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Abstract: Legumes are a better source of proteins and are richer in diverse micronutrients over the
nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic
stresses, their overall productivity and quality are hugely impacted. Our limited understanding of ge-
netic determinants and novel variants associated with the abiotic stress response in food legume crops
restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in
food legume crops that can be utilized in crop improvement programs to minimize the economic
loss. ‘Omics’-based molecular breeding provides better opportunities over conventional breeding
for diversifying the natural germplasm together with improving yield and quality parameters. Due
to molecular advancements, the technique is now equipped with novel ‘omics’ approaches such
as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics,
lipidomics, regulomics, and secretomics. Pan-omics—which utilizes the molecular bases of the
stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and
biomolecules (metabolomics) associated with stress regulation—has been widely used for abiotic
stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches
will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can
be utilized for simulating crop yield under changing environments, which can help in predicting
the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL)
mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.

Keywords: abiotic stress; artificial intelligence; climate change; genetic gain; food legumes; machine
learning; omics-assisted breeding; pan-omics
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1. Introduction
1.1. Rationale

Legumes belonging to the Fabaceae family are consumed globally and are the second
most important food crop after cereals, which are best complemented with the latter to
constitute a balanced diet [1]. In some regions of the world, legumes are also utilized as
fodder for cattle. Legumes are rich in proteins, vitamins, and minerals and provide bulk to
the diet [2–4]. Due to their rich nutritional profile, their daily intake can help in reducing
micronutrient deficiencies among people in developing countries, who are predominantly
impacted by this hidden hunger [5]. Thus, legumes contribute in meeting global food
security requirements. Legumes also serve a prospective role in conservative agriculture
because of their capability to fix atmospheric nitrogen (N), which improves soil fertility.
Early on, most of the legumes were considered to be orphans; however, recent decoding of
major food legumes, such as mungbean [6], chickpea [7], common bean [8], soybean [9],
pigeonpea [10], cowpea [11], and pea [12], has turned them into rich genomic resources.

Climate change is an unavoidable predicament aggravating abiotic stresses, ultimately
threatening global food security by reducing crop yields by around 70% [13,14]. Abiotic
stresses, e.g., water stress (e.g., floods and drought), extreme temperature conditions
(e.g., heat, cold, and frost), salinity, acidic soils, and heavy metal toxicity, severely affect
legume production. To thrive in such harsh conditions, plants counter with strong stress
responses. Generally, plants’ stress tolerance is dynamic, involving signal transduction
pathways at different regulatory levels to adjust metabolic changes [15–17]. These pathways
are controlled by several genes, proteins, and post-translational modifications [18,19].
Drought, salinity, and temperature stresses are the major factors that reduce the yield
of leguminous crops. These stresses have been aggravated due to the climatic changes
over the last few decades [20]. Apart from the most prominent and commonly studied
abiotic stresses, there are a few stresses that are more prominent in temperate latitudes
that affect phenological abiotic mismatches, which restrict gene flow due to small-scale
heterogeneity and affect plant variability. Some phenological mismatches are common
in alpine and arctic tundra ecosystems [21]. A restricted gene flow was observed in the
long-lived dwarf shrub Salix herbacea L. due to variation in the snowmelt timing [22]. Frost
stress due to variability in snow cover duration and elevation affected the size and the
vulnerability of alpine dwarf shrubs [23,24]. Additionally, variation in altitudinal gradients
affected the distribution of Espeletia taxa [25] and S. herbacea [26]. Flooding in habitats of
these mountainous terrains showed variability along with plant traits, such as plant height,
plant pubescence, and the presence of aerenchyma, that provided adaptations to variability
in alpine environmental conditions [27]. Further, variations in nutrient availability also
affect different microhabitats. For example, in the case of S. herbacea, there was differential
accumulation of nutrients due to plant–soil interactions [28]. This was due to the novel
microbial communities that participated in biotic interactions with plants [29]. It is essential
to understand the response mechanisms and their regulatory factors to improve pulse
production in extremely harsh environments. Since the pathways are regulated at each
stage of the central dogma, it is crucial to deploy integrated advanced genomic approaches
together with gene editing/transgenic approaches. The former can be best exemplified in
the form of ‘pan-omics’, which collaboratively utilizes metabolomic, proteomic, genomic,
and transcriptomic data to uncover the precise mechanisms behind stress regulation.

With the emergence of techniques such as next-generation sequencing (NGS) and
high-throughput genotyping [30], it is now possible to interpret the precise roles of proteins,
genes, and metabolites in legumes. These technologies have also helped in the sequencing
and assembly of genomic drafts of major legumes. The details of the genomic drafts of these
major legumes are listed in Table 1. High-throughput genomics studies utilizing techniques
such as genome-wide association studies (GWAS), genome skimming, genotyping by
sequencing (GBS), single nucleotide polymorphism (SNP) chip genotyping, and whole-
genome resequencing (WGRS) have been employed in many crops, including legumes,
to elucidate the role of stress-responsive genes [31,32]. Further, targeted genome editing
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is also evolving over time for the development of elite cultivars. Clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) as
well as other site-directed nucleases, such as transcription activator-like effectors (TALEs)
and zinc fingers (ZFs), have emerged as new tools for next-generation breeding [33].

Table 1. List of published reference genomes of major legumes.

S. No. Species Strategy Accession/Variety/
Cultivar

Genome Size (Gbp)
Coverage/Estimated Reference

1. Chickpea
(Cicer arietinum L.)

Illumina sequencing of 11 genomic libraries
(180 bp to 20 kb)

CDC Frontier, a
kabuli chickpea

544.73
(738.09) [7]

2. Pigeonpea
(Cajanus cajan)

Illumina GA and HiSeq 2000 Sequencing
system, Sanger-based bacterial artificial

chromosome end sequencing

Pigeonpea genotype
ICPL 87119 (Asha)

605.78
(833.07) [10]

2. Cowpea
(Vigna unguiculata)

PacBio (Pacific Biosciences of California,
Menlo Park, CA, USA) and Single-molecule

real-time (SMRT) sequencing

Cowpea
IT97K-499-35

519
(613) [11]

3. Lentil (Lens culinaris) Illumina sequencing CDC cultivar
Redberry

2600
(4200) [34]

4. Mungbean
(Vigna radiata)

Illumina Hiseq2000 and GS FLX+, with five
libraries of a 180-bp fragment, 5, 10, and
40-kb mate-pairs, and one single linear

library

VC1973A 543
(579) [6]

4. Lotus
(Lotus japonicus)

Clone-by-clone sequencing and shotgun
sequencing Miyakojima MG-20 315

(472) [35]

5. Peanut
(Arachis hypogaea)

Single-molecule real-time cells (204) run on
PacBio RS II system, 14 cells run on the
Sequel system, with P6/C4 chemistry

Peanut var. Shitouqi 2540
(2890) [36]

7. Soybean
(Glycine max)

Whole-genome shotgun approach using
Sanger sequencing protocols on ABI 3730XL

capillary sequencing machines

Soybean var.
Williams 82

950
(1115) [9]

Pan-omics and genome editing for the production of climate-smart pulse crops are
still new concepts because of the limited availability of genomic information for most of
the legumes. Accelerating the development of pulse pan-genomes is therefore, needed for
future applications. Based on the advancement of basic omics approaches, the development
of some novel omics techniques is gaining momentum. Analysis of metabolic fluxes in the
metabolome of an organism is progressing in the form of fluxomics, whereas regulomics
is associated with the evaluation of regulatory factors, such as transcription factors (TFs),
proteins, and regulatory genes, which are involved in the regulation of gene responses
to various abiotic stresses. Likewise, ionomics, glycomics, glycoproteomics, phosphopro-
teomics, lipidomics, and secretomics represent the advanced omics techniques for studying
abiotic stress physiology in different forms [37]. The advent of artificial intelligence (AI)
and computer programming for simulations has introduced smart farming as a new facet
of climate-resilient crop breeding. Advanced machine learning (ML) algorithms are now
being used for crop modeling to obtain maximum yields. Combinations of GWAS and ML
algorithms are now being used to detect genetic variants associated with complex abiotic
stress tolerance traits [38]. Integration of ML with novel omics techniques will definitely
benefit future pulse breeding programs. The overall integration of omics technologies
and artificial intelligence pipelines for the molecular functional prediction of abiotic stress
tolerance is shown in Figure 1.
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Figure 1. Overall representation of different combinations of omics technologies and artificial intelligence pipelines to 
predict molecular function-induced abiotic stress. This image was generated by BioRender.com. 
Figure 1. Overall representation of different combinations of omics technologies and artificial intelligence pipelines to
predict molecular function-induced abiotic stress. This image was generated by BioRender.com.
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1.2. Objectives

The present review highlights the opportunities associated with: (i) novel ‘omics’
approaches; (ii) pan-omics approaches; (iii) multi-omics integration; and (iv) AI for smart
farming that can handle the climate exigency and its adverse effects on legume production.
This will help in the generation of simulation models for future legume breeding and in
sustainable agri-production.

