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Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as
air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter
biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing
gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to
query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In
C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters,
H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster
and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing
conditions.

1. Introduction

Despite initially being thought of only as toxic gases, hydro-
gen sulfide (H2S), nitric oxide (NO), and carbon monoxide
(CO) are now recognized as important endogenously pro-
duced signalling molecules known as gasotransmitters. Wang
describes gasotransmitters as small gas molecules that are
membrane permeable, endogenously generated, and which
have functions at physiologically relevant concentrations [1].
The first two gasotransmitters to be discovered were NO [2]
and CO [3]. H2S was the third identified gasotransmitter
[1, 4–7]. Like NO and CO, H2S is also a toxic air pollutant
[8–10]. Sulfur dioxide (SO2) and carbonyl sulfide (COS) are
gaseous toxins that only recently have been shown to be
endogenously produced and to transmit biological signals
[11]. In this paper, we will discuss the biology of the sulfur
containing gasotransmitters and refer to their use as toxins.
Our primary objective is to relate what is known in mammals
to an understanding of the action of these compounds on
invertebrate pests of agriculture. As such, we have augmented

the paper with comparative bioinformatics of genes involved
in the synthesis and catabolism of H2S, SO2 and COS. This
will facilitate future detailed genetic studies into the mode of
action of these gasotransmitters/sulphurous fumigants

The strongest evidence that SO2 and COS are gasotrans-
mitters comes from their effect on smooth muscle cells. Dila-
tion of vascular smooth muscle is caused by the endothelial
release of vasodilator substances referred to as endothelium
derived relaxing factor (EDRF) [2]. NO is a major mediator
of EDRF-induced vasodilation [12], and H2S has been
suggested as a secondary EDRF component [13]. However,
EDRF causes hyperpolarization in smooth muscle cells, but
neither NO nor H2S cause this effect. It has been suggested
that EDRF contains more than one component that causes
hyperpolarization, designated endothelium derived hyper-
polarizing factors (EDHFs) [14, 15]. Both SO2 and COS
are produced by the porcine coronary artery (PCA), and
both have short half-lives of 1-2 seconds, similar to EDHF
[11, 16, 17]. Therefore, SO2 and COS are potential candidates
for EDHF [18].
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Table 1: Effects of H2S.

Cause Effect

Vasodilator
H2S like NO and CO, causes the opening the potassium adenosine triphosphate (KATP)
channels [37]

Apoptosis modulator Via the activation of the mitogen-activated protein kinases (MAPK) pathway [41]

Protection against oxidative stress
Increases GSH synthesis and recovery of cysteine transport [24, 42, 43]. Scavenging of
hydroxyl, oxygen and nitric oxide free radicals and reduces the accumulation of lipid
peroxidation [44–46]

Neuromodulator
Enhances activity of N-Methyl-D-aspartic acid (NMDA) receptor and activates calcium
channels, which regulates synaptic transmission in neurons [4]

Sulfur occupies a unique position in biology due to its
ability to transfer electrons to and from substrates. Sulfur
is a redox chameleon, with approximately ten different
states of oxidation [19]. These range from negative two
in thiols (RSH) to plus six in sulfate anions (SO4

2−) and
include fractional oxidation states such as −0.5, found in
the disulphide radical anion (RSSR−) [20]. This unique
chemistry allows sulfur to participate in an extensive range
of redox events [21]. It also influences the catalytic and
metal binding characteristics of the element [22] as well as
the activity of the sulfurous gasotransmitters. For example,
exposure to sulfur containing gases has a profound effect on
cellular metabolic and redox systems [23–25].

We will discuss each of H2S, SO2, and COS, including
their chemical properties, their metabolism, and their trans-
port. We will also identify the orthologous sulfur metabolism
and transport genes in the genetically tractable model organ-
ism Caenorhabditis elegans (C. elegans) as well as Drosophila
melanogaster (D. melanogaster) and Saccharomyces cerevisiae
(S. cerevisiae). C. elegans orthologues of mammalian genes
involved in sulfation have recently been reviewed and will not
be discussed here [26].

We propose that fumigants are effective poisons specif-
ically, because they are able to disrupt endogenous gaseous
signalling. This hypothesis has a close corollary—that fumi-
gants or their close derivatives may have medically useful
effects as modifiers of gasotransmitters at sublethal doses.
This paper will facilitate future genetic investigation of these
hypotheses.

