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ABSTRACT: Macrophage-mediated inflammation plays essential roles in multiple-
organ injury. Sinensetin (SNS) at least exhibits anti-inflammation, antioxidant, and
antitumor properties. However, the underlying mechanism of SNS-targeted macrophage-
mediated inflammation remains elusive. In the present study, our results showed that
SNS suppressed lipopolysaccharide (LPS)-induced inflammation to ameliorate lung and
liver injuries. Mechanistically, SNS significantly inhibited M1-type macrophage
polarization and its NLRP3 inflammasome formation to significantly decrease tumor
necrosis factor α (TNFα) and IL-6 expression, while increasing IL-10 expression.
Moreover, SNS interacted and activated SIRT1 to promote NRF2 and its target gene
SOD2 transcription, which subsequently decreased LPS-induced inflammation. SIRT1
knockdown impaired the effects of SNS on the inhibition of macrophage polarization,
NLRP3 inflammasome formation, and NRF2/SOD2 signaling. Taken together, our
results showed that SNS is a potential and promising natural active ingredient to
ameliorate inflammatory injury via activating SIRT1/NRF2/SOD2 signaling.

1. INTRODUCTION
Accumulating evidence has highlighted that the active
ingredients derived from natural products or traditional
Chinese medicine have been evaluated in treating inflamma-
tory diseases and cancer.1 Flavonoid derives from various
vegetables and fruits, at least including green tea, citrus fruits,
and even onion. Accumulating evidence indicated that
flavonoid plays important roles in antivirus and antitumor
response and in improving cardiovascular diseases.2 Recently,
emerging studies highlighted that sinensetin (SNS), one of the
flavone aglycones, exhibits various bioactivities on anti-
inflammation, antioxidant, antitumor antimicrobial, and
antiobesity.3,4 SNS served as an inhibitor to target GLUT1
to facilitate sorafenib-induced cytotoxicity of cancer cells,
which might contribute to overcoming chemoresistance in
cancer treatment.4 Previous studies showed that SNS-activated
transcription factor signals transducers and activators of
transcription 1α (STAT1α) to decrease inducible nitric
oxide synthase (iNOS), tumor necrosis factor α (TNFα),
and cyclooxygenase-2 (COX2) expression, which might
possess a promising and potential role in anti-inflammatory
treatments.5 Recently, SNS decreased IL-1β-induced inflam-
matory cytokines in human osteoarthritis chondrocytes, such
as COX2, iNOS, TNFα, and IL-6, but it also decreased MMP9
and MMP13 to attenuate extracellular matrix degradation,
which together ameliorates osteoarthritis.6 SNS also integrates
NF-κB and MAPK signals to ameliorate influenza-induced
inflammation.7 Inflammatory injuries, such as acute lung

injury, possessed a total mortality of about 40%;8 acute liver
failure would be fatal with a mortality of 80−85%.9 For
instance, a high risk of acute lung injury includes genetic
factors (ACE2, associated with the COVID-19 pandemic),
virulence factors, race differences, and environmental factors,
which would be potentiated by the ventilator-induced lung
injury.8 However, the effect of SNS on attenuating
inflammation to ameliorate acute lung/liver injuries remains
elusive.

Macrophages exhibit multiple and essential roles in
inflammatory injury of the lungs, liver, and cardiovascular
system and metabolic disease.10,11 Macrophage-induced auto-
inflammation and injury mainly depended on regulating
NLRP3-related inflammatory signalings.12,13 Notch1-YAP
loop positively contributes to macrophage M1-type polar-
ization to exacerbate liver injury.14 Bacterial infection activated
macrophage infiltration and AKT/NF-κB signaling to induce
fatal lung injury.15 Bone marrow-derived macrophage
(BMDM)-related NLRP3 inflammasome would be suppressed
by the natural compound Bergapten via promoting mitophagy
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and mitochondrial homeostasis.16 Loss of AMPKα1/FOXO3
signaling in macrophage would aggravate post-injury muscle
regeneration and acute lung injury.17 Promoter-specific
interactions of NF-κB and suppressor of cytokine signaling-1
(SOCS1) promoted the transcription of NF-κB downstream
pro-inflammatory genes, which promoted macrophage induced
inflammatory injuries.18 Indeed, previous studies indicated that
SNS inactivated NF-κB signaling to exhibit anti-inflammation
and protect against inflammatory cytotoxicity.6,7,19 However,
the effect and underlying mechanism of SNS on macrophage-
induced inflammatory injury remain largely unknown.