2. Methods

A systematic review was designed to understand the role of novel omics approaches
independently or in association with artificial intelligence in the amelioration of abiotic
stresses in legumes and for devising future strategies. The checklist reported in Preferred
Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) was followed for
an organized assembly of relevant data and information [39]. A comprehensive literature
search was performed to identify relevant research articles. More specifically, the papers
published until the end of February 2021 in scientific journals were included in this sys-
tematic review. Four hundred and twenty seven journals were sorted and added to the
list of master journals. We used web search engines such as Google Scholar and Pubmed
and, in some cases, websites such as FAO and Knowpulse to search for the information
pertaining to legumes’ genomes and production. We searched for the terms “Legumes OR
Fabaceae” AND “Omics OR Artificial Intelligence” in titles, abstracts, and/or keywords,
which were restricted to articles in the English language, and no date restrictions were
imposed. In Google Scholar, articles were sorted by relevance, which included citations,
to provide 250 search results. Pubmed yielded 399 results with full-text availability and
‘randomized control trial’ and ‘review’ as the article types. No other relevant article types,
such as books and documents, meta-analyses, and systematic reviews, provided any search
results. Some studies on plants other than legumes were discarded, although introductory
studies on other crops for the development of a particular technology (such as a novel
omics technology) were included where necessary. The last search was run on 28 February
2021.

Information on the articles, including the title, abstract, keywords, names of authors,
affiliations, journal name, and year of publication, was exported to MS excel. Highly
relevant titles and abstracts were then filtered by two independent authors. Thereafter,
full-text screenings of these articles for specificity towards the current topic were performed
by two reviewers independently. Suggestions, disagreements, and information made by the
reviewers to enhance the quality of the present review article were taken into consideration
and added to or removed from the main body of the manuscript. The views of both the
reviewers were taken into consideration to achieve a consensus. We included all scientific
papers that used novel omics approaches or advanced scientific innovations together with
any application of artificial intelligence in basic or applied studies on legumes.

3. Novel ‘Omics’ Approaches for Future Pulse Breeding Programs
3.1. Ionomics

The concept of an ‘ionome’ was first defined by Lahner et al. [40] as the metals, non-
metals, and metalloids present in an organism. Later, the term ‘ionome’ was extended to
‘metallome’ [41] to refer to a collection of biologically important non-metals, such as N,
phosphorus (P), and sulfur (S). Ionomics is the study of the complete ionome of a tissue/an
organism, involving quantification of all elemental constituents in reaction to physiological
processes or changes [42]. Ions have a substantial role in the maintenance of a plant’s home-
ostasis under different environmental conditions. Similarly, ion transporters are important
for proper functioning of metabolic pathways as well as in stress regulation. The gene
regulatory networks involved in the synthesis of these ions will surely help in furthering
our knowledge about the role of ionome in the stress response. An extensive analysis of
the Arabidopsis genome revealed that around 25,000 genes are engaged in regulating its
ionome [40]. Plant ionomics has been extensively reviewed by Baxter (2010) [43], Huang
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and Salt [44]. A searchable database of more than 22,000 plants mutagenized with fast
neutrons or Transfer-Deoxyribo nucleic acid (T-DNA) insertional lines is available at http:
//hort.agriculture.purdue.edu/Ionomics/database.asp (accessed on 12 January 2021). Sim-
ilarly, ionome data of 975 soybean lines mutagenized using Nitroso-N-Methylurea (NMU)
can be obtained from http://www.ionomicshub.org/home/PiiMS/dataexchange [45]. The
Arabidopsis ionome project (http://www.ionomicshub.org, accessed on 3 August 2021)with
the leaf ionome of more than 125,000 plants is the largest ionomic database till date [43].

The ionomics approach has been extensively used in model legumes such as Lotus
japonicus [46] and food legumes such as soybean [45,47,48] when compared with other
pulse crops. Utilizing this approach, mutants with an altered seed composition were
identified in field-grown soybean [30]. Thereafter, they performed GWAS of ionomics traits
in the soybean germplasm [47]. A set of 1653 soybean accessions were analyzed for the
concentration of 20 elements in the seeds along with their weight. GWAS using oySNP50k
chip data and 21 phenotypes showed a multilocus mixed model containing 29 SNPs for iron
in one of the three Urbana locations in the year 2009 [47]. Similarly, seed ionome variation
in 90 diverse soybean lines was also analyzed [48]. Recent developments in ionomics have
provided novel ways to obtain a detailed account of the micro- and macronutrients as
well as the elemental composition of legume grains in a rapid and cost-effective manner.
The ionome data, thus, can be utilized for studies pertaining to the bioavailability of
micronutrients in staple pulses. This way, ionomics can be used to achieve global food
security and also to reduce the ‘hidden’ hunger associated with micronutrient deficiencies.
The utilization of ionomics for the evaluation of abiotic-stress-responsive ion transporters,
genes, ions, and elements requires extensive knowledge of the gene regulatory networks
involved in ion homeostasis. Amalgamation of ionomics with other pan-omics approaches,
such as proteomics and metabolomics, would increase the opportunities for studying the
effects of abiotic stresses in legumes and their applications in producing climate-resilient
legumes.

3.2. Epigenomics

Epigenomics is gaining importance as an alternate tool for germplasm enhancement.
Epigenetic changes that are heritable in nature and affect the cellular processes of an
organism form the basis of this tool. This includes modifications such as (de)methylation
and (de)acetylation of histones or DNA that do not affect the actual DNA sequence but
profoundly affect the gene’s functions [49]. Effects of abiotic stresses on the methylome of
many pulse crops have been studied. For e.g., drought stress increased DNA methylation
of drought-responsive genes in faba bean and pea [50,51]. Rakei et al. studied the effects of
prolonged cold stress on chickpea, which induced DNA demethylation in cold-tolerant
genotypes [52]. Similarly, Song et al. reported the consequent effects of salt stress on
the epigenome of soybean and found changes in DNA methylation patterns together
with histone modifications in salt-stress-responsive transcription factor genes [53]. Liang
et al. found that, under continuous cropping stress, DNA demethylation occurred in
tolerant soybean genotypes that was consistent with increased expression of demeter-like
(DML) and repressor of silencing 1 (ROS1) genes [54]. Wu et al. reported that salinity
induced crosstalk between histone methylation and histone acetylation in soybean [55]. In
chickpea, salt and drought stresses activated CaHDZ12, a homeodomain leucine zipper
(HD-Zip) TF, with acetylation of H3K9ac in the promoter region [56]. Awana et al. found
hypermethylation of stress-responsive genes under salinity stress leading to upregulation
of salinity-responsive genes in pigeonpea [57]. On the other hand, Chen et al. found
hypermethylation of long non-coding ribonucleic acids (lncRNAs) leading to salinity
stress tolerance in soybean [58]. Contrary to these studies, increased salinity was found
to inactivate some stress-responsive genes in soybean, which was caused by increased
deposition of H3K27me3 [59].

Plants gain an epigenetic memory as a result of environmental interactions and pass
it on to the next generation. The trans-generational inheritance of epimarks can thus be

http://hort.agriculture.purdue.edu/Ionomics/database.asp
http://hort.agriculture.purdue.edu/Ionomics/database.asp
http://www.ionomicshub.org/home/PiiMS/dataexchange
http://www.ionomicshub.org
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exploited for crop improvement programs. This involves the use of epialleles, recombinant
inbred lines (RILs), and epigenetic quantitative trait loci (epiQTLs) to breed for abiotic
stress resistance [60]. Schmitz et al. [61] exploited the epigenetic inheritance of local methyl
quantitative trait loci (QTLs) in a soybean RIL population and utilized them to study methyl
variations contributing to phenotypic variations over generations. In the same crop, Raju
et al. [62] devised an epigenetic breeding strategy utilizing isogenic memory lines crossed
to the wild type. The study exploited the amenability of MutS HOMOLOG1 (MSH1), which
is responsible for developmental changes such as modulation of defense, the abiotic stress
response, and the production of phytohormones, for inducing agronomically important
epigenetic variations in soybean. The derived epi-populations of soybean also showed
reduced epitype-by-environment (e × E) interactions, representing improved yield stability
under changing environmental conditions. Such epigenetic breeding programs can be
exploited in other pulse crops for enhancing yield under changing environments.

Comparative epigenomics is an emerging field that provides insights into gene and
genome evolution in a similar manner to comparative genomics. Epigenetic mechanisms
of gene regulation under abiotic stress may differ between species or may be conserved.
Comparative epigenetics is used to understand the evolutionary conservation of the epige-
netic regulation of biological functions by comparing epimarks between species [63]. This
technique was used to compare the epigenomes of two closely related legumes, namely
pigeonpea and soybean. The two genera diverged ~23 million years ago (mya) accom-
panied by a whole-genome duplication in the latter [64]. The study exploited gene body
methylation (GbM) and gene expression patterns to reveal the conservation of nitrogen-
metabolism-related genes in the two legumes. Similarly, in another study, methylomes of
soybean and common bean were compared to add to the epigenetic resources for legumi-
nous crops [65]. These two legumes share a whole-genome duplication event at around
56.5 mya followed by a genus-specific (Glycine) polyploidy event at around 10 mya. Studies
on the application of epigenetic breeding in legumes are sparse due to the non-availability
of genomic resources. Exploitation of naturally occurring epialleles will fast-track the de-
velopment of alternate germplasms in orphan legumes with limited genomic information.