2. Hydrogen Sulfide

H2S is a colourless, odorous, flammable, and water-soluble
gas [27]. It is also highly toxic as evidenced by its use in the
First World War as a chemical warfare agent [28]. H2S is also
a significant air pollutant, particularly in sewerage treatment
plants, where it can accumulate to dangerous levels [10]. The
toxicity of these gases was initially presumed to be caused
by the reversible inhibition of cytochrome c oxidase (COX),
the terminal electron acceptor of the electron transport chain
(ETC) [29].

It is now recognized that H2S has widespread biological
roles. Thus, while H2S does inhibit COX at high concen-
trations of approximately 80 ppm similar to cyanide, at low

concentrations H2S actually stimulates oxygen consumption
[30]. H2S is found to efficiently compete with other electron
donors. When H2S concentration is high in colonocytes,
complex I of the ETC operates in reverse mode and accepts
electrons from quinone in order to reduce NAD to NADH
[31]. Inhibition of respiration caused by H2S is accompanied
by a reversion of the ETC complex II [32].

Exposure to 150 ppm of H2S has been shown to induce
a suspended animation like state in mice [33]. C. elegans
acclimatized in 50 ppm of H2S results in thermotolerant and
an increase in longevity [34]. Resistance to high temperatures
in C. elegans often correlates with increased lifespan [35]. The
lethal dose, 100% for C. elegans is 150 ppm of H2S. However,
acclimatized C. elegans are able to survive being exposed to
500 ppm [36]. H2S also affects the cardiovascular [37], neural
[4], digestive, respiratory, endocrine [38], and immune
systems at physiological concentrations [39] (Table 1). H2S
is endogenously produced during the metabolism of sulfur
containing amino acids, in solution H2S dissociates to HS−

and H+ [40]. These biological activities have led to H2S being
acknowledged as the third gasotransmitter following NO and
CO [1, 4–7].

2.1. Synthesis of H2S. H2S is enzymatically generated via
the desulfhydration of cysteine by two pyridoxal-phosphate
(PLP) dependent enzymes cystathionine-β-synthase (CBS)
[47] and Cystathionine-γ-lyase (CSE/CTH) [48]. As well as
a PLP-independent enzyme 3-mercaptopyruvate sulfurtrans-
ferase (3MST/MPST) [49]. Both CBS and CSE are located in
the cytosol [50], whereas 3MST is present in the cytosol and
the mitochondria [51]. The biosynthetic pathway of H2S is
dependent on the tissue location. CBS is the primary source
in the brain [52] whereas CSE is the primary source of H2S in
blood vessels [41]. Disruption of CSE results in an elevation
of blood pressure [53].

Both CBS and CSE affect not only the levels of H2S, but
also the metabolism of sulfur containing amino acids and
the redox state of the cell via their effect on the availability
of glutathione (GSH). CBS and CSE are each involved in
the homocysteine-dependent transsulfuration pathway. CBS
catalyzes the first step in the catabolism of homocysteine
to cystathionine, whereas CSE catalyzes the synthesis of
cystathionine to cysteine (Figure 1(a)) [54, 55].
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Figure 1: Metabolism of sulfur containing amino acids. (a) Homocysteine-dependent transsulfuration pathway that containing both
cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Which is located in the cytosol and generates hydrogen sulfide (H2S).
(b) H2S synthesis via aspartate aminotransferase (AAT) and 3-mercaptopyruvate sulfurtransferase (3MST), which occurs in the cytosol and
mitochondria. (c) Catabolism of cysteine via cysteine dioxygenase (CDO) and AAT generates sulfur dioxide (SO2).

Availability of the sulfur containing amino acid cysteine
is a critical factor in the synthesis of glutathione (GSH)
[56, 57]. Roughly half of the intracellular GSH in the liver
is derived from the transsulfuration pathway [58]. GSH and
glutathione disulphide (GSSG) are the main thiol/disulphide
couple involved in cellular redox maintenance (2GSH/GSSG)
[59, 60]. H2S increases γ-Glutamylcysteine, which is a
precursor to GSH and causes a recovery of cysteine transport
[42, 43].