In the present study, we evaluated the effect and explore the
underlying mechanism of SNS on regulating macrophage
polarization and its subsequent inflammation in LPS-induced
inflammatory injury in vitro and in vivo models.

2. METHODS AND MATERIALS
2.1. Cell Culture and Treatments. The mouse

mononuclear macrophage RAW264.7 cells were purchased
from Beyotime Company (Cat. C7505, Shanghai, China).
RAW264.7 cells were maintained in high-glucose DMEM
(GIBCO), supplemented with 10% fetal bovine serum (Cat.
C0226, Beyotime, Shanghai, China) and 1% penicillin-
streptomycin (Cat. C0222, Beyotime, Shanghai, China).
RAW264.7 cells were cultured in a 37 °C, 5% CO2 cellular
incubator. The 100 ng/mL LPS (Sigma, lot. L4516) with or
without different dosages of SNS (Sigma, lot. SML1787) was
used to treat RAW264.7 cells for 6 h (mRNA level detection)
or 24 h (protein level detection), and then following
subsequent detections.20 The SIRT1 siRNA sequence was
5′-TGATTGGCACCGATCCTCG-3′, and then SIRT1
knockdown was carried out as previously described.21 All
adenovirus plasmids construction and adenovirus packages
were constructed and purchased from Shanghai ObioTecho-
nology Company (Shanghai, China). After infecting
RAW264.7 cells for 48 h, the cell growth medium was
refreshed, and subsequent experiments were performed.
2.2. Real-Time Polymerase Chain Reaction (PCR).

Total RNA of cells or lung and liver tissues were isolated by
RNAeasy Plus Animal RNA Isolation Kit with Spin Column
(Cat. R0032, Beyotime, Shanghai, China) as the manufac-
turer’s guideline. In brief, samples were lysed in lysis solution
within the kit and then stewed for 1 min at room temperature.
Binding buffer was then added and gently mixed well. The
mixture was then carefully transferred into spin columns for
centrifugation at 12,000g, 30 s. Filtrate was collected and
transferred into a new Eppendorf (EP) tube. 0.7 mL of binding
buffer was added and gently mixed well. The mixture was then
carefully transferred into spin columns for centrifugation at
12,000g for 30 s. To the spin columns was added 0.6 mL of
washing buffer I for centrifugation at 12,000g for 30 s, followed
by washing buffer II with the same procedure twice. After
discarding the filtrate, centrifugation was performed at 14,000g
for 120 s. Total RNA was washed down from spin columns by
RNA eluent and collected in a new EP tube for subsequent
experiments. Total RNA was reverse transcribed by the
BeyoRT II First Strand cDNA Synthesis Kit with gDNA
Eraser (Cat. D7170L, Beyotime, Shanghai, China) according
to the manufacturer’s guideline. A special gene was amplified
by the BeyoFast SYBR Green qPCR Mix (Low ROX) kit (Cat.
D7262-25 mL, Beyotime, Shanghai, China) according to the
manufacturer’s guideline.