3.3. Fluxomics

Gathering information on genetic and metabolic regulation through pan-omics has
become much easier; however, linking the gathered information to obtain a meaningful
crux is difficult. Therefore, combined studies of fluxes through major metabolic pathways
controlling the stress response are essential. This necessity has given rise to the study
of metabolome-wide fluxes, called fluxomics. This novel omics approach provides the
functional output of the cellular machinery involved in stress regulation. Fluxomics can be
performed in various ways, including metabolic flux analysis (MFA) and flux balance anal-
ysis. The former is concerned with understanding metabolism at the system level under the
influence of the environment, whereas the latter is a mathematical model of the metabolism
in genomic-scale rebuilding of metabolic networks. MFA can generate metabolic maps that
provide details about the metabolic networks involved in the environmental response and
represent detailed metabolic phenotypes. Iyer et al. [66] prepared a metabolic flux map
from soybean cotyledons to study the consequences of temperature variation for oil and
protein biosynthesis using 13 Carbon (C) MFA. The knowledge obtained from metabolic
networks can be utilized in the preparation of kinetic models for predicting the effects
of environmental factors on genetic changes. Predictive modeling based on fluxomics
has been successfully employed in crops such as maize [67] and Brassica napus [68]; how-
ever, studies on legumes are limited [69]. Moreira et al. developed a metabolic model
highlighting metabolic fluxes in soybean seedlings during germination [70]. Similarly,
Kannan et al. predicted the cumulative effects of an increase in atmospheric carbon dioxide
(CO2) on the photosynthesis of soybean using a metabolic model based on gene regulatory
networks and metabolic pathways [71]. Fluxomics delineates the key metabolic steps and
processes by which fluxes are affected by environmental stresses. Therefore, fluxomics can
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also be employed to reconstruct metabolic networks in plants for metabolic engineering
applications.

3.4. RNomics

RNomics is a new omics approach that involves the study of non-coding RNAs, e.g.,
micro ribonucleic acids (miRNAs) and lncRNAs. MiRNAs are believed to be engaged in
stress response regulation in plants. Using NGS, four legume-specific miRNAs (miR5213,
miR5232, miR2111, and miR2118) were discovered in chickpea libraries constructed and
sequenced for fungal infection, salt treatment, and control conditions [72]. Multiple miR-
NAs responded under both biotic and abiotic stresses, suggesting the presence of crosstalk
between stress-responsive pathways [72]. Barrera-Figueroa et al. [73] reported miRNAs
that might have played significant roles in drought tolerance. Likewise, using a homology-
based search, Kohli et al. [72] identified various conserved and new miRNAs associated
with gene regulation under salt and wilt stress in chickpea.

LncRNAs make up a substantial proportion of non-coding RNAs and are engaged
in a variety of biological operations. In one study, PLncPRO, a novel tool, was utilized
for predicting lncRNAs in plants using transcriptome data, which revealed a total of 3714
(for drought) and 3457 (for salinity) high-confidence lncRNAs in chickpea [74]. This tool is
based on ML and utilizes random forest algorithms to classify coding and long non-coding
transcripts. The tool is suitable for plants and has better prediction accuracy compared
with existing tools.

3.5. Glycomics, Glycoproteomics, and Phosphoproteomics

Glycomics is a comprehensive and developing scientific field that is based on defin-
ing the functional and structural roles of glycans in biological systems. Comprehensive
knowledge of glycomes is important for understanding biological pathways as glycan
modifications are critical to these pathways. The shocking complexity of the glycome,
loosely defined as the collection of glycans expressed in a cell/an organism, has resulted
in various challenges that must be overcome [75]. Recent advances in mass spectrometry
as well as cell and molecular biology tools have helped us address the challenges posed
by glycomics. Glycan microarrays are useful in the identification of glycan recognition
determinants of glycan protein binding in a system. It is also useful in understanding the
functions of glycans and their signaling in a cell or an organism. Moller et al. [76] profiled
cell wall glycans in Arabidopsis by utilizing a novel technique based on microarrays called
comprehensive microarray polymer profiling (CoMPP).

Accurate and high-resolution glycomes can allow for the assignment of an individual
glycan molecule that is expressed on a particular glycoprotein. The study of such gly-
coproteins is called glycoproteomics [77]. The larger the number of glycosylation sites
on a protein, the more complex and time consuming the analysis is. In addition, it will
require a large amount of sampling material. Advanced techniques for the fragmentation
and identification of glycans, such as electron capture dissociation (ECD), ion-trap mass
spectrometry (MS), and collision-induced dissociation (CID), have increased the accuracy
and feasibility of allocating glycans to specific amino acid sites in a collection of glyopep-
tides [78]. However, techniques for allocating glycans to specific amino acid sites remain
understudied in plants.

Glycoproteomics can unveil the role of protein glycosylation in pulses under stress
conditions. In the case of soybean, it was revealed that flood stress negatively impacted the
N-glycosylation of functional proteins involved in stress regulation. In contrast, glycopro-
teins involved in glycolysis were found to be activated [79]. Protein phosphorylation is
a key signaling mechanism in the plant abiotic stress response. Phosphoproteomics and
glycoproteomics were exploited to study changes under stress conditions in chickpea and
soybean [80,81]. Apart from novel molecular techniques, bioinformatics tools focused on
glycomics are gaining importance as a new scientific discipline called glyco-bioinformatics.
Glyco-bioinformatics utilizes algorithms to study and identify glycans together with their
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regulation and functions in a system. Recently, Showalter et al. developed a program called
BIO OHIO 2.0 to detect hydroxyproline-rich glycoproteins (HRGPs) in the poplar cell wall
as well as repeating amino acid sequences, signal peptide sequences, HRGPs, and glyco-
sylphosphatidylinositol lipid anchor addition sequences in other plant species [81]. Similar
tools can also be utilized to develop screening platforms for pulses under different stress
conditions. Therefore, it is imperative to develop techniques to study protein modifications
by glycans in plant cells in order to develop alternate strategies for breeding programs for
the enhancement of stress tolerance.

3.6. Lipidomics, Regulomics, and Secretomics

Apart from proteins, lipids also play a significant role in stress regulation by maintain-
ing cell wall dynamics under changing environmental conditions. The lipidome, which
comprises the lipids expressed in a system, is studied as a subcategory of the metabolome,
but its immense importance to cell regulation has made it an emerging scientific disci-
pline [82]. On the other hand, a regulome can be defined as the whole set of the regulatory
components present in an organism, including transcription factors, proteins, and mRNAs,
which are known to be involved in stress response generation in plants. A few searchable
databases are available for analyzing plant regulomes, including Plant Regulomics Portal
(PRP) [83] and Plant Regulomics [84], which provide detailed information on transcription
factors, small ribonucleic acids (sRNAs), DNA methylation, regulatory elements, gene
networks, etc.

Similarly, a plant’s secretome is composed of a group of proteins released into the
extracellular matrix that represents the plant’s interaction with its environment [85]. The
plant secretome can reveal significant information regarding stress regulation, protein–
protein interactions, and defense response generation in a changing environment. Apart
from proteins released into the extracellular matrix, protein modifications under abiotic
stress also reveal the cellular machinery and cell-to-cell communication in a changing
environment. Some of the novel omics technologies described above have been utilized for
the enhancement of tabiotic stress tolerance in some legume crops as presented in Table 2.

Table 2. New omics technologies for pulse breeding.

Pulse Abiotic Stress Omics Technology Details Reference

Chickpea

Drought

Phosphoproteomics Phosphorylation of proteins triggered by
progressive water deficit conditions. [80]

Secretomics

Comprehensive analyses of dehydration,
stress-responsive secretome, and highly

complex metabolic network function in the
extracellular matrix.

[86]

Oxidative Secretomics
Role of CaFer1 in iron buffering and adaptation

to oxidative stress under changing
environmental conditions.

[87]

Common bean Chlorpyrifos Lipidomics Decrease in triacylglycerol levels in pods and
seeds. [88]

Soybean

Heat Lipidomics
Decreased levels of lipids containing 18:3 acyl
chains due to reduced expression of fatty acid

desaturase.
[89]

Low phosphorus Lipidomics Lipid remodelling under limited phosphorus
conditions. [90]

Flooding
Phosphoproteomics

Ethylene signaling pathway played an
important role in protein phosphorylation in

root tips during flood stress.
[91]

Glycoproteomics Flooding negatively impacted the
N-glycosylation of proteins. [81]
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4. Pan-Omics Approaches

Modern biotechnological tools, such as mutagenic breeding, marker-assisted breeding,
and transgenic breeding, help in combating the bottlenecks of conventional plant breeding
strategies, such as the non-availability of natural resistance and sexual incompatibility in
some crops. These can also be utilized to understand the molecular mechanisms of the
adaptive response towards abiotic stress(es) in legumes. Genome sequence information
is invaluable to the application of next-generation breeding tools in any organism, but
it cannot answer some queries related to the gene functions, biochemical pathways, and
gene regulatory networks activated during the stress response. Therefore, a more com-
prehensive approach is required to study the intricate mechanism of the stress response
in plants, which should include qualitative and quantitative analyses of gene functions.
The knowledge obtained by studying the complex regulatory pathways can be applied in
marker-assisted selection (MAS) and transgenic breeding programs for ameliorating the
stress tolerance in legumes. Pan-omics integrates the complex omics datasets arising from
different omics platforms that can facilitate the improvement of abiotic stress tolerance in
crops via precision breeding. The recent progress in pan-omics approaches has remarkably
contributed to an enhanced comprehension of the genetic and molecular bases of abiotic
stress response generation in many leguminous plants [92].