The heme in the CBS enzyme is redox-active and is
capable of reversibly regulating the activity of the enzyme
according to the redox state. Under reducing conditions
cystathionine production is decreased by approximately 1.7
fold [54]. Whereas under oxidising conditions cystathionine
production is increased between 1.6 and 2.1 fold [58].
Additionally, the expression of the CSE gene is also induced
under oxidising conditions [61]. The redox responsiveness of
these two pathways is likely important in order to maintain
an appropriate intracellular glutathione pool [58, 62].

A third enzyme, 3MST, participates in a two-step path-
way of H2S synthesis. Firstly, aspartate aminotransferase

(AAT/ASAT/AspAT/GOT (Glutamic oxaloacetic transami-
nase)) [63] deaminates cysteine in the presence of α-
ketoglutarate to generate 3-mercaptopyruvate and glutamate
[64]. Secondly, 3-mercaptopyruvate is desulfhydrated to
pyruvate and H2S by 3MST (Figure 1(b)). However 3MST
activity is decreased under oxidative conditions, unlike CBS
or CSE [65]. The inhibition results from oxidation of a
catalytic cysteine in the active site of 3MST to sulfenate
[66]. This inhibition helps to conserve cysteine in the
cell, contributing to the maintenance of cellular redox
homeostasis.

2.2. Catabolism of H2S. A paralogue of 3MST called Rho-
danese (RHOD) is the principle enzyme involved in the
detoxification of H2S in the mitochondria [67]. RHOD is also
involved in the detoxification of cyanide [68]. H2S is rapidly
oxidized to thiosulfate (S2O3

2−) and then converted to sulfite
(SO3

2−) and sulfate (SO4
2−) [69]. Vertebrate 3MST, which

has 59% homology to RHOD can also potentially detoxify
cyanide and H2S [67, 70].
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Figure 2: Phylogenetic tree analysis of cystathionine-β-synthase (CBS) and putative cysteine synthase (PCS). A blast (blastp) search of
known Homo sapiens (H.s) proteins was undertaken against three different species, Saccharomyces cerevisiae (S.c), Drosophila melanogaster
(D.m), and Caenorhabditis elegans (C.e) in the Genbank database. Identified sequences with significant expected value (≤1E−10) were
used to generate a multiple sequence alignment (MSA) via ClustalW 2.1. The MSAs were then trimmed and used to produce an unrooted
phylogenetic tree with 10,000 boostraps via Geneious 5.4.

2.3. C. elegans: Genes Involved in H2S

Metabolism and Detoxification

2.3.1. Cystathionine-β-Synthase (CBS)/Cysteine Synthase.
The S. cerevisiae protein CYS4/YGR155W, C. elegans se-
quences ZC373.1 and F54A3.4, H. sapiens (CBS), and
D. melanogaster (CBS/CG4840) form an orthologous cluster
of sequences in the phylogenetic tree (Figure 2). Of these
sequences, all but the C. elegans sequences have been
characterized and shown to be CBS. There is also a somewhat
more divergent yeast sequence (YGR012W) that defines
a second orthologous cluster containing four C. elegans
paralogues but no sequences from the other two organisms
(Figure 2). YGR012W is a cysteine synthase located on the
mitochondrial outer membrane [71].

2.3.2. Cystathionine-γ-Lyase (CSE). The S. cerevisiae protein
CYS3/YAL012W D. melanogaster Eip55E/CG5345, H. sapiens

(CSE), C. elegans sequences CTH-2/ZK1127.10 and CTH-
1/F22B8.6 form an orthologous cluster of sequences in the
phylogenetic tree (Figure 3). S. cerevisiae protein MET17,
catalyzes the reaction between O-acetylhomoserine and
sulfide, leading to the production of homocysteine [72, 73].
S. cerevisiae proteins STR3 and IRC7 are cystathionine-β-
lyase proteins not found in H. sapiens, which are involved
in the biosynthesis of methionine [74, 75]. The C. elegans
sequence CBL-1/C12C8.2 forms a second orthologous clus-
ter with S. cerevisiae protein IRC7 (Figure 3).

