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Background: Although unplanned hospital readmission is an important

indicator for monitoring the perioperative quality of hospital care, few

published studies of hospital readmission have focused on surgical patient

populations, especially in the elderly. We aimed to investigate if machine

learning approaches can be used to predict postoperative unplanned 30-day

hospital readmission in old surgical patients.

Methods: We extracted demographic, comorbidity, laboratory, surgical, and

medication data of elderly patients older than 65 who underwent surgeries

under general anesthesia in West China Hospital, Sichuan University from July

2019 to February 2021. Different machine learning approaches were performed to

evaluate whether unplanned 30-day hospital readmission can be predicted. Model

performance was assessed using the following metrics: AUC, accuracy, precision,

recall, and F1 score. Calibration of predictions was performed using Brier Score. A

feature ablation analysis was performed, and the change in AUCwith the removal of

each feature was then assessed to determine feature importance.

Results: A total of 10,535 unique surgeries and 10,358 unique surgical

elderly patients were included. The overall 30-day unplanned

readmission rate was 3.36%. The AUCs of the six machine learning

algorithms predicting postoperative 30-day unplanned readmission

ranged from 0.6865 to 0.8654. The RF + XGBoost algorithm overall

performed the best with an AUC of 0.8654 (95% CI, 0.8484–0.8824),

accuracy of 0.9868 (95% CI, 0.9834–0.9902), precision of 0.3960 (95%

CI, 0.3854–0.4066), recall of 0.3184 (95% CI, 0.259–0.3778), and F1 score

of 0.4909 (95% CI, 0.3907–0.5911). The Brier scores of the six machine

learning algorithms predicting postoperative 30-day unplanned

readmission ranged from 0.3721 to 0.0464, with RF + XGBoost showing

the best calibration capability. The most five important features of RF +

XGBoost were operation duration, white blood cell count, BMI, total

bilirubin concentration, and blood glucose concentration.

Conclusion: Machine learning algorithms can accurately predict postoperative

unplanned 30-day readmission in elderly surgical patients.
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Background

The unplanned hospital readmission rate is one of the most

widely used indicators to assess hospital care quality (Gupta and

Fonarow, 2018). Due to its substantial contribution to medical

resource costs, unplanned hospital readmission is increasingly

recognized as an important public health concern, especially in

developed countries (Jencks et al., 2009; Axon and Williams,

2011). Geriatric surgical patients, vulnerable to chronic illnesses,

are at higher risk of unplanned hospital readmission with

compounded factors. Although not all of these readmissions

are preventable, it is critical to propose an effective framework for

their early identification. A substantial body of models exists to

identify patients at risk for unplanned readmission (Miotto et al.,

2016; Kansagara et al., 2011; van Walraven et al., 2012; ohnson

et al., 2019). However, most of them were created based on a

specific disease cluster and cannot be extrapolated to the entire

postoperative population, particularly elderly surgical patients

(Ali and Gibbons, 2017; Ko et al., 2020; Kong and Wilkinson,

2020; Mišić et al., 2020; Sander et al., 2020; Shebeshi et al., 2020;

Wasfy et al., 2020; Amritphale et al., 2021).

Recently, machine learning (ML) algorithms were considered

to be potential tools for developing clinical predictive models

because of their ability to deal with multidimensional datasets

and make accurate predictions (Deo, 2015; Jordan and Mitchell,

2015). Since ML algorithms can process nonlinear relationships

and interactions between predictors, they may be increasingly

used inmedical modeling. In this study, we aimed to investigate if

ML-based algorithms can accurately predict postoperative

unplanned 30-day readmission in an elderly surgical patient

cohort using input features, such as demographic,

comorbidity, laboratory, surgical, and medication data.