4.1. Genomics

Genomics can be defined as the study of structural, functional, and evolutionary as-
pects of an organism’s genome. It includes determination of the whole DNA sequence and
in-depth genome mapping of an organism. With the advent of NGS and other molecular
biology techniques, a large amount of genomics data is available for legumes. Genome
sequencing of legume species such as Lotus japonicus, Glycine max, and Medicago truncat-
ula has already been accomplished [93]. Comparative genomics of these legume crops
has revealed key regulatory networks of genes involved in adaptation to stress and crop
productivity [94]. Abiotic-stress-related productivity losses in orphan legumes can be
managed well using genomic data from the sequenced model legumes. The genomics
approach can be linked to marker-assisted backcrossing (MAB) programs for easy manipu-
lation of QTLs associated with stress tolerance and yield parameters. Molecular markers
identified using genomics can thus be used in genomics-assisted breeding (GAB) programs,
which have higher accuracy than conventional breeding practices [95]. Some of the QTLs
identified for various abiotic stresses in legumes are presented in Table 3. Functional
genomics techniques, such as insertional mutagenesis, gene overexpression studies, tar-
geted induced local lesions in genomes (TILLING), and gene silencing, play an important
role in developing an understanding of the complex gene regulatory networks associated
with stress response generation, stress tolerance, and adaptation towards stress in plants.
Functional validation of the large amounts of genomics data generated from experiments
can be achieved by utilizing reverse genetics and gene silencing approaches such as RNA
interference (RNAi), TILLING, and virus-induced gene silencing (VIGS) [96].
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Table 3. QTLs identified for various abiotic stresses in legumes.

Abiotic Stress Crop
Parental

Lines/Mapping/
Genetic Population

Population
Type Trait Studied Associated

Marker(s) QTLs/Linkage Group(s)
Phenotypic

Variation Explained
(PVE)

Reference

Drought

Chickpea

ILC 588 × ILC 3279 RILs Harvest Index, early flowering, and
early maturity 97 SSRs

QTLs: Q3-1 and Q1-1 on
LG-1 and LG-3,

respectively
38% [97]

ICC 8261 × ICC 283
and

ICC 4958 × ICC 1882
RILs Root traits 322 SSRs

Main effect (M) QTLs
and epistatic (E) QTLs on

CaLG01, CaLG02,
CaLG03, CaLG04,
CaLG05, CaLG06,

CaLG07, and CaLG08

M-QTLs: 60%

E-QTLs: 90%
[7]

Cowpea IT93K503-1 × CB46 RILs Stem greenness (stg) and recovery dry
weight (rdw) 306 AFLP markers QTL Dro-1-10 (10 QTLs)

For drought related
QTLs: 4.7–24.2%

For maturity:
14.4–28.9%

[98]

Common Bean

DOR364 × BAT477 RILs
Photosynthate acquisition,

accumulation, remobilization, and other
drought-stress-related traits

165 markers (AFLP,
RAPD,
SSRs)

b03, b05, b06, b08, b09,
and b10 37% [99]

BRB 191 × SEQ 1027 RILs Drought-stress-related traits 53 SNPs Pv10 21% [100]

ICA Bunsi × SXB405 RILs Pod-wall weight, whole-seed weight,
whole-pod weight, 100-seed weight 721 SNPs Pv07 17% [101]

BAT 881 × G21212 RILs
Yield components, plant vigor, dry
matter redistribution, phenological

traits, and mineral nutrients

53 AFLP,
2 RAPD,

42 SSRs, and 127
SNPs

Pv01 and Pv08
12.14–17.24% for the

differential stress
response

[102]

SXB412 (A), INB827
(B), ALB213 (C), SEN56
(D), SCR2 (E), MIB778

(F), SCR9 (G), and
INB841 (H); 8-way
(ABCDEFGH) F1

8-way MAGIC
population

Yield, 100-seed weight, iron and zinc
accumulation, phenology, and pod

harvest index

20,615 SNPs and
small indels (< 20 bp) Pv01, Pv03, and Pv08

35.8 and 5.5% for the
major QTL

governing hotspot
Pv01

[103]
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Table 3. Cont.

Abiotic Stress Crop
Parental

Lines/Mapping/
Genetic Population

Population
Type Trait Studied Associated

Marker(s) QTLs/Linkage Group(s)
Phenotypic

Variation Explained
(PVE)

Reference

Drought

Lentil ILL 6002 × ILL 5888 RILs

Dry root weight, lateral root number,
taproot length, specific root length,

average tap root diameter, root surface
area, dry shoot weight, shoot length at
12 and 22 days after sowing, growth

rate, seedling vigor, chlorophyll content,
root–shoot ratio, and wilting score

220 SNPs and 180
AFLPs

QDRWVII: 21.93,
QRSAVII: 21.94,
QRSratioIX: 2.30,
QLRNVII: 21.94,
QSL12IV: 103.83,
QSL12VI: 170.87,
QSL12VII: 19.71,
QDSWVII: 22.94,
QSL22VII: 21.94,

QLRNIII: 98.64, QSRLIV:
61.63, and QSPADVIII:

72.15.

27.6 and 28.9% for
the two consecutive

seasons
[104]

Soybean Minsoy × Noir 1 RILs Yield 665 markers (RFLP,
SSR)

U14-L, U09-C2, and
U11-M

U14-L (20–40%),
U09-C2 (14%), and
U11-M (23–29%)

[105]

Pana × PI 567690

Magellan × PI 567731
RILs Slow wilting 4117 SNPs

Gm05, Gm09, Gm12,
Gm19

Gm06, and Gm10

7.8–10.4% for Gm05,
Gm09, Gm12, and

Gm19;

20–29.6% for Gm06,
and Gm10.

[106]

Mungbean Pagasa 7 × TC 1966 RILs Drought-related traits 6 AFLPs - 13% [107]

VC2917 × ZL RILs

Plant height, maximum leaf area,
above-ground biomass, relative water
content, days to flowering, seed yield,

and drought tolerance index

313 SSRs qPH5A and qMLA2A
qPH5A (6.40–20.06%)

and qMLA2A
(6.97–7.94%)

[108]

Pea P665 × cv Messire RILs Drought-related traits 6 SSRs and 2 SNPs

A6, AA175, AC74, AD57,
AB141, AB64, Psblox2,

PsAAP2_SNP4, and
DipeptIV_SNP1

20 to 57% [109]

Heat
Chickpea ICC 4567 × ICC 15,614 RILs

Number of filled pods/plot, grain
yield/plot, total number of seeds/plot,

and percentage of pods set
271 SNPs CaLG05 and CaLG06 50%< [110]

Cowpea CB27 × IT82E-18 RILs Heat-stress-related traits 48 SNPs Cht 5 11.5–18.1% [111]
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Table 3. Cont.

Abiotic Stress Crop
Parental

Lines/Mapping/
Genetic Population

Population
Type Trait Studied Associated

Marker(s) QTLs/Linkage Group(s)
Phenotypic

Variation Explained
(PVE)

Reference

Heat Lentil JL-3 × PDL-2 and
E-153 × PDL-1 F2 Seedling survival and pods set 7 SSRs qHt_ss and qHt_ps

12.1 and 9.23% for
seedling survival

and pods set,
respectively.

[112]

Cold/Frost

Chickpea ICC 4958 and PI
489,777 RILs Cold-tolerance-related traits 747 SNPs CTCa3.1 and CTCa8.1

7.15 to 34.6% for
CTCa3.1 and 11.5 to
48.4% for CTCa8.1

[113]

Faba bean

Biparental population
(BPP): Côte d’Or 1
(French landrace),

Bean Pure Line 4628,
and Gottingen Winter

Bean population

RILs Frost-tolerance-related traits 5 SNPs LGs (01, 02, 03, 04, 08,
and 10) 2.74 to 29.41% [114]

Lentil WA8649090 × Precoz RILs Winter survival traits
94 AFLP,
56 RAPD,
106 ISSR

LG4 22.9% [115]

Pea Champagne × Terese RILs Frost tolerance and cold acclimation
traits 258 SNPs LG5 and LG6 6.5 to 46.5% [116]

Soybean Sigalia × Merlin RILs Pod number and cold-tolerance-specific
traits 7711 SNPs Chr 11 20% [117]

Salinity

Chickpea ICCV 2 × JG-62 RILs Seed yield, number, weight, flowering
time, and shoot dry weight 135 SSR

LG3 (QTL for seed
number)

LG6 (QTLs for seed
number and seed weight)

LG4 (QTLs for flowering
and shoot dry weight)

19%

14.8–49.7%

8.8–37.7%

[118]

ICCV 2× JG 11 RILs Salinity- and yield-related traits 28 SSRs and 28 SNPs CaLG05 and CaLG07 12–17% [119]

Cowpea Vignaluteola × V.
marina subsp. oblonga F2 Salt-tolerance- and

domestication-related traits 150 SSRs LG1 20–50.7% [120]

Pea Kaspa × Parafield RILs Salt tolerance traits 705 SNPs Ps III and VII 12% (Ps III) and 19%
(VII) [121]

Soybean S-100 ×
Tokyo F2:5 Salt tolerance traits 32 SSRs and

116 RFLPs LG N 29–45% [122]



Int. J. Mol. Sci. 2021, 22, 10535 14 of 35

Table 3. Cont.