2.3. Immunofluorescence. Immunofluorescence was
performed as previously described.22 In brief, tissue slices
were permeabilized with Triton X-100 solution (Cat. P0096-
100 mL, Beyotime, Shanghai, China); then, they were blocked
with QuickBlock Blocking Buffer for Immunol Staining (Cat.
P0260, Beyotime, Shanghai, China). After incubating the
primary antibodies overnight at 4 °C, Alexa Fluor 488 and
Alexa Fluor 647 secondary antibodies were incubated for 1 h at
room temperature. Images were captured by a fluorescence
microscope (Nikon, Japan). Fluorescence intensity was
quantified by ImageJ as previously described.23 The primary
antibodies were used as follows: anti-NLRP3 (Cat. AF2155,
Beyotime, Shanghai, China), anti-ASC (Cat. AF6234,
Beyotime, Shanghai, China), anti-NRF2 (Cat. AF7623,
Beyotime, Shanghai, China), anti-SOD2 (Cat. PK08370,
Abmart, Shanghai, China), anti-SIRT1 (Cat. AF5300,
Beyotime, Shanghai, China), anti-Cd11b (Cat. AF6396,
Beyotime, Shanghai, China), anti-F4/80 (Cat. AG4753,
Beyotime, Shanghai, China), anti-SOD2 (Cat. PK08370,
Abmart, Shanghai, China).
2.4. Molecular Docking. Molecular docking of SNS and

SIRT1 was carried out as previously described.24 Briefly, we
acquired the SNS structure from the PubChem database and
SIRT1 three-dimensional (3D) protein structure from the
PDB database, and then docking was performed by using
AutoDock4 software.
2.5. ELISA. Whole blood was stewed overnight at 4 °C and

then centrifuged for 10 min at 3000 rpm and room
temperature. Serum was carefully transferred into a new EP
tube for subsequent ELISA experiments which were carried
out according to the manufacturer’s guideline. The ELISA kit
of mouse TNFα was purchased from NEOBIOSCIENCE
Company (Cat. EMC102a(H).96, Shenzhen, China). The
ELISA kit of mouse IL6 and IL1β was purchased from
Beyotime Company (Cat. PI326 and Cat. PI301, Shanghai,
China). Aminotransferase (ALT) and aspartate aminotransfer-
ase (AST) were purchased from Abcam Company (Cat.
ab285263 and Cat. ab263882, Cambridge, United Kingdom).
2.6. In Vivo Experiment. C57BL/6 male mice (8 weeks

old) were purchased from the Guangdong Medical Laboratory
Animal Center. All of the mice were housed at the Animal
Research Center of Guangzhou Medical University. All animal
experiments were reviewed and approved by The Animal
Ethics Committee of Guangzhou Medical University. All of the
mice received human care as being housed and bred in the
standard specific pathogen-free environment at 22 ± 2° with
50 ± 10% humidity and every 12 h light/dark switch. A 0.25
mg/kg/day LPS plus 80 mg/mL D-Gal mixture was intra-
peritoneally injected into the mice for 4 days (totally equal to 1
mg/kg) to construct the inflammatory injuries model, SNS
(low dose at 12.5 mg/kg/day, medium dose at 25 mg/kg/day,
high dose at 50 mg/kg/day) for 4 days (totally equal to 50
mg/kg at a low dose, 100 mg/kg at a medium dose, and 200
mg/kg at a high dose). All of the mice were anesthetized after
24 h injections, and then tissues and blood samples were
collected for subsequent examinations.
2.7. H&E Staining. Paraffin slices were bathed within

xylene for 10 min twice and gradient alcohol (100, 90, 80,
70%) for 5 min each. After rinsing in ddH2O for 3 min, paraffin
slices were stained in hematoxylin (Cat. C0105M, Beyotime,
Shanghai, China) for 10 min and then rinsed in ddH2O for 10
min twice. After fast differentiation by acid alcohol for 30 s,
eosin (Cat. C0105M, Beyotime, Shanghai, China) staining was

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c03319
ACS Omega 2023, 8, 33514−33525

33515

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c03319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


carried out for 2 min and then rinsed in 70% alcohol for 2 min.
After dehydration, transparently, all slices were sealed by the
poly(vinylpyrrolidone) mounting medium kit (Cat. C0185,
Beyotime, Shanghai, China).
2.8. TUNEL Assay. Paraffin slices were bathed within

xylene for 10 min twice and gradient alcohol (100, 90, 80,
70%) for 5 min each. After rinsing in ddH2O for 3 min, paraffin
slices underwent TUNEL assay by using one-step TUNEL
Apoptosis Assay Kit (Cat. C1090, Beyotime, Shanghai, China)
according to the manufacturer’s guideline.
2.9. Statistical Analyses. Data included in the present

study were presented as mean ± S.D. T test and one-way
ANOVA were used to analyze the statistical difference. p value
less than 0.05 was set as statistical difference.