Methods

Data extraction

This study has been registered in the Chinese Clinical Trial

Registry (ChiCTR-1900021290), and ethical approval was

obtained from the Ethical Review Board of West China

Hospital, Sichuan University, China. All the relevant clinical

data were prospectively collected during the course of our routine

anesthesia risk assessment, intraoperative records, and

postoperative follow-up using a structured data schema

designed by our institution. We extracted perioperative

information of elderly patients older than 65 who underwent

surgeries under general anesthesia in West China Hospital,

Sichuan University from July 2019 to February 2021. For

patients who had multiple admission records, we only

included their first admissions for analysis. Meanwhile, for

patients who underwent multiple surgeries during a single

hospitalization, we included all their surgeries for analysis. A

flow chart describing the inclusion and exclusion process is

shown in Figure 1.

Model endpoint definition

The label “postoperative 30-day unplanned readmission”was

defined as follows: readmission due to the same surgical disease

or postoperative complications within 30 days postoperatively in

an unplanned fashion. Our professional follow-up personnel

collected this information by telephone 30 days after surgery.

Data preprocessing

There were few admissions with missing data. Variables with

a missing data rate greater than 30% were not included for model

development. For numeric variables with a missing data rate less

than 5%, the median of each variable was used for imputation.

For numeric variables with a missing data rate between 5% and

30%, we performed various imputation techniques using mean

absolute error (MAE) scores as estimated metrics for

comparison. To estimate the score on an original full dataset,

we excluded all missing value rows and randomly removed some

values to create a new version of the dataset with artificially

missing data. Then, we compared the performance of the random

forest (RF) regressor on the complete original dataset with that

on the altered dataset that used different imputation techniques.

The comparison results presented in Figure 2 showed that we

could find the lowest MAE to impute the missing values.

Considering the extreme imbalanced classification

between the readmitted samples and non-readmitted

samples (the readmission rate is only 3.36%), we both

oversampled and undersampled the training set using the

Synthetic Minority Over-sampling Technique (SMOTE) and

Edited Nearest Neighbors (ENN). The SMOTE generated

noisy samples by interpolating new points between

marginal outliers and inliers, while ENN cleaned the space

resulting from oversampling. Utilizing the SMOTE + ENN

(SMOTEENN) algorithm provided by the imbalanced-learn

Python library, we achieved a more balanced data distribution

of readmitted samples and non-readmitted samples

(Lemaître et al., 2017).
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FIGURE 1
Flow chart of inclusion and exclusion process for overall data set.

FIGURE 2
Imputation techniques in differentmissing data groups. FD, Full data; KNN, k nearest neighbor; BR, BayesianRidge; DTR, DecisionTreeRegressor;
ETR, ExtraTreesRegressor; KNR, KNeighborsRegressor; MAE, Mean Absolute Error. BayesianRidge performed the best with the lowest MAE among
all imputation techniques.
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Our data were randomly divided into a training set and a test

set according to a 70–30 split. We estimated models based on the

training data (70%) and evaluated models based on the test data

(30%). Each split was carried out to preserve the proportion of

readmitted and not readmitted cases in the entire dataset. This

random split was repeated ten times.

Feature selection

We focused on features that are easily accessible and not only

available after discharge. For the preoperative laboratory data, we

kept the last value prior to surgery. Before feature selection, we

obtained 145 initial available variables. In model development,

variable selection reduces the number of attributes and allows the

selection of a subset of relevant features. Generally, there are

three classes of optimal feature selection algorithms as follows:

filter, wrapper, and embedded methods. In this study, we used

the wrapper method because it can measure the usefulness of

features based on the classifier performance through the search

process, where different combinations of features are evaluated

and compared by scores based on predictive model accuracy

(Chandrashekar and Sahin, 2014).

