.2

HRR40, beats per min 31.9�10.1 28.0�10.1 25.4�9.1

HRR50, beats per min 34.3�10.4 30.2�10.4 27.7�9.7

Continuous variables are presented as mean�SD and binary variables as percentages. ACEIs indicates angiotensin-converting enzyme inhibitors; BMI, body mass index; CAD, coronary
artery disease; CVD, cardiovascular disease; HRR, heart rate recovery.
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factors as well as for risk factors for mortality in general and
cardiovascular medicine use (model 4), only HRR10, HRR20,
and HRR30 remained predictive of all-cause mortality. Table 2
shows a time trend in HRs for the multivariate models, with
HRs increasing for every 10-second increase in HRR. HRR10
was the most significant risk predictor and conferred the
lowest HR. In general, P values and HRs increased incremen-
tally with every 10-second increase of HRR in all multivariable
models.

The predictive value of HRR on CAD mortality follows the
same trend as all-cause mortality. All univariate associations
were significant, with lower HRs and P values early after
cessation of exercise across all models. Only HRR10

remained predictive of CAD mortality after multivariable
correction. The proportionality assumptions of all multivari-
able Cox regression models were satisfied.

Since HRR10 was the strongest predictor for mortality of
all HRR variables in the multivariate models, we wondered
whether the association between HRR and mortality was fully
explained by the first 10 seconds, and not by the change in
heart rate between 10 seconds and 1 minute. For this, a
multivariate Cox regression model was fitted with both HRR10
and HRR10 to 50 seconds (the subtraction of HRR10 from
HRR50) in one model, correcting for basic risk factors (model
2). HRR10 was strongly associated with all-cause (HR, 0.757;
CI, 0.683–0.839 [P=1.1910�07]) and CAD (HR, 0.506; CI,