3. RESULTS
3.1. SNS-Ameliorated LPS-Induced Inflammatory

Injuries and Cytotoxicity. We first investigated the effect
of SNS on LPS-induced inflammatory injury in mice. Our
results showed that LPS significantly elevated the ratio of liver/
body weight (%), SNS dose-dependently decreased the ratio of
liver/body weight (%), and there was a significant difference in
the high dose of SNS treatment (Figure 1A). LPS also
significantly elevated the ALT and AST serum levels, SNS
dose-dependently decreased the ALT and AST serum levels,

and there was a significant difference in the high dose of SNS
treatment (Figure 1B). LPS administration dramatically
increased the infiltration of inflammatory cells in the lungs
and liver, which is accompanied by apoptosis in the lungs and
liver (Figure 1C). SNS dose-dependently reversed the LPS-
induced inflammatory infiltration and injuries in the lungs and
liver (Figure 1C).
3.2. SNS-Suppressed LPS-Induced Macrophage In-

filtration and Subsequent Inflammation.We then wonder
about the type of inflammatory cells that infiltrated in lungs
and liver. Our results showed that LPS induced almost 3-fold
upregulation of TNFα, IL6, and IL1β serum levels,
respectively, compared to the control group (Figure 2A).
SNS dose-dependently decreased the TNFα, IL6, and IL1β
serum levels, respectively, and there was a significant difference
in the high dose of SNS treatment (Figure 2A). There was a
slight upregulation of IL1β serum level at low-dose SNS
treatment compared to the LPS model group, but it had no
statistical difference (Figure 2A). LPS positively increased the
monocyte marker Cd11b expression in liver, which correlated
with the upregulation of macrophage marker F4/80 expression
in liver (Figure 2B). Low-dose and medium-dose SNS had no
effect on regulating the Cd11b and F4/80 expression in liver,
while the high-dose SNS dramatically decreased the Cd11b
and F4/80 expression in liver (Figure 2B).

Figure 1. SNS-ameliorated LPS-induced inflammatory injuries and cytotoxicity. Mice were injected with 0.25 mg/kg/day LPS for 4 days, or 0.25
mg/kg/day LPS and SNS (low dose at 12.5 mg/kg/day, medium dose at 25 mg/kg/day, high dose at 50 mg/kg/day) for 4 days. (A) Changing of
the ratio of liver/body weight (%) after LPS with/without SNS treatments. (B) Serum ALT and AST levels after indicated treatment. (C) H&E
staining and TUNEL staining in the liver and lungs after indicated treatment. n = 6, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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3.3. SNS-Regulated Macrophage Polarization and Its
Activities. We then evaluated the effect of SNS on regulating
macrophage polarization and its activities. Our results further
showed that LPS significantly increased the expression of M1-
type macrophage markers, including iNOS, COX2, and CD86
(Figure 3A). Low-dose SNS combined with LPS treatment
slightly increased the iNOS mRNA expression compared to
the LPS model group, but it had no statistical difference
(Figure 3A). SNS dose-dependently reversed LPS-induced
upregulation of iNOS, COX2, and CD86 mRNA expression
respectively, and there was a significant difference in the high-
dose SNS treatment (Figure 3A). LPS significantly decreased
the expression of M2-type macrophage markers, including
Cd206, Cd68, and Agr1 (Figure 3B). SNS dose-dependently
reversed LPS-induced inhibition of Cd206, Cd68, and Agr1
mRNA expression, respectively, and there was a significant
difference in the high-dose SNS treatment (Figure 3B). Our
results further showed that LPS significantly and subsequently
increased the pro-inflammatory cytokines TNFα and IL6
mRNA expression but decreased the anti-inflammatory
cytokine IL-10 mRNA expression (Figure 3C). Low-dose
and medium-dose SNS had no effect on regulating the TNFα,
IL6, and IL-10 mRNA expression, but the high-dose SNS
significantly decreased the TNFα and IL6 mRNA expression
but increased the IL-10 mRNA expression (Figure 3C).
3.4. SNS-Inhibited Macrophagic NLRP3 Inflamma-