To eliminate irrelevant, weakly relevant, or redundant

features and reduce model overfitting as well as improve

model generalization ability, we used a multilayer perceptron

(MLP) as an estimator to implement a genetic algorithm (GA),

which is a stochastic search algorithm based on the mechanics of

evolution and natural selection (Torkamanian-Afshar et al.,

2021). GA uses three operators, that is, selection, crossover,

and mutation to improve the quality of solutions. We used

Distributed Evolutionary Algorithms in Python to implement

GA, while the function returns the optimal setting of feature

selection as a binary array with the best accuracy score (Rainville

et al., 2014). The independent probability for each attribute to be

flipped was 0.1 in multiple flip-bit mutations. Tournament

selection was set as the selection operator with a tournament

size of 3. The population size was 100, the crossover probability

was 0.5, and the mutation probability was 0.2.

The full list of features includes demographic data (e.g., age,

gender, and body mass index [BMI]), available obtained

laboratory tests prior to surgery (e.g., glucose concentration

and oxygen saturation), descriptive intraoperative vital signs

(e.g., systolic blood pressure), comorbidity (e.g., hypertension),

and surgery descriptions (e.g., surgery type and anesthesia).

Model creation, training, and testing

This study considered different widespread types of models,

that is, logistic regression, MLP, RF, extreme gradient boosting

(XGBoost), and light gradient boosting machine (LGBM). The

latter three are bagging or boosting ensemble learning

algorithms. XGBoost is an optimized distributed gradient

boosting library designed to have strong predictive power. It

does not build the full tree structure but builds it greedily. It

provides a parallel tree boosting that solves scientific problems,

such as regression, classification, and ranking, in a fast and

accurate way. LGBM is a high-performance gradient lifting

framework that is based on a decision tree. Thus, it splits the

tree leaf-wise with the simplest fit, whereas other boosting

algorithms split the tree depth- or level-wise instead of leaf-

wise. LGBM is quick because it uses a histogram-based algorithm

that quickens the training procedure. We calculated MAEs as

weights to combine RF and XGBoost into a hybrid model.

One of the advantages of using the abovementioned

algorithms is that we can easily calculate the scores for all the

input features, which represent the importance of each feature. A

specific feature with a higher score means that it will have a larger

effect on the model prediction. Random Forest Classifier, Logistic

Regression, andMLP Classifier used in this study are from Scikit-

learn. The XGB Classifier and LGBM Classifier were

implemented using the xgboost and lightgbm packages

(Python Software Foundation, 9450 SW Gemini Dr., ECM#

90772, Beaverton, OR 97008, United States) separately.

Model hyperparameters were set before training to improve

the performance of the algorithms. We used

RandomizedSearchCV and GridSearchCV provided by Scikit-

learn. Five-fold cross-validation was applied to the training set,

meaning that we calculated the average metrics while each of the

five partitions was treated only once as a test set and four times as

a training set. Before parameter optimization, all model classifier

parameters were set to default values. We first used a random

search with 200 iterations, and then a smaller range was

determined based on the parameter selected in the previous

step, and Grid Search worked with a small number of

hyperparameters.

We used block bootstrapping to generate confidence

intervals (CIs) for the performance metrics on the test set.

Rather than randomly sampling procedures, we randomly

sampled patients 1,000 times, included all predictions in the

bootstrap sample, and sorted the performance metrics of each

bootstrap sample.

Evaluation metrics

Model performance was assessed using the following

metrics: area under the ROC curve (AUC), accuracy,

precision, recall, and F1 score. ROC curve, as a visualization

tool, can infer model performance by illustrating the

relationship between precision and recall as we vary the

threshold for selecting positives. Each time a different

threshold was selected, a set of false-positive and true-

positive rates were obtained. The calibration of the model

was evaluated by Brier score and calibration plots. The 95%
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CIs of the abovementioned indicators were calculated through

1,000 repeated sampling. A feature ablation analysis was

performed, and the change in AUC with the removal of

each feature was then assessed to determine feature

importance.

Results

Characteristics of the patients

Inclusion and exclusion criteria were strictly followed

during the entire screening process. A flow chart indicating

the inclusion and exclusion process is shown in Figure 1.