2.3.3. 3-Mercaptopyruvate Sulfurtransferase (3MST) and Rho-
danese (RHOD). The S. cerevisiae protein TUM1/YOR251C,
H. sapiens RHOD and 3MST as well as seven C. elegans
paralogues MPST-1 through MPST-7 form an orthologous
cluster of sequences in the phylogenetic tree (Figure 4). It
is interesting to note that despite the gene being present in
bacteria, yeast, nematodes, and mammals, no orthologous
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2/CSE-2), and C12C8.2 (CBL). See Figure 2 for details on the phylogenetic analysis.

sequences exist in the D. melanogaster genome or in any
Arthropoda sequences in Genbank.

2.3.4. Aspartate Aminotransferase (AAT). The phylogenetic
tree of aspartate aminotransferase sequences splits natu-
rally into two clades. One clade contains the S. cerevisiae
AAT1/YKL106W and H. sapiens AAT-m proteins, both of
which are known to be located in the mitochondria. The
other clade contains the S. cerevisiae AAT2/YLR027C and
H. sapiens AAT-c proteins which are cytoplasmic [76]. The
D. melanogaster protein GOT-2/CG4233 and C. elegans
GOT- 2.1/C44E4.3 and GOT-2.2/C14F11.1 proteins fall
in with the mitochondrial orthologues (Figure 5), which
suggests that these proteins are mitochondrial as well. The D.
melanogaster protein GOT-1/CG8430 and C. elegans GOT-
1.1/T01C8.4, GOT-1.2/T01C8.5 and GOT- 1.3/C14E2.2 pro-
teins fall into the cytoplasmic clade (Figure 5), which
suggests that these proteins are cytosolic.

3. Carbonyl Sulfide

Carbonyl sulfide was first described in 1841 [77]. It is an
air pollutant that also has been used as a fumigant [78,
79]. COS is also naturally present in the atmosphere, in

water, soil, and plants [80]. COS is biologically generated
in bacteria via the enzyme thiocyanate hydrolase, but this
enzyme is not present in eukaryotes [81]. Interestingly, COS
is detectable in both porcine coronary artery (PCA) and
cardiac muscle and is able to induce arterial dilation [18]. As
of the writing of this review the eukaryotic pathway of COS
biosynthesis is not known. It has been shown, however that
stimulation of PCA with acetylcholine causes an increase in
synthesis of COS within the coronary artery. This suggests
that muscarinic acetylcholine receptors (mAChRs) and not
nicotinic acetylcholine receptors (nAChRs) are involved in
regulating COS synthesis [18], because mAChRs but not
nAChRs are found in the coronary artery [82].

COS is converted via α-carbonic anhydrase (α-CAH) to
H2S and CO2. In eukaryotes, α-CAH is primarily responsible
for pH regulation [83]. The enzyme is widely distributed in
mammalian blood and tissue [84]. The toxicity of COS is
mediated by H2S as inhibition of α-CAH activity decreased
the toxicity of COS [85]. It is interesting to note that α-
CAH activity can be inhibited via H2S [86]. After exposure
to COS, the redox balance of the cell is disrupted and genes
that respond to oxidative stress such as glutathione reductase
and superoxide dismutase are upregulated [23]. The gene
expression effect of exposure to COS is similar to that of
phosphine exposure [87].
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analysis.

3.1. C. elegans: Genes Involved in COS Metabolism and Detox-
ification. The genes responsible for the synthesis of COS
has not yet been identified, but it is known that α-carbonic
anhydrase (α-CAH) is responsible for the conversion of COS
to carbon dioxide and hydrogen sulfide. The C. elegans α-
carbonic anhydrase gene family has been studied previously.
It has six family members, two of which (CAH-3 and CAH-
4) have been demonstrated to encode functional α-CAH
enzymes (Table 2) [88]. Additionally C. elegans, S. cerevisiae,
and D. melanogaster also contain a β class of CAH which is
not found H. sapiens [89, 90].

4. Sulfur Dioxide

Like the gases mentioned previously, SO2 is a toxic air
pollutant [91, 92]. It also has the distinction of being the

oldest recorded chemical fumigant, as it was used by ancient
Egyptians, Greeks, and Romans [93]. It was also used as a
chemical warfare agent in a conflict between the Athenians
and the Peloponnesians circa 431 B.C. [94] as well as during
the Roman siege of Dura-Europos in 256 C.E. [95]. Sulfite,
a dissociation product of SO2, is used as a preservative in
beverages and food [96].