Abiotic Stress Crop
Parental

Lines/Mapping/
Genetic Population

Population
Type Trait Studied Associated

Marker(s) QTLs/Linkage Group(s)
Phenotypic

Variation Explained
(PVE)

Reference

Aluminum
toxicity Soybean

Zhonghuang 24 ×
Huaxia 3 RIL Al-tolerance-related traits

2639 recombination
bin markers (AFLP,

RFLP, SSRs)
qRRE_04 and qAAC_04

7.09% (qRRE_04)
and 8.98%

(qAAC_04)
[123]

KF No.1 × NN1138-2 RILs

Growth-related indicators for Al
resistance, viz. relative total plant dry

weight (RTDW),
relative root dry weight (RRDW), and

relative shoot dry weight (RSDW)

11 SSRs LG B1

Four additive QTLs
(29.39%), four
epistatic QTLs
(18.75%), and a

collective unmapped
minor QTL (43.07%)

[124]

Essex × Forrest RILs Physiological traits associated with Al
tolerance 14 DNA markers LG F (Chr. 13) 34% [125]

AFLP, Amplified Fragment Length Polymorphism; Al, Aluminum; Chr.; Chromosome; ISSR, Inter Simple Sequence Repeat; LG, Linkage Group; MAGIC, Multi-Parent Advanced Generation Intercross;
Ps, Photosystem; QTL, Quantitative Trait Loci; RAPD, Rapid Amplified Polymorphic DNA; RFLP, Restriction Fragment Length Polymorphism; RILs, Recombinant Inbred Lines; SNP, Single Nucleotide
Polymorphism; SSR, Simple Sequence Repeats.
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4.2. Transgenomics

Transgenomics, also known as transgenic technology, is a popular, targeted gene-based
technique that provides valuable insights into gene regulation under stress conditions.
Foreign genes coding for important agronomic traits from different sources such as plants,
animals, and microbes are transferred to the targeted organism’s germline. Many novel
phenotypes are developed using transgenomics [126,127]. Transgenic technologies have
been employed to elucidate the function of stress-responsive genes in many legumes, such
as chickpea [128,129] and soybean [130]. Orphan legumes with limited genetic resources are
often utilized in transgenomics for delineating the roles of unknown genes by expressing
them in other crops (Table 4).

Table 4. Genes and transcription factors (TFs) from different pulse crops overexpressed to generate improved traits or
abiotic-stress-tolerant transgenic plants.

Pulse Crop (A)biotic Stress/Trait Gene/TF Gene/TF Family Transgenic Plant Reference

Chickpea

Drought and salinity

CaCIPK25 gene CIPK Tobacco [131]

CAP2 TF APETALA-2 Tobacco [132]

CaHDZ12 TF HD-zip Tobacco and
Chickpea [56]

Drought, salinity, and high
temperature CaZF gene C2H2-zinc finger Tobacco and

Chickpea [133]

Drought
CaAFP gene Defensin Arabidopsis

thaliana
[134]

CarNAC2 TF NAC [135]

Common bean
ROS stress and wounding PvACCase gene Transferase enzyme family Arabidopsis

thaliana
[136]

Salinity PvChOMT O-methyltransferases [137]

Mung bean Osmotic stress VrUBC1 gene
Mung Bean E2

Ubiquitin-Conjugating
Enzyme

Arabidopsis
thaliana [138]

Pea
Salinity

p68 gene DEAD-box protein family Rice [139]

Tobacco [140]

PDH45 gene DNA helicase, initiation
factor homologue Rice and Tobacco [141]

Cold, heat, salinity, drought,
and freezing ABR17 cDNA

Group 10 family of
pathogenesis-related

proteins (PR 10)

Arabidopsis
thaliana [142]

Pigeonpea

PEG, NaCl, cold, and heat

Cajanus cajan cyclophilin
(CcCYP), Cajanus cajan

hybrid proline-rich protein
(CcHyPRP), and Cajanus
cajan cold and drought

regulatory (CcCDR) genes

Cold- and
drought-responsive gene;

CYP gene family
Arabidopsis

thaliana

[143]

Drought, salinity, and low
temperature

C. cajan cold and drought
regulatory (CcCDR) gene

Cold- and
drought-responsive gene [144]

Drought, salinity, and
extreme temperatures

C. cajan cyclophilin
(CcCYP) gene CYP gene family [145]

Drought, cold, and salt stress C. cajan cold and drought
regulatory (CcCDR) gene

Cold- and
drought-responsive gene Rice [146]

Soybean

Drought, salinity, and
oxidative stress GmTP55 gene Antiquitin-like ALDH7

gene family
Arabidopsis
thaliana and

tobacco

[147]

Drought and high salinity GmDREB2 gene DREB TF family [148]

Drought, high salinity, and
resistance to Alternaria

alternata, tobacco mosaic
virus (TMV), and

Ralstoniasola nacearum

GmERF3 gene AP2/ERF TF family Tobacco [149]

HAP2/ERF, APETALA2/Ethylene-Responsive Factor; CIPK, CBL-interacting protein kinases; CYP, Cyclophilin; DNA, Deoxyribo nu-
cleic acid; DREB, dehydration-responsive element binding; HD-zip, homeodomain leucine zipper; LTP, Long-term potentiation; NAC,
NAM/ATAF1/CUC2; PEG, Polyethylene glycol; ROS, Reactive Oxygen Species; TF, Transcription factor.
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Several transgenic pulse crops with varying responses to different abiotic stresses
have been developed. In transgenic chickpea, miR408 was overexpressed, which resulted
in miRNA (miR4080)-induced gene regulation that improved its drought tolerance [150].
The transgenic approach was utilized to develop salinity-tolerant lentils expressing the
transgenic DREB1 gene [151] and mung bean expressing the Arabidopsis antiporter (NHX1)
gene [152]. Additionally, by co-expressing the Arabidopsis antiporter (NHX1) and bar genes
in mung bean, Kumar et al. developed salinity-, herbicide-, and oxidative- stress-resistant
lines [153]. Many studies have utilized the expression of Arabidopsis genes in soybean, such
as the AtMYB44 gene, which resulted in improved drought and salinity tolerance [154] and
At∆Kinase gene, which resulted in improved salt tolerance [155]. When the mung bean
antiporter gene VrNHX1 was overexpressed in transgenic cowpea, it delivered increased
salinity tolerance [156]. Several studies exploited stress-responsive genes from other food
crops, such as cereals and vegetables, to improve the overall productivity of legume crops.
Kwapata et al. [157] created a drought-tolerant common bean crop using Hordeum vulgare’s
late embryogenesis abundant (LEA) protein HVA1. Likewise, Singh et al. utilized the rice
DNA helicase (OsRuvB) gene to confer salinity tolerance in pigeonpea [158]. Similarly,
Hanafy et al. heterologously expressed the potato gene PR10a in faba bean to enhance its
salinity and drought tolerance [159]. Transgenic approaches hold a great deal of potential
in the development of climate-smart crops, but the lack of proper legislation and the lack
of their application in commercial breeding are holding them back from conquering these
applications.

4.3. Transcriptomics

Transcriptomics is a powerful tool used to quantify gene expression and can pro-
vide a precise depiction of the gene expression in a target cell or tissue. Transcriptomics
can reveal the gene regulatory networks and candidate genes engaged in abiotic stress
response generation, which can be utilized for legume breeding. With the discovery of
high-throughput technologies, the deduction of comprehensive transcriptomic data can
be executed using serial analysis of gene expression (SAGE) and microarrays. Differ-
ential expression of genes (DEGs) can be determined using ribonucleic acid sequencing
(RNA-seq) data. A recently developed technique called digital gene expression (DGE) for
quantitative estimation of gene expression can also be used. RNA-seq analysis is a cost-
effective, high-throughput sequencing technique that makes it possible to analyze large
amounts of transcriptomic data. This technique offers several advantages over microarray
technology as it does not require genomic information for designing probe sets and can
identify novel transcripts [160]. Many studies have exploited this technique for elucidating
the gene regulatory networks involved in abiotic stress tolerance in pulse crops (Table 5).
Utilizing the NGS approach, a transcriptome atlas has been developed for soybean under
drought-stressed conditions [161]. Comparative transcriptomic analysis has described
the transcriptional changes in both drought-tolerant and drought-sensitive varieties of
soybean [162,163]. Diverse sets of common bean genotypes that were resistant to biotic and
abiotic stresses, such as aluminum toxicity, heat, drought, and low phosphorous, were as-
sessed for parental polymorphisms, genetic diversity, and genetic and genomic association
mapping using single nucleotide polymorphisms (SNPs) as a marker system, which were
derived from Sanger sequencing and Illumina’s GoldenGate technology [164–167]. Das
et al. used metabolomic profiling to reveal that sugar metabolism, nitrogen metabolism,
and phytochemical metabolism are of prime significance under water deficit conditions
in soybean [168]. From a transcriptomic analysis, Singh et al. identified putative candi-
date genes expressed under drought stress at the seedling stage in lentil [169], whereas
dehydration-responsive proteins were identified by Pandey et al. in chickpea [170]. Molina
et al. investigated transcriptomes of chickpea under drought stress using SuperSAGE and
deep SuperSAGE and identified 80,238 tags representing 17,493 unique transcripts [171].
Root transcriptome analysis of oxylipin synthesis genes in chickpea unveiled the expe-
ditious induction of jasmonate in roots under drought conditions [172]. Application of
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RNA-seq for understanding the genes expressed during the stress response will benefit
future pulse breeding programs.