Finally, a total of 10,358 elderly patients were included. The

overall 30-day unplanned readmission rate was 3.36%. The

demographic data and surgery-related information of patients

are shown in Table 1.

Model performance

The AUCs of the six ML algorithms predicting postoperative

30-day unplanned readmission ranged from 0.6371 to

0.7686 including all features (Table 2) and from 0.6865 to

0.8654 including selected features (Table 3). The RF +

XGboost classifier including selected features overall

performed the best with an AUC of 0.8654 (95% CI, 0.8484-

0.8824), the accuracy of 0.9868 (95% CI, 0.9834–0.9902), the

precision of 0.3960 (95% CI, 0.3854–0.4066), recall of 0.3184

(95% CI, 0.259–0.3778), and F1 score of 0.4909 (95% CI,

0.3907–0.5911) (Table 3); The ROC curves of all the six ML

algorithms predicting postoperative unplanned 30-day hospital

readmission are shown in Figure 3, and the Precision-Recall

(P-R) curves of all the six ML algorithms are also shown in

Figure 4.

The Brier score of the RF + XGboost model predicting

postoperative 30-day unplanned readmission was 0.0372 (95%

CI, 0.0371–0.0372), showing the best calibration capability

among all the ML algorithms (Table 4).

Feature importance

After performing a feature ablation analysis, we found that

the five most important features of the RF + XGboost model were

operation duration, white blood cell count, BMI, total bilirubin

concentration, and blood glucose concentration. Figure 5

presents the feature importance of three models (RF、

XGboost, and RF + XGboost) predicting postoperative

unplanned 30-day hospital readmission.

Discussion

We used five ML models separately and one hybrid model to

predict the 30-day postoperative unplanned readmission of elderly

patients. To analyze the performance of the proposed framework,

TABLE 1 Summary of demographic characteristics and perioperative
data in this cohort.

Variables Training set Testing set

Patients, n 6,916 3,442

Surgery, n (%) 7,058(67.0) 3,477(33.0)

Age (SD) 72.1(5.8) 71.9(5.7)

Female, n (%) 2,990(43.2) 1,507(43.8)

Readmission, n (%) 237(3.36) 117(3.36)

ASA

Ⅰ, n (%) 11(0.16) 5(0.14)

Ⅱ, n (%) 3,426(48.54) 1,667(47.94)

Ⅲ, n (%) 3,531(50.03) 1764(50.73)

Ⅳ, n (%) 84(1.19) 39(1.12)

Ⅴ, n (%) 6(1.0) 2(0.06)

Surgery type

Abdominal, n (%) 3,711(52.58) 1782(51.25)

Orthopedic, n (%) 1,246(17.65) 673(19.36)

Thoracic, n (%) 636(9.01) 304(8.74)

Cardiac, n (%) 295(4.18) 163(4.69)

Neuro, n (%) 11(0.16) 5(0.14)

Other, n (%) 1,159(16.42) 550(15.82)

The values in bold mean that they have the best performance in the metrics compared

with all the other ML algorithms.

TABLE 2 Performance of classification models including all features.

Model AUC (95% CI) Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 (95% CI)

RandomForest 0.7105 (0.6860–0.7350) 0.9620(0.9610–0.9630) 0.3501(0.3000–0.4001) 0.0120 (0.0110–0.0130) 0.0240 (0.0230–0.0250)

LogisticRegression 0.7145 (0.7110–0.7180) 0.9580 (0.9570–0.9590) 0.2160 (0.1820–0.2500) 0.0250 (0.0240–0.0260) 0.0442 (0.0431–0.0452)

XGBoost 0.6795 (0.6750–0.6840) 0.9606 (0.9601–0.9611) 0.2665 (0.2000–0.3333) 0.0125 (0.0120–0.0130) 0.0237 (0.0233–0.0240)