SO2 is likely to be a signalling molecule as it is produced
endogenously from the metabolism of sulfur containing
amino acids [97]. Additionally, SO2 has been found to
produce biological effects at physiological concentrations
[18], such as vasodilation in isolated rat aortic rings [98] and
a decrease in blood pressure of male rats [99, 100]. For these
reasons, SO2 has been suggested to be a gasotransmitter [98].

SO2 can also dissociate to its derivatives in solution,
which may also be biologically active. For example, SO2
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Table 2: A-CAH C. elegans genes.

Sequence name Gene name Predicted/confirmed function % Identity E value

F54D8.4 CAH-1
Homo sapiens orthologs—CAH related protein 10
(partially confirmed via cDNA)

77/213 (36%) 1e − 41

D1022.8 CAH-2
Homo sapiens orthologs—CAH related protein 10
(confirmed via cDNA)

106/288 (37%) 7e − 60

K05G3.3 CAH-3
Homo sapiens orthologs—CAH7 isoform 1
(confirmed via cDNA)

96/262 (37%) 2e − 46

R01E6.3 CAH-4
Homo sapiens orthologs CAH-2
(confirmed via cDNA) functioning CAH

71/234 (30%) 1e − 30

R173.1 CAH-5
Homo sapiens orthologs—CAH7 isoform 1
(confirmed via cDNA)

96/261 (37%) 3e − 49

T28F2.3 CAH-6
Homo sapiens orthologs—CAH7 isoform 1
(partially confirmed via cDNA)

76/246 (31%) 1e − 36

dissociates into sulfite (SO3
2−) and bisulfite (HSO3

−) in a
3 : 1 ratio in a neutral solution [101]. Furthermore, both
SO3

2− and HSO3
− can be oxidized to SO4

2− via sulfite
oxidase (SOX) [102]. Vasodilation via SO2, however, has
been found to be much greater than dilation induced by
SO2 derivatives [103]. It is, therefore, unlikely that activity

attributed to SO2 is actually due to the action of derivative
compounds.

4.1. Generation of SO2. SO2 is generated via two different
pathways, one enzymatically and one nonenzymatic. The
enzymatic metabolism occurs via catabolism of cysteine [49].
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Table 3: Other C. elegans genes involved in SO2.

Sequence name Gene name Predicted/confirmed function % identity E value

H13N06.4 SUOX-1 Homo sapiens orthologous (confirmed via cDNA) 230/471 (49%) 3e−160

F56F10.3 CDO-1 Homo sapiens orthologous (confirmed via cDNA) 87/176 (49%) 1e−67

Cysteine catabolism to cysteinesulfinate is dependent upon
cysteine dioxygenase (CDO) [97, 104]. CDO concentration
is regulated by the availability of methionine and cysteine or
protein [105]. Therefore, CDO is one of the enzymes that
regulates free cysteine levels [106]. The key enzyme in the
generation of SO2 is AAT, which is constantly being expressed
(Figure 1(c)) [107]. However, expression of AAT is increased
via glucocorticoids [11, 108]. AAT is expressed in cytosol
and mitochondria [109]. Nonenzymatic generation of SO2

occurs at neutrophils as a result of oxidative stress, which
causes the conversion of H2S to sulfite [110].

4.2. Toxicity. There is little information available on the
mechanism of SO2 toxicity. It potentially involves oxida-
tive damage caused by free radicals formed during sulfite
oxidation [111]. Exposure to SO2 has been found to
cause lipid peroxidation as well as increase the levels of
enzymes that protect cells against oxidative damage caused
by reactive oxygen species, including superoxide dismutase,
glutathione peroxidase and catalase [112]. Exposure to
SO2 also induces chromosomal aberrations, chromatid ex-
changes and micronuclei formation, as shown in cultured
human blood lymphocytes [113, 114]. Sulfite oxidase (SOX)
is involved in oxidative detoxification of sulfite [102, 115].
Deficiency of SOX has previously been demonstrated to
increase SO2, SO3

2−, and HSO3
− toxicity [116, 117]. SOX

activity has been shown to be significantly different in dif-
ferent mammalian tissues [118]. It is expected the oxidative
damage caused by exposure to SO2 would be tissue specific.
However it is found that exposure of SO2 caused nearly equal
oxidative damage, suggesting that SO2 toxicity is systemic
[119].