some Formation. Our results next showed that in LPS-
induced NLRP3 and ASC protein levels in the RAW264.7
cells, low-dose and medium-dose SNS had no effect on
decreasing the expression of NLRP3, while high-dose SNS
obviously decreased cytoplasmic and nucleus protein levels of
NLRP3 (Figure 4A−C). Low-dose SNS also had no effect on
decreasing the expression of ASC, while medium-dose and
high-dose SNS obviously decreased cytoplasmic and nucleus

protein levels of ASC (Figure 4A−C). LPS significantly
elevated the NLRP3 and ASC mRNA expression in RAW264.7
cells, low-dose SNS seemed to be further enhancing this effect
by LPS, yet it had no statistical difference (Figure 4D).
Otherwise, low-dose SNS had no effect on regulating LPS-
induced IL-1β mRNA expression (Figure 4D). Medium-dose
SNS had no effect on regulating LPS-induced NLRP3, ASC, or
IL-1β mRNA expression, respectively, while high-dose SNS
significantly and dramatically decreased LPS-induced NLRP3,
ASC, or IL-1β mRNA expression, respectively (Figure 4D).
3.5. SNS-Activated SIRT1 to Amplified NRF2 Anti-

Inflammation Signaling. We then explored the underlying
mechanism of SNS in regulating macrophage-induced
inflammation. Our results showed that SNS interacted with
the conserved activator binding site of SIRT1 (Figure 5A and
Supporting Table 1) at THR154, THR166, and GLY183.
Besides, high-dose SNS significantly reversed LPS-induced
inhibition of SIRT1 mRNA expression, but not low-dose or
medium-dose SNS (Figure 5B). Interestingly, high-dose SNS
significantly reversed LPS-induced inhibition of NRF2 protein
expression and nucleus sublocation, but not low-dose or
medium-dose SNS (Figure 5C), which was in line with the
effect of SNS on regulating NRF2 target molecular SOD2
protein expression (Figure 5D−F).
3.6. SIRT1 Knockdown-Attenuated SNS-Induced Anti-

Inflammation Signaling. We next conducted SIRT1 knock-
down to confirm the SNS bio-functions. Our results solidly
confirm that SIRT1 mRNA and protein level were successfully
and significantly silent in RAW264.7 cells (Figure 6A,B). Our
results further showed that SIRT1 knockdown partly and
significantly abolished the effect of SNS on NRF2 upregulation
and nucleus translocation rather than its change in the
cytoplasm (Figure 6C). Moreover, SIRT1 knockdown almost
dramatically abolished the effect of SNS on NRF2 target

Figure 2. SNS-suppressed LPS-induced macrophage infiltration and subsequent inflammation. Mice were injected with 0.25 mg/kg/day LPS for 4
days, or 0.25 mg/kg/day LPS and SNS (low dose at 12.5 mg/kg/day, medium dose at 25 mg/kg/day, high dose at 50 mg/kg/day) for 4 days. (A)
Serum TNF-α, IL-1β, and IL-6 after indicated treatment. (B) Macrophage infiltration in liver after indicated treatment. Cd11b and F4/80 were red,
and DAPI was blue. n = 6, ****p < 0.0001.
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molecular SOD2 upregulation in RAW264.7 cells (Figure 6D).
SIRT1 knockdown significantly abolished the effect of SNS on
decreasing M1-type macrophagic markers iNOS, Cox2, and
CD86 mRNA expression (Figure 7A), while restoring M2-type
macrophagic markers Cd206, Cd68, and Agr1 mRNA
expression (Figure 7B), which was also accompanied by
abolishing SNS-induced downregulation of TNFα and IL6
mRNA expression, upregulation of IL-10 mRNA expression
(Figure 7C). Moreover, SIRT1 knockdown significantly
abolished the effect of SNS on decreasing NLRP3 inflamma-
some markers NLRP3 and ASC expression (Figure 8A,B),
which was also accompanied by abolishing SNS-induced
downregulation of IL-1β mRNA expression (Figure 8B).
Moreover, Sirt1 overexpression significantly upregulated NRF2
and Cd206, while having no effect on NLRP3, IL-1β, IL-10,