Table 5. RNA-Seq for transcriptome profiling of pulse crops under abiotic stress(es).

Crop Abiotic
Stress Tissue Sequencing

Platform
NCBI BioProject/

Accession Number Details Reference

Chickpea

Drought

Root and
Shoot

Illumina HiSeq
2500 PRJNA396819 TFs associated with drought tolerance

were identified. [173]

Root Illumina HiSeq
2500 PRJNA335939

TFs (AP2-EREBP, bHLH, bZIP, C3H, MYB,
NAC, WRKY, and MADS) associated with

drought tolerance were identified.
[132]

Leaf Illumina HiSeq
3000 GSE104609

RNA from leaf tissues at the leaf apical
meristem stage was quantified and a total
of 1562 genes were differentially expressed

in the tolerant genotype.
Drought-responsive genes were

specifically upregulated in the tolerant
genotype.

[174]

Salinity
and

drought
Root apex Roche 454 FLX PRJNA267525

MiRNA-mediated post-transcriptional
regulation of genes engaged in lateral root

formation and re-patterning of root hair
cells and with high affinity for K+ uptake

under salinity and water deficiency
conditions was dissected using root apex

transcriptome profiling.

[175]

Common
bean Drought Leaf Illumina GAIIx SRR1523069

Drought responsive genes differentially
expressed during drought stress were

identified.
[176]

Drought Leaf and
root

Illumina
platforms (GAII
and HiSeq 2000)

SRP077562 Transcriptome data revealed new genes
involved in response to drought stress. [177]

Salinity
Cotyledon,
hypocotyl,
and radicle

Illumina HiSeq
2500 PE 150 PRJNA558376

Role of zinc finger proteins (C3H) was
elucidated during the sprouting stage

under salinity stress.
[178]

Root Illumina HiSeq
TM 2000 SRP029243

A total of 2678 TFs were identified from
transcriptome data, 441 of which were

responsible for salinity tolerance.
[179]

Cowpea Drought Leaf
Illumina deep

sequencing
technology

GSE26402 Exclusive drought-responsive miRNAs
were found. [73]

Drought Leaf GSE20273

A SSH database
(http://sshdb.bi.up.ac.za/, accessed on 3

August 2021) was developed for
drought-responsive genes.

[180]

Cold
(Chilling) Pods Illumina HiSeq

2500 -
sRNAomic and transcriptomic analysis

revealed many sRNAs and miRNAs
involved in response to chilling.

[181]

Faba
bean

Drought

Leaf Illumina HiSeq
4000

SRX3182042,
SRX3182043,
SRX3182046,
SRX3182047

A total of 538 and 642 putative TFs were
identified during the vegetative and

flowering stages, respectively.
[182]

Root Illumina HiSeq
4000

SRX3182040,
SRX3182041,
SRX3182044,
SRX3182045

Novel DEGs that showed a change in
expression during drought were identified. [183]

Salinity Cotyledons Illumina HiSeq
4000 PRJNA591424

A total of 1410 salinity-responsive genes
were identified and significant

up-regulation of these genes was observed
in the salt-tolerant genotype.

[184]

http://sshdb.bi.up.ac.za/
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Table 5. Cont.

Crop Abiotic
Stress Tissue Sequencing

Platform
NCBI BioProject/

Accession Number Details Reference

Lentil

Drought Leaf Illumina HiSeq
2500 SRR3105360

Genes involved in oxidation reduction
processes, TCA cycle, organ senescence,
and reduction of stomatal conductance

were more severely upregulated in
drought-tolerant genotypes than in

drought-sensitive ones.

[92]

Heat Leaf Illumina HiSeq
2000 SUB3390924

Cell wall and secondary metabolite
pathways were found to be majorly

affected.
[185]

Mung
bean Desiccation Seed Illumina HiSeq

2500 with PE125 SRP077637

Many TFs (MYB, AP2, and NAC), HSPs,
LEA proteins, and genes encoding

methyltransferase and histone were
differentially expressed.

[186]

AP2-EREBP, APETALA2/Ethylene-Responsive Element Binding Protein; bHLH, Beta Helix Loop Helix; bZIP, Beta Leucine Zipper;
DEGs, Differentially expressed genes; HSPs, Heat shock proteins; LEA, Late embryogenesis associated; MADS, MINICHROMOSOME
MAINTENANCE FACTOR1, AGAMOUS, DEFICIENS, and SERUM RESPONSE FACTOR; miRNA, MicroRNA; MYB, myeloblastosis;
NAC, NAM/ATAF1/CUC2; RNA, Ribonucleic acid; SSH, Suppression subtractive hybridization; sRNA, small RNA; TCA, Tri carboxylic
acid cycle; TFs, Transcription factors.

The RNA-seq data or microarray data extracted from transcriptome analyses of various
crops are used to make high-resolution gene expression atlases (GEAs). GEAs provide
information regarding the expression of mRNAs and other important proteins involved in
certain biological functions. They act as a valuable resource for studying the expression
of genes and proteins engaged in developmental functions as well as in the abiotic stress
response. Several GEAs have been developed in pulse crops (Table 6). Apart from GEAs,
many transcriptome databases have also been made available for different pulse crops;
for example, SoySeq (http://soybase.org/), SoyPLEX (http://www.plexdb.org/plex.php?
database=Soybean), and the Chickpea Transcriptome Database (CTDB) (http://www.nipgr.
res.in/ctdb.html, accessed on 3 August 2021) [187–189]. These extensive transcriptome
databases can be used to retrieve data regarding the genes expressed in different tissues in
different biological processes under different conditions.

Table 6. High-resolution gene expression atlases (GEAs) for different pulse crops.

Crop GEA Details Reference

Chickpea CaGEA

The GEA was developed using tissues from 27 samples
and RNA studies were done at five different stages, namely

the germination, seedling, vegetative, reproductive, and
senescence stages. Genes differentially expressed in

drought QTL hotspots were also identified.

[190]

Common bean PvGEA (http://plantgrn.noble.org/PvGEA/) Regulation of nodulation, nitrogen use efficiency, etc. [191]

Cowpea VuGEA (http://vugea.noble.org/) Conserved regulatory mechanism of miRNAs involved in
drought stress and seed maturation. [192]

Pea Pea gene atlas portal PsCam (http:
//bios.dijon.inra.fr/FATAL/cgi/pscam.cgi)

The ‘Caméor’ (PsCam) unigene set allows for the
identification of rare transcripts. It can be used to deduce

the function of nodulation genes and genes responsible for
abiotic stress tolerance.

[193]

Pigeonpea CcGEA An important resource for finding candidate genes
responsible for specific developmental processes. [194]

Soybean
http://www.soybase.org/soyseq An important resource for studying seed filling and

developmental genes. [137]

http://digbio.missouri.edu/soybean_atlas
A database for comparative analyses with two model

legume crops, i.e., Medicago truncatula and Lotus japonicus,
together with the model plant Arabidopsis.

[107]

Small RNA atlas This atlas helps in identifying novel miRNAs and their
targets in the genome. [195]

http://soybase.org/
http://www.plexdb.org/plex.php?database=Soybean
http://www.plexdb.org/plex.php?database=Soybean
http://www.nipgr.res.in/ctdb.html
http://www.nipgr.res.in/ctdb.html
http://plantgrn.noble.org/PvGEA/
http://vugea.noble.org/
http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi
http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi
http://www.soybase.org/soyseq
http://digbio.missouri.edu/soybean_atlas
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4.4. Proteomics and Metabolomics in Abiotic Stress Mitigation

Apart from changes in genes and mRNAs during abiotic stress, plants’ metabolomes
and proteomes are also greatly impacted due to these stresses since they are actively
involved in defense mechanisms against different stresses [196]. The proteome of an or-
ganism, which acts as a bridge between the transcriptome and the metabolome, reflects
the actual state of the cellular response better than the DNA markers. The cellular mRNA
levels represented by the transcriptome are not accurate depiction of the protein expression
as proteins generally undergo post-translational modifications that influence the actual
function of proteins [197]. These proteins are of significance to signal transduction path-
ways and are involved in stress adaptation processes, stress repair mechanisms, etc. Thus,
they assist the plant with its recovery from a stress injury and help with its survival under
stress [198]. On the other hand, metabolites are a reflection of the gene expression and
interactions responsible for gene regulation under stress conditions and have close rela-
tions to the phenotype rather than the mRNA or proteins [199]. Of all the different omics
technologies, metabolomics is the most cross-functional and reflects most of the processes
as they are [196]. Furthermore, metabolic pathways are usually involved in highly complex
networks and never function alone, which implies that interrupting a single metabolic
pathway, could have adverse effects on other pathways, resulting in damaging traits in
the modified plant. Hence, comprehensive analyses that elucidate the metabolic networks
involved in the growth and development of plants under varying environmental conditions
are very important. The molecular phenotypes of legumes under abiotic stresses have been
studied by using proteomics and metabolomics as presented in Table 7.