LGBM 0.6725 (0.6690–0.6760) 0.9595 (0.9590–0.9600) 0.2085 (0.1670–0.2500) 0.0125 (0.0120–0.0130) 0.0230 (0.0220–0.0240)

MLP 0.6371 (0.5741–0.7000) 0.9475 (0.9380–0.9570) 0.1621 (0.0630–0.2611) 0.0740 (0.0250–0.1230) 0.0920 (0.0350–0.1490)

Random + XGBoost 0.7686(0.7396–0.7977) 0.9524 (0.9523–0.9525) 0.3471 (0.3315–0.3627) 0.1030(0.0950–0.1110) 0.1120(0.1100–0.1140)

The values in bold mean that they have the best performance in the metrics compared with all the other ML algorithms.
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we investigated the advantages and benefits of the proposed model

over traditional ML models. Among all the algorithms, the RF +

XGboost hybrid model generally performed relatively better, with

an AUC of 0.8654 (95% CI, 0.8484–0.8824) and a Brier score of

0.0372 (95% CI, 0.0371–0.0372). For a single ML algorithm, RF

nearly had the best performance in predicting the 30-day

postoperative unplanned readmission, which has previously

been reported (Peng et al., 2010; Hsieh et al., 2011; Alickovic

and Subasi, 2016; Gowd et al., 2019). In addition, all ML models

tended to perform similarly or better than the traditional approach

(van Walraven et al., 2010; Cotter et al., 2012; Donzé et al., 2013;

Low et al., 2017).

TABLE 3 Performance of classification models including selected features.

Model AUC (95% CI) Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 (95% CI)

RandomForest 0.7566 (0.7481–0.7651) 0.9862 (0.9838–0.9885) 0.3950 (0.3900–0.4000) 0.3089 (0.1600–0.4578) 0.4287 (0.3952–0.4622)

LogisticRegression 0.7384 (0.7357–0.7411) 0.9503 (0.9474–0.9532) 0.2936 (0.2252–0.3620) 0.155 (0.1223–0.1878) 0.1957 (0.1406–0.2508)

XGBoost 0.7230 (0.7136–0.7324) 0.9862 (0.9835–0.9889) 0.3977(0.3854–0.4100) 0.3289(0.2622–0.3955) 0.4371 (0.3931–0.4812)

LGBM 0.7161 (0.6778–0.7544) 0.9867 (0.9855–0.988) 0.3882 (0.3763–0.4000) 0.3261 (0.2945–0.3578) 0.4385 (0.4197–0.4573)

MLP 0.6865 (0.6504–0.6226) 0.9744 (0.9711–0.9778) 0.2683 (0.2226–0.3140) 0.2434 (0.1568–0.3300) 0.2653 (0.6026–0.3281)

Random + XGBoost 0.8654(0.8484–0.8824) 0.9868(0.9834–0.9902) 0.3960 (0.3854–0.4066) 0.3184 (0.259–0.3778) 0.4909(0.3907–0.5911)

The values in bold mean that they have the best performance in the metrics compared with all the other ML algorithms.

FIGURE 3
The ROC curves and AUCs of six ML algorithms predicting postoperative unplanned 30-day hospital readmission in this cohort. ROC, receiver
operating characteristic; AUC, area under the curve; RF, random forest; LR, logistic regression; XGBoost, eXtreme Gradient Boosting; LGBM, Light
Gradient Boosting Machine; MLP, Multilayer Perceptron.
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In the RF + XGboost model, the five most important features

were operation duration, white blood cell count, BMI, total

bilirubin concentration, and glucose concentration. Long

duration of surgery is an important factor resulting in

multiple postoperative complications, including unplanned 30-

day postoperative readmission (Phan et al., 2017; Polites et al.,

2017). Increased white blood cell count usually indicates an

increased likelihood of infection. Postoperative infection is

also an important reason for unplanned readmissions, such as

lung infection requiring anti-infective treatment or wound

infection requiring readmission for debridement or surgery.