Table 2. Associations of HRR With All-Cause and CAD Mortality

All-Cause Mortality CAD Mortality

HR (CI) P Value HR (CI) P Value

HRR10

Model 1 0.651 (0.591–0.718) 5.1910�18 0.398 (0.264–0.598) 9.6910�06

Model 2 0.758 (0.684–0.839) 1.1910�07 0.505 (0.328–0.777) 1.9910�03

Model 3 0.783 (0.707–0.867) 2.7910�06 0.540 (0.351–0.831) 5.1910�03

Model 4 0.827 (0.742–0.921) 5.8910�04 0.524 (0.329–0.833) 6.3910�03

HRR20

Model 1 0.643 (0.585–0.707) 6.0910�20 0.481 (0.332–0.696) 1.1910�04

Model 2 0.769 (0.695–0.852) 4.5910�07 0.637 (0.428–0.949) 2.7910�02

Model 3 0.802 (0.724–0.888) 2.1910�05 0.684 (0.459–1.019) 6.2910�02

Model 4 0.848 (0.760–0.946) 3.1910�03 0.680 (0.440–1.051) 8.2910�02

HRR30

Model 1 0.635 (0.577–0.698) 6.0910�21 0.478 (0.330–0.691) 8.7910�05

Model 2 0.773 (0.697–0.857) 1.1910�06 0.646 (0.432–0.966) 3.3910�02

Model 3 0.809 (0.729–0.897) 6.0910�05 0.697 (0.466–1.043) 7.9910�02

Model 4 0.857 (0.766–0.959) 7.3910�03 0.691 (0.444–1.076) 1.0910�01

HRR40

Model 1 0.643 (0.585–0.707) 6.0910�20 0.466 (0.323–0.674) 4.8910�05

Model 2 0.799 (0.720–0.887) 2.5910�05 0.640 (0.426–0.961) 3.1910�02

Model 3 0.836 (0.753–0.927) 7.2910�04 0.690 (0.460–1.037) 7.4910�02

Model 4 0.894 (0.798–1.001) 5.2910�02 0.680 (0.435–1.065) 9.2910�02

HRR50

Model 1 0.644 (0.586–0.708) 8.0910�20 0.475 (0.330–0.685) 6.7910�05

Model 2 0.809 (0.729–0.899) 7.3910�05 0.664 (0.443–0.996) 4.8910�02

Model 3 0.844 (0.761–0.937) 1.4910�03 0.714 (0.476–1.072) 1.0910�01

Model 4 0.898 (0.802–1.007) 6.5910�02 0.707 (0.452–1.105) 1.3910�01

Hazard ratios for all-cause and coronary artery disease (CAD) mortality were estimated using a Cox proportional hazard model. Hazard ratio (HR) and confidence interval (CI) are shown per
SD increase in heart rate recovery (HRR). Four regression models were used to study the association between HRR and mortality. Model 1: univariate. Model 2: age, sex, body mass index
(BMI), and exercise capacity. Model 3: age, sex, BMI, exercise capacity, exercise duration, systolic blood pressure (SBP), diabetes mellitus, hyperlipidemia, smoking behavior, current
physical activity behavior, and a family history of cardiovascular disease (CVD). Model 4: age; sex; BMI; exercise capacity; exercise duration; SBP; hyperlipidemia; use of diuretics, b-
blockers, calcium channel blockers, or angiotensin-converting enzyme inhibitors; ever received a doctor diagnosis of cancer, lung disease, or diabetes mellitus; smoking behavior; physical
activity behavior; a family history of CVD; Townsend deprivation index; and resting heart rate.
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0.328–0.779 [P=2.0910�03]) mortality, in contrast to
HRR10–50 seconds (HR, 0.989, CI, 0.898–1.090 [P=0.82]
and HR, 1.068; CI, 0.746–1.529 [P=0.72], respectively). This
further indicates that the relationship between HRR and
mortality may be originating from heart rate decline in the first
few seconds after exercise cessation.

Sensitivity Analyses
Sensitivity analyses were performed by adding additional
variables to model 4 in order to examine whether the results
were also independent of: (1) maximum heart rate, which is
also an important exercise ECG marker that is thought to
reflect autonomic (dis)balance, is highly related to HRR and
has been found to be a predictor of all-cause and CAD
mortality in the general population3,21; and (2) blood cell
counts (erythrocytes and leucocytes), as blood cell counts
were found to be significantly correlated with HRR (r2=0.12–
0.22, P<1.0910�18). Adjustments for these variables did not
attenuate our results (Table S1).

Discussion
The major finding of our study is that in all multivariable
models, HRR was most strongly associated with death when
measured early, at 10 seconds after exercise cessation,
compared with HRR measured at later time points.

The hypothesis linking HRR to mortality arose in 1992 from
the work that associated components of the autonomic
nervous system with sudden cardiac death.22 Since then,
studies have been linking HRR to mortality and have focused
on heart rate measured at predefined points of 1 minute after
exercise cessation.1,3,6 However, before these studies were
conducted, the belief was that PNS reactivation may have
been one of the differentiating factors between a low and high
HRR as it has been found to be the strongest influence on
HRR in the first 30 seconds after cessation of exercise.8 PNS
reactivation during the early resting phase is thought to be
solely mediated by changes in response to the activity in
arterial baroreceptors.23 A recent study of McCrory et al9

took these findings into a clinical setting by studying the
predictive value of HRR after a standing challenge, in which
the primary physiological event of interest was the changing
activity of the arterial baroreceptors, strengthening our
hypothesis that HRR after termination of exercise may be
more important immediately after exercise. Compared with
McCrory’s study, we studied HRR changes after exercise
cessation, which is a more complex physiological state in
which sympathetic nervous system activity and circulating
catecholamines are still high, making a one-to-one compar-
ison difficult. In line with McCrory’s findings, we provided
evidence that HRR should be obtained earlier after exercise.

This finding may be important to consider when bringing HRR
into clinical practice or considering it as a measure of fitness.
We also suggest a future application for these findings in self-
monitoring of heart rate and heart rate–dependent variables,
in consideration of the current growing market of
wearables24,25 and the increasing amount of evidence of the
accuracy of the heart rate measurement of wearables.26,27

Study Strengths
The strengths of this study are, first, that it is population
based, representing the single largest study of ECG changes
to exercise in individuals free from disease to date. Second,
the availability of the raw ECG data allowed for measurements
of single RR intervals, enabling a series of quality-control
steps on a beat-to-beat level that resulted in a high-resolution
data set of heart rate profile during exercise. Third, we were
able to control for a large range of variables that could
potentially confound analyses, facilitated by the detailed
characterization of the exercise test itself, availability of high
quality hospital record data, baseline measurements, and
questionnaires.