Table 7. Application of proteomics and metabolomics in abiotic stress mitigation in pulse crops.

Abiotic Stress Crop Omics Approach Details Reference

Drought

Chickpea

Proteomics Potential resources for improving drought tolerance were
identified. [200]

Comparative proteomics A total of 75 proteins were found to be differentially
expressed in roots. [201]

Comparative proteomics MALDI-TOF/TOF-MS/MS analyses revealed 24 differently
expressed proteins in leaves under drought stress. [202]

Metabolomics Effect of PGPRs under drought stress was identified using
UPLC-HRMS analysis [203]

Cowpea Metabolomics

GC-TOF-MS profiling of primary metabolites and LC-DAD
profiling of secondary metabolites under drought stress.
Prolonged stress irrespective of the developmental stage

affected the metabolome.

[204]

Faba bean Proteomics
Proteins including chitinase, Bet, and glutamate–glyoxylate

aminotransferase were found to be upregulated in leaves
under drought stress.

[205]

Drought and
Heat Soybean Metabolomics Upregulation of nitrogen and metabolism under combined

heat and drought stress. [168]

Salinity

Chickpea Comparative proteomics Various proteins were found to be engaged in salinity
tolerance. [206]

Faba bean Metabolomics
Molecules such as myo-inositol, allantoin, and

glycerophosphoglycerol were found to be up-regulated in
roots in response to salt stress.

[207]

Soybean Comparative
metabolomics

A total of 47 different metabolites were found to be
responsible for salt tolerance. [208]

Heat Chickpea Comparative proteomics A total of 482 heat-responsive proteins were found to be
engaged in heat stress tolerance. [209]

Aluminium Soybean Comparative proteomics MALDI TOF analysis revealed differential protein expression
in roots under Al stress. [210]

GC, Gas Chromatography; LC-DAD, Liquid Chromatography with PhotoDiode Array Detection; MALDI-TOF, Matrix-Assisted Laser
Desorption/Ionization-Time of Flight; MS, Mass Spectrometry; UPLC-HRMS, Ultraperformance Liquid Chromatography–High-Resolution
Mass Spectrometry.
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5. Multi-Omics Integration (MOI) for Future Pulse Breeding

Across all disciplines of biology, the rapid development of high-throughput data gen-
eration techniques has allowed us to conduct multi-omics-based systems biology research.
The data generated from transcriptomics, metabolomics, and proteomics can provide
insights regarding the expression of transcripts, metabolites, and proteins, respectively.
However, systematic multi-omics integration (MOI) of such data can comprehensively
annotate, assimilate, and model these large datasets to provide meaningful, detailed in-
formation. Integration of omics data from various platforms together with novel omics
approaches can help in bridging the genome-to-phenome gap in crop plants and ultimately
help in identifying the right phenotype based on the genetic contribution for breeding
purposes [211,212]. The integration of different omics techniques for improving abiotic
stress tolerance in legumes is presented in Figure 2.

Figure 2. Integrated omics approaches for improving abiotic stress tolerance in legumes. QTL,
Quantitative Trait Loci; GWAS, Genome-Wide Association Study. This figure was created by Bioren-
der.com.

Large NGS-derived genomic datasets and MOI approaches have substantially con-
tributed towards increasing our knowledge of living organisms at the molecular level.
Furthermore, translational genomics (TG) can be used to bridge the information gap be-
tween model systems and relatively understudied crop plants. The paramount aim of crop
breeding is to achieve the maximum genetic gain of desirable traits in crop genomes in a
cost- and time-effective manner. The TG technique has recently been utilized in some of
the major legume crops [213].

Recently, GWAS analysis has gained immense popularity due to its ability to find
genes, genomic loci, and SNP/InDels in genomes that are associated with beneficial crop
traits [214]. Sequencing and/or array-based GWAS tools are making it possible to accurately
predict/identify the alleles that are directly linked to particular phenotypic features, which
is beyond the reach of map-based QTL analyses. WGRS can reveal genome-wide nucleotide
variations, which can be further used for GWAS analyses. Moreover, the development of a
high-throughput phenotyping system (HTPS) is imperative for phenotype-associated ge-
nomic analyses. Based on their syntenic relationships, the information derived from HTPS
can be used for closely related plant genomes. These multi-dimensional and omics-driven
techniques can assist with deriving useful information from multi-species phenotypic
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annotations linked to complex traits. Multi-omics platforms have been integrated together
in some legumes to improve abiotic stress tolerance as presented in Table 8.

Table 8. Multi-omics integration for improved abiotic stress tolerance in pulse crops.

Crop Stress/Trait/Genes Pan-Omics Approach Used Details References

Chickpea Abiotic stress Proteomics and
phosphoproteomics

Novel clues suggest that the ubiquitin–proteasome
pathway regulates nutrient reallocation. An increased

abundance of NAPs/NAPPs involved in redox
sensing and signaling during seed development was

observed.

[215]

Common bean Osmotic stress Proteomics and
phosphoproteomics Dehydrin played an important role in osmotic stress. [216]

Soybean

Drought tolerance
genes

Metabolomics,
transcriptomics, and analyses

of gene promoters

Metabolite coumestrol and stomatal development
genes played important roles in drought tolerance. [217]

Silicon transporter
involved in (a)biotic

stress tolerance

Comparative genomics,
transcriptomics, and
expression profiling

Two putative Si transporter genes, GmNIP2-1 and
GmNIP2- 2, were identified. [218]

Salinity Phosphoproteomics and
metabolomics

Flavonoids were significantly upregulated after salt
treatment. [219]

Salinity Phosphoproteomics and
proteomics

A total of 1163 differentially phosphorylated sites
were found, of which ten MYB/MYB transcription

factor-like proteins were identified, which were found
to be involved in flavonol accumulation.

[220]

Heat stress tolerance Genome-wide transcriptomics
and proteomics

Proteins involved in thermotolerance, chromatin
remodelling, and post-transcriptional regulation

under heat stress were identified.
[221]

NAPs/NAPPs, Nutrient-Associated Proteins/Nutrient-Associated Phosphoproteins; MYB, Myloblastosis.

6. Smart Farming: Artificial Intelligence (AI)-Based Pulse Breeding for
Climate Resilience

The selection of cultivars with the best traits, especially under stress conditions, re-
quires the modeling of genomics and phenomics data in such a manner that can provide
the best output with the minimum cost and effort. MOI data are multidimensional, het-
erogeneous, and complex data that require advanced solutions for their application in
plant breeding technologies. With the advancement of AI technologies, the development
of climate-smart crop varieties with enhanced yield can enhance the tolerance/resistance
to multiple abiotic stresses and can produce higher genetic gains in less time [222]. A
combination of phenotypic, genotypic, and environmental data can reflect a plant’s stress
response profile thoroughly; however, due to the complexity of the phenotypic plasticity in
changing environments, obtaining meaningful information from integrated data is difficult
as it is burdened by the genotype-to-phenotype (GP) gap. Intensive phenotyping involv-
ing concurrent comparative phenotypic measurements under changing environmental
conditions is required to compensate for unapproachable factors such as the creation of
identical growth conditions that are impossible to repeat. The coupling of such measured
data with next-generation AI tools will diminish the bias arising from the GP gap. Negin
and Moshelion [223] devised a strategy for screening drought-tolerant crops based on
the use of a physiology-based high-throughput functional phenotyping system (HFPS)
in combination with the soil–plant–atmosphere-continuum (SPAC), which can be used to
measure the plant’s response to continuous and fluctuating environmental conditions. The
use of a HFPS along with GWAS can result in a better understanding of gene characteristics
under changing environments as well as in the development of novel genetic resources for
pulse breeding. High-throughput phenotyping in changing environments has also been
adopted successfully in certain legumes as presented in Table 9.



Int. J. Mol. Sci. 2021, 22, 10535 22 of 35

Table 9. Automated phenotyping platforms for screening pulse crops in changing environments.