An increase in BMI is closely associated with higher incidence

of hypertension, coronary heart disease, and diabetes, while

reduced BMI, on the other hand, is also a sign of

malnutrition and frailty status in the elderly (Graboyes et al.,

2018; Sperling et al., 2018; Workman et al., 2020; Cutler et al.,

2021). Hyperbilirubinemia reflects underlying hemolysis and

hepatic dysfunction. Such patients have decreased tolerance

for massive intraoperative blood loss, hypotension, and

hepatic ischemia (Liao et al., 2013; Arvind et al., 2021).

Elevated blood glucose level, usually including type 2 diabetes

mellitus and impaired fasting glucose, is associated with

postoperative infections, which are common causes of

postoperative unplanned readmissions (Jones et al., 2017;

Martin et al., 2019).

FIGURE 4
The P-R curves of six ML algorithms predicting postoperative unplanned 30-day hospital readmission in this cohort. P-R, Precision-Recall; RF,
random forest; LR, logistic regression; XGBoost, eXtreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; MLP, Multilayer Perceptron.

TABLE 4 Calibration of classification models including selected
features.

Model Brier Score (95% CI)

RandomForest 0.0383 (0.0377–0.0388)

LogisticRegression 0.0399 (0.0394–0.0403)

XGBoost 0.0389 (0.0386–0.0392)

LGBM 0.0377 (0.0375–0.0379)

MLP 0.0464 (0.0408–0.0519)

Random + XGBoost 0.0372(0.0371–0.0372)

The values in bold mean that they have the best performance in the metrics compared

with all the other ML algorithms.
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To improve the performance of unplanned readmission risk

prediction, we combined the RF and XGBoost classifiers by setting

weights according to MAE. Our study demonstrates that the

combined model could perform significantly better than

individual models in predicting unplanned readmission.

Meanwhile, among all the models, MLP did not achieve relatively

good scores, which may be because the neural network algorithm is

relatively complex for small unbalanced text datasets. Actually, the

performance ofML algorithms is closely related to the imbalance rate

of a label (e.g., imbalance rate of unplanned readmission). When the

number of positive samples is excessively low (<10%),ML algorithms

are easily overfitted. In this study, the 30-day unplanned readmission

rate was lower than 5%, indicating a high probability of predicting

patients as negative samples. Although we used SMOTEENN as a

sampling method to reduce the imbalance rate, the classification

performance has much room for improvement, as seen from the

recall and F1 scores. The Brier score of the hybrid model is 0.0372

(95% CI, 0.0371–0.0372), which is also the lowest among all the

algorithms.

Our analysis of postoperative patients provides us with three key

insights into the prediction of unplanned readmission. First, ML is a

powerful artificial intelligence approach to using data to imitate the

way that humans learn and make decisions, gradually improving its

accuracy. In this study, nearly all models achieved an AUC of more

than 0.7, whereas studies predicting unplanned readmissions

achieved AUC in the range of 0.54–0.92 (Artetxe et al., 2018).

Second, hybrid models may perform better than individual models.

Third, effective data processing is essential to assist decision-making.

Strategies to reduce potentially avoidable 30-day readmissions may

help improve the quality of care and outcomes.

Limitations

Somepotential limitations should be considered. First, we did not

include the information of hospital personnel for analysis. There is no

doubt it is closely related to the patients’ outcome; second, this is a

monocenter study, and most of the patients came from western

China. As a result, further external validation is needed. Third, the

sample size is relatively small compared to some retrospective studies.

Fourth, during data collection and follow-up, it is inevitable that some

data will be missing.

FIGURE 5
The feature importance of three ML algorithms predicting postoperative unplanned 30-day hospital readmission. RF, random forest; XGBoost,
eXtreme Gradient Boosting.
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Conclusion

ML algorithms can accurately predict postoperative

unplanned 30-day readmission in elderly surgical patients.
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