Study Limitations
Some limitations in our study should be considered. Our study
had a relatively short follow-up time compared with previous
studies.1,3 Whereas this is, by far, the single largest study of
HRR after exercise in the general population to date (40 727
individuals), there were only 541 (1.32%) individuals who died
within a median period of 5.8 years, compared with those in
the Framingham Heart Study1 (n=2967, 5.6% deaths), the
Lipid Research Clinics Prevalence Study6 (n=5234, 5.96%
deaths), and the Paris Prospective Study3 (n=5713, 26.54%
deaths). Furthermore, our study was not able to address
causality. It is unclear whether the observed effects on
mortality are causal or a consequence of an underlying
disease. Regardless of this, the results emphasize the
importance of HRR to be measured more closely after
exercise cessation for its potential use in prediction models.
This study was designed to replicate the effect of HRR on
mortality and to obtain insights into the relationship between
the time of HRR measurement and mortality, which is a
fundamental step towards a better understanding of HRR’s
pathophysiology.

Conclusions
We present novel data linking HRR to all-cause and CAD
mortality and provide the first evidence that HRR measured
early (10 seconds) after cessation of submaximal exercise is a
superior predictor of outcome compared with HRR at
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1 minute. This observation has important implications for the
future interpretation and reporting of HRR after exercise tests.
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SUPPLEMENTAL MATERIAL 

  



Table S1. Sensitivity analysis in which the following variables were added to model 4: (a) 

Maximum heart rate (b) Blood cell counts (erythrocytes and leucocytes). 

 

Relative risks for all-cause and CAD (Coronary artery disease) mortality were estimated using 

a Cox proportional hazard model.  Hazard ratio and CI (Confidence Interval) are shown per 

standard deviation increase in HRR (Heart rate recovery). Two sensitivity analysis were 

performed in which two adaptations of model 4 were ran:  

Model 4: age, sex, BMI (Body Mass Index), exercise capacity, exercise duration, systolic 

blood pressure, hyperlipidaemia, use of diuretics, β-blockers, calcium channel blockers, 

angiotensin-converting enzyme inhibitors, ever received a doctor diagnosis of cancer, lung 

disease, or diabetes mellitus, smoking behaviour, physical activity behaviour, a family history 

of CVD (Cardiovascular Disease), the townsend deprivation index and resting heart rate; 
Model 4a: covariates of model 4, to which the maximum heart rate was added; 

Model 4b: covariates of model 4a, to which the blood count (erythrocytes and leucocytes) was 

added. 
 

 All-cause mortality  CAD mortality  

 Hazard ratio (CI) p-value Hazard ratio (CI) p-value 

HRR10     

Model 4a  0.782 (0.698 - 0.875) 2.0×10-05 0.506 (0.315 - 0.815) 5.0×10-03 

Model 4b 0.801 (0.713 - 0.900) 2.0×10-04 0.506 (0.315 - 0.813) 4.9×10-03 

HRR20     

Model 4a 0.784 (0.696 - 0.882) 5.5×10-05 0.657 (0.413 - 1.045) 7.6×10-02 

Model 4b 0.801 (0.709 - 0.905) 3.8×10-04 0.660 (0.415 - 1.049) 7.9×10-02 

HRR30     

Model 4a 0.779 (0.688 - 0.882) 8.5×10-05 0.660 (0.407 - 1.069) 9.1×10-02 

Model 4b 0.793 (0.697 - 0.902) 4.0×10-04 0.665 (0.410 - 1.079) 9.9×10-02 

HRR40     

Model 4a 0.807 (0.709 - 0.918) 1.2×10-03 0.637 (0.387 - 1.050) 7.7×10-02 

Model 4b 0.821 (0.718 - 0.938) 3.7×10-03 0.644 (0.390 - 1.065) 8.6×10-02 

HRR50     

Model 4a 0.801 (0.702 - 0.915) 1.1×10-03 0.660 (0.396 - 1.098) 1.1×10-01 

Model 4b 0.810 (0.707 - 0.929) 2.6×10-03 0.669 (0.401 - 1.118) 1.2×10-01 