Pulse Crop Basis of Automated Platform Details Reference

Chickpea Photogrammetry techniques Open-source 3D phenotyping platform for plant
architecture. [224]

Common bean
Digital imaging techniques

Legume shovelomics—a high-throughput phenotyping
platform for common bean and cowpea. [225]

Cowpea

Pea
Color imaging technology

High-throughput phenotyping platform for early vigor
detection of field pea seedlings responsible for water use

efficiency and yield in changing environments.
[226]

RGB digital imaging Advanced phenotyping platform for phenotyping pea
shoots under cold stress. [227]

Soybean
Sensor-based technology

Automated phenotyping platform for assessment of
salinity in soybean growing under greenhouse

conditions.
[228]

Automated imaging
combined with GlyPh

Automated phenotyping platform for predicting
drought tolerance in soybeans growing in fields. [229]

RGB, Red Green Blue; 3D, Three-Dimensional

6.1. Machine learning (ML)-Enabled Genomic Selection, QTL Mining, GWAS, and Functional
Prediction for Pulse Breeding

Over the years, GWAS have identified thousands of important genes associated with
the stress response. However, due to the complex nature of stress response mechanisms
in plants, these responses have been reattributed to multiple interacting genetic variants
that are usually ignored in GWAS. ML algorithms can be used to detect these genetic
variants. Zhang et al. [38] used a ML-facilitated image phenotyping approach to study
the genetic basis of abiotic-stress-related iron deficiency chlorosis (IDC) in soybean. The
generated data were subsequently utilized in genomic prediction and GWAS analyses to
identify a previously described locus and a new locus containing a gene homolog engaged
in iron acquisition. In another study, Naik et al. [230] reported an end-to-end phenotyping
approach for soybean stress severity phenotyping that emphasizes IDC-severity-indifferent
field plots. The high-throughput framework helped with the digital analysis of stress traits
in real-time, identified markers, helped with genomic selection (GS)-based prediction, and
increased the rate of genetic gain, which has stress scouting applications in plant breeding as
illustrated in the figures of previous works reported by Libbrecht and Noble [231], Schrider
and Kern [232], and Cortés et al. [233]. Liu et al. [234] used deep learning technology
to predict quantitative phenotypes and to discover markers associated with them. The
deep learning framework was based on convolutional neural networks (CNNs), which
were used to predict the quantitative traits from SNPs and achieved more accurate results.
Similarly, artificial neural networks (ANNs) have been employed for GS-based prediction
modeling in common bean [235]. The genotype Aporé, which was studied using ANNs,
was recommended for use in unfavorable environments because of its grain yield and
high phenotypic stability even under unfavorable conditions. Examples of the use of
different machine learning approaches, such as convolutional neural networks, deep belief
networks, multivariate Poisson deep learning, multilayer perceptrons, probabilistic neural
networks, and radial basis function neural networks, to improve the prediction of tolerance
to abiotic stresses, such as heat and drought, in different crop plants have been listed
by Cortés and López-Hernández [236]. ML is also a promising tool for QTL mining in
crops. Falk et al. [237] developed a computer vision and ML-enabled high-throughput root
phenotyping platform for soybean. Using this ML-enabled root phenotyping platform, they
studied the genetic variability of root system architecture (RSA) traits in different soybean
accessions. The combination of predictive and machine learning algorithms that support
genome-wide marker-assisted breeding with innovative methodologies for adaptation to
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a changing climate together with thermal adaptation has been thoroughly reviewed by
Cortés et al. [233,238].

ML systems are cost-effective, non-destructive, and high-throughput tools for the
assessment of root growth and development for genomics and phenomics studies. Thus,
ML can be efficiently utilized in plant breeding technologies for characterizing the genetic
variants controlling complex traits associated with abiotic stress tolerance.

6.2. Artificial Intelligence (AI)-Enabled Genome Editing

Genome editing has evolved as an advanced technique to remove deleterious genes
from the genome of an organism. Interestingly, the removal of deleterious alleles is one of
the important components of plant breeding. Linkage drag can be avoided by the introduc-
tion of beneficial alleles into elite cultivars utilizing a genome editing technique rather than
backcrossing with other donor parents carrying deleterious alleles at linked loci [239,240].
The utilization of the CRISPR/Cas9 system as a genome-editing tool has opened new
avenues in understanding the functional roles of many important regulatory genes. The
efficiency of the CRISPR system relies on a specifically designed single-guide RNA (sgRNA)
that is complementary to the specific genomic regions under study. However, off-target
deletions could result from the binding of sgRNA to off-target sites. AI-enabled identifica-
tion of target prediction is currently being exploited for designing sgRNAs with increased
specificity and improved efficiency. Abadi et al. [241] have designed a computer algorithm
using a ML framework called CRISPR Target Assessment (CRISTA) for predicting the
target in the genome. The predictions made with CRISTA were found to be more accurate
and precise compared with other available methodologies. Most of the existing off-target
binding prediction tools are based on the calculation of a mismatch score; thus, they cannot
be scaled up with the rapidly increasing amount of experimental data generated through
the CRISPR/Cas9 technique [242]. To address this issue, Lin et al. [242] designed two
algorithms using deep neural networks, i.e., deep CNNs and deep feed-forward neural
networks, to predict off-target mutations in CRISPR/Cas9-based gene editing. The models
were evaluated for performance using off-target datasets, such as the CRISPOR dataset
(http://crispor.org, accessed on 3 August 2021) and datasets discovered by Genome-wide,
Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-seq). The deep neural
network-based models were further compared to advanced off-target prediction methods
(CCTop, Convolutional Neural Networks, CROP-IT, and MIT) and three conventional ML
models (gradient boosting trees, logistic regression, and random forest) in both datasets.
The deep neural network-based algorithm made more precise predictions than the con-
ventionally used models. Such ML- and deep-learning-based models can also be utilized
in pulse crops for the prediction of off-target binding and, thus, gene editing can also be
easily achieved in pulse crops.

7. Challenges and Opportunities for Future Pulse Crop Breeding

Legumes share important taxon-specific data opportunities that must be fully explored
to improve their abiotic stress resilience. At the individual legume species level, assimila-
tion of novel or unique data is a challenge that can be addressed by integrating different
omics approaches and the coupling of phenotyping data with next-generation AI tools. Pre-
dictive modeling based on a novel omics approach, such as fluxomics—which can predict
the effects of environmental factors on genetic changes—has not yet been explored in case
of legumes and should be given attention. In addition, allocating glycans to specific amino
acid sites remains understudied in legumes, as tools and algorithms have not yet reached
the level of automation required, which needs to be addressed promptly. Furthermore,
as large amounts of genomic data on members of the Leguminosae family are becoming
available, the creation of comprehensive resource atlases is required. GEAs will be useful
for generating markers that are associated with specific productivity- and tolerance-related
traits that can be employed in pulse crop breeding. However, many important pulse crops
still have a limited number of genetic resources available for the development of databases,

http://crispor.org
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which limits the application of epigenetic breeding in legumes. For such pulse crops, the
construction of pan-genomes will help us to develop a comprehensive understanding of
stress response mechanisms.

Integration of pan-omics platforms with novel omics tools and AI will further assist
with the discovery of target genes and pathways controlled by complex mechanisms, which
will allow ‘speed cum precision breeding’ to develop climate-resilient, high-yield legumes.
However, the MOI approach is often hampered by variations in the data output, data
structure, and unwanted noise between the different technological platforms used for data
collection. MOI can also be problematic for datasets that are irreproducible, qualitative,
contain false positive/negative values, and lack metadata. Therefore, for productive
integration and comparison, data management and sharing standards need to be updated.
There is a desire to include consistent metadata and ontologies in properly maintained
repositories to facilitate their use. Further, genome editing has significantly accelerated
livestock breeding; however, genome editing is difficult to achieve in the case of legumes
due to the complexity of allelic effects and the GP gap. Computer-simulated, environment-
specific models generated from ML- and deep-learning-based models can alleviate the
problems associated with genome editing in legumes in changing environments. ML can
enable better genomic selection, QTL mining, and genome-wide association studies in
orphan legumes. It can also be employed to predict a plant’s response to an abiotic stress
by utilizing the miRNA expression in the plant, which to date has only been exemplified
in the case of Arabidopsis [243]. Similar approaches can also be employed in economically
important pulse crops to uncover the role of various stress-responsive miRNAs.

The adjustment of legumes towards changes in climatic scenario and molecular breed-
ing of legumes for resilience to abiotic stresses have conventionally been aided by QTL
mapping, marker-assisted selection, and GWAS [244]. Recently, extensive augmentation in
the area of predictive breeding has helped us accelerate the selection from natural origins
and within the breeding succession by abbreviating the generation intervals and escalating
the selection fidelity ahead of field trials. Therefore, predictive breeding has enormous
potential for complex polygenic adaptive traits such as abiotic stress tolerance. Lenz et al.
have hitherto recognized and talked about refinement in this area, such as multi-trait GP
models together with integrative selection scores [245]. These models can describe multi-
scale trait–environment inter-relations in legumes. Machine learning provides a predictive
method competent at amalgamating GWAS, GEA, and GP approaches. For genetic and
genomic datasets, ML algorithms can be dissected into supervised, semi-supervised, and
unsupervised methods. Abiotic stress tolerance amelioration requires various ML methods
based on the aim of expounding the output model or elucidating the predictive power.
Generative models are great for interpretability, whereas discriminative models are suitable
for predictive power [231].

Genomic selection also depends upon progress in ML and the accessibility of genotypic
data to predict stress-related phenotypic traits. Further scrutiny of the association between
mechanistic models that permit the simulation of phenotypes under abiotic stresses and
ML models that can incorporate marker data holds potential to solve the problem of model
transferability among environments [246]. ML has traditionally been employed in func-
tional genomics [247]. Currently, it is metamorphosing into GWAS coupled to MAS [247]
and GP [248,249]. Creative advancements in ML will further assist with precise predictions
by agglutinating environmental variables and phenotypic and genotypic diversity [238].
In conclusion, leveraging tools from various scientific disciplines together with “omics”
and advanced breeding technologies is crucial to sustaining legume productivity under
changing climatic conditions.
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