4.3. C. elegans: Genes Involved in SO2 Metabolism and
Detoxification. Phylogenetic analysis was not carried out on
the other proteins involved in the synthesis or breakdown
of SO2 as no gene duplication had occurred, resulting in a
simple one-to-one correspondence between nematode and
human sequences. The human gene for cysteine dioxygenase
(cdo-1) carries out the initial step in sulfur dioxide synthesis
from cysteine. C. elegans has a single counterpart which
is also called cdo-1 (Table 3). The second step in sulfur
dioxide synthesis is aspartate amino transferase, which is also
used elsewhere in sulfur metabolism and is the subject of
Figure 5. The final step in the synthesis of sulfur dioxide is the
nonenzymatic decomposition of sulfinyl-pyruvate to sulfur
dioxide and pyruvate. The oxidation of sulfur dioxide is
carried out by SOX-1 in humans, the orthologous C. elegans
gene is H13N06.4 (Table 3).

5. Cross-Talk between Gasotransmitters

H2S and SO2 have been found to act synergistically with NO
to enhance the vasorelaxant effect [100, 120]. The vasore-
laxant effect of H2S in rat aortic rings can be decreased by
removal of the endothelium, interruption of NO synthase or
blocking of Ca2+-dependent K+ channels [121]. This suggests
that NO and potentially EDHF contribute to the vasorelaxant
effect of H2S. However, others have not observed synergistic
vasorelaxation when H2S and NO treatments are combined
but instead see a decrease in vasorelaxation [122]. This is
likely due to reaction between H2S and NO to generate a
nitrosothiol [123].

Synthesis of H2S is increased when exposed to NO due to
the activation of the cyclic guanosine monophosphate path-
way, which potentially increases the activity CSE [124]. NO
also increases the expression of CSE which is involved in H2S
synthesis [37]. It has also been found that metabolism of CO
is also enhanced when exposed to H2S [125]. Additionally,
NO and H2S can result in an increase in cysteine uptake
[42, 126]. This increase in cystine uptake can then enhance
the synthesis of H2S [127]. In contrast, H2S has been found to
suppress NO synthesis in rats by down regulating the aortic
L-arginine-dependent NO pathway [128]. Exposure to SO2

is found to increase NO pathway [129]. Despite the poor
understanding of the cross-talk between gasotransmitters, it
is clear that their functions are tightly integrated.

6. Storage, Release, and Transport

After the sulfur containing gases are endogenously produced,
they can either be immediately released or stored for later
release in response to a physiological signal. Unlike the short
half-lives of COS and SO2, the half-life of H2S in mammalian
plasma is about 30 minutes [130]. Sulfur from the sulfur
containing gases can be stored in two forms, acid-labile sulfur
or bound sulfane-sulfur. Exogenously H2S is absorbed and
stored as bound sulfane-sulfur [131]. Sulfur is released from
bound sulfane-sulfur by reduced glutathione and cysteine,
or at pH higher than 8.4 [131, 132]. Acid-labile sulfur is
generally found as iron-sulfur enzymes in the mitochondria.
Sulfur is released from acid-labile sulfur at a pH of <5.4, with
little or no H2S released at pH ≤ 6 [131].

Bound sulfane-sulfur is generally located in the cyto-
plasm though there is also evidence of long distance
transport [131, 133]. One mechanism of transport has been
determined in Lucina pectinata in which the heme group of
hemoglobin I (HbI) binds and transports sulfide [97, 134]. In
the C1 Hb from Riftia pachyptila, the sulfide is bound to zinc
ions [135]. Neither HbI nor C1 Hb are found in C. elegans,
though other globular proteins exits which could potentially
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bind to sulfide, providing a mechanism for long distance
sulfide transport.

H2S COS and SO2 are able to freely diffuse across
the hydrophobic cellular membrane without facilitation via
membrane channels [136–138]. Furthermore, no evidence
of active membrane transport of H2S has been found [137].
This situation is analogous that of ammonia transport, which
is also able to freely diffuse across the cellular membrane.
Despite this ability, however, three distinct transport systems
exist that actively transport ammonia across cell membranes
[139].

7. Future Directions

The three sulfur containing gases H2S, SO2, and COS act as
gasotransmitters in vertebrates. The primary bioassay that is
used to study the three compounds is vasodilation, though
metabolic arrest has also been demonstrated in the case
of H2S and all three compounds are known to affect the
redox state of cells. Though the compounds have barely been
studied in invertebrates, H2S has been shown to mediate
lifespan extension and heat tolerance in C. elegans [34]
as well as desiccation tolerance in D. melanogaster [140].
Exposure of C. elegans to SO2 induces ovoviviparity [141],
which is a stress response in C. elegans [142]. The toxicity of
the chemicals when administered at concentrations greater
than normal endogenous levels likely reflects their role as
potent neurological and physiological signalling molecules.
The toxicity has been exploited commercially through the use
of these compounds as fumigants.

Characterisation of the roles of these molecules in the
model organism, C. elegans, will facilitate the genetic analysis
of their function and toxicology with benefits to be gained
in agriculture and medicine. A first step toward genetic
analysis is to determine the extent to which the metabolic
pathways exist in the primary eukaryotic genetic model
organisms; S. cerevisiae, C. elegans, and D. melanogaster. Our
analysis reveals that all of the metabolic genes are present
in yeast. Studies in this organism will be of limited value
in understanding how the compounds act in a multicellular
animal, however. D. melanogaster and indeed all insects are
missing one of the metabolic genes altogether, which will
limit the studies that can be considered in this species. The
model system C. elegans contains all of the mammalian
genes involved in the metabolism of the sulfur containing
gases. C. elegans has an additional interesting property.
Most genes for synthesis of H2S have been duplicated in C.
elegans even though single genes exist in the other organisms.
This situation likely reflects the stereotypic biology of C.
elegans in which specific genes act in specific cell types to
a greater extent than in other organisms. This may provide
a research advantage as genetic manipulations may allow
gasotransmitter signalling to be disrupted more specifically
than in other organisms.

C. elegans is ideal for the genetic investigation of gaso-
transmitter action and toxicity as the nematodes are cultured
on agar medium which facilitates simultaneous exposure
to dissolved chemicals and gases. C. elegans reproduces
rapidly as a self-fertilizing hermaphrodite which facilitates

the creation of mutant strains. There are also well-defined
techniques for transformation and genetic manipulation of
gene expression. Furthermore, the stereotypic development
of C. elegans means the origin of each cell in the adult is
known and the physiological role of each cell is reproducible.
Because the organisms are transparent, the physiology of
individual cells in the living organism also can often be
studies microscopically using fluorescent probes.

Genetic analysis can be carried out in the “forward”
direction, which refers to the traditional approach of muta-
genesis of all genes in the genome followed by a screen
for mutant individuals that exhibit a specific effect (e.g.,
resistance to H2S). Analysis then reveals the gene that
was mutated and how the phenotype is mediated. Genetic
analysis can also be carried out in the reverse direction,
which refers to the molecular genetic approach of disrupting
a characterised gene that ought to affect a process and then
analysing the result. An example would be to individually
suppress each CSE gene in C. elegans to see which of
them result in phenotypes related to H2S synthesis. Genetic
analysis can also be combinatorial, an approach that is
greatly facilitated in genetic model organisms, which usually
have large collections of characterised mutant strains that
are distributed to researchers on request. An example of a
combinatorial approach would be to determine the effect
of H2S depletion on lifespan in strains carrying known
longevity mutations. This would indicate whether the effect
of H2S on lifespan is related to any previously described
lifespan enhancing mutations.

Major issues remain to be investigated regarding the
roles of sulfur containing gases in biology, particularly in
invertebrates. These include the possibility of unique roles of
the gases within specific subcellular compartments, in spe-
cific tissues or at specific times during development. Genetic
analysis can be used to identify interactions between gaseous
signals and other signalling pathways as well as the influence
of redox state on the activity of the gases. Understanding
the mechanisms of action can also be used to identify
novel fumigants or fumigation synergists of commercial
importance. Model organism genetics can also be used for
the identification and genetic manipulation of physiological
parameters of medical significance that are controlled by
the sulfur containing gases. Such physiological states include
thermotolerance, desiccation tolerance, reversible metabolic
arrest, and hypoxic preconditioning. All of these research
targets can be addressed effectively and meaningfully in
genetic model organisms such as C. elegans.
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