and iNOS. LPS significantly decreased the expression of
SIRT1, NRF2, IL-10, and CD206, while significantly elevating
NLRP3, IL-1β, and iNOS, yet this effect of LPS would be
reversed and attenuated by overexpression of SIRT1 (Figure
8C).

4. DISCUSSION
Inflammatory injury positively correlated with mortality risk in
cardiovascular and digestive diseases, even primary infection.25

The natural active ingredients, including berberine and
saikosaponin A/D, exhibit potential and promising prospects
in the prevention and treatment of chronic liver disease and
liver cancer.1 SNS served as an effective anti-inflammatory
compound that reasoned us to investigate its effects on
protecting against inflammatory injury. In the present study,

Figure 3. SNS-regulated macrophage RAW264.7 cell polarization and its activities. RAW264.7 cells were treated with 100 ng/mL LPS for 6 h, or
100 ng/mL LPS and SNS (low dose at 12.5 μM, medium dose at 25 μM, high dose at 50 μM) for 6 h. (A) Quantification of M1 macrophage
markers mRNA expression after indicated treatments. (B) Quantification of M2 macrophage markers mRNA expression after indicated treatments.
(C) Quantification of inflammatory cytokines mRNA expression after indicated treatments. n = 4, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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our data first confirmed that SNS significantly decreased the
infiltration of inflammatory cells and subsequent cytotoxicity in
LPS-induced lung and liver inflammatory injuries. In line with
our findings, previous studies had indicated that SNS might
inhibit Wnt/β-Catenin signaling or PI3K-AKT signaling to
intervene in the initiation and progression of pulmonary
fibrosis.26 Otherwise, SNS would target p53-mediated AMPK/
mTOR signaling to trigger autophagy and apoptosis of
Hepatocellular Carcinoma Cells.27 SNS also inhibited
VEGF/VEGFR2/AKT signaling to impaired angiogenesis in

liver cancer.28 Thus, we and others showed that SNS possesses
a protective role in lung and liver diseases.

Accumulating evidence highlighted that macrophage was
involved in and initiated the inflammatory injury.10,13 To
uncover the underlying mechanism of SNS on ameliorating
inflammatory injuries, we then wonder about the special
immunocyte type that first infiltrated into the lungs and liver,
which in turn can be targeted to SNS. To date, the effect of
SNS on mediating immunocytes activities remains largely
elusive. It is reported that flavonoids, but not SNS, significantly
decreased LPS-induced inflammatory cytokines in macro-

Figure 4. SNS-inhibited NLRP3 inflammasomes formation in RAW264.7 cells. RAW264.7 cells were treated with 100 ng/mL LPS for 6 h (mRNA
level detection) or 24 h (protein level detection), or 100 ng/mL LPS and SNS (low dose at 12.5 μM, medium dose at 25 μM, high dose at 50 μM)
for 6 h (mRNA level detection) or 24 h (protein level detection). (A) Immunofluorescence analysis of the NLRP3 inflammasomes markers after
indicated treatment. NLRP3 was red, ASC was green, and DAPI was blue. (B) Fluorescence intensity of (A) quantified by ImageJ. (C) Western
blot analysis of NLRP3, ASC, and caspase 1 after indicated treatments. (D) Quantification of NLRP3 inflammasome-related genes mRNA
expression after indicated treatments. N = 6, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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phages via bioinformatics and in vitro approach, such as TNF-α
and IL-6 production.29 However, others reported that SNS
performed as an immunity enhancer counters immunosup-
pression via elevating transcription and secretion of IFN-γ, IL-

2, and IL-6.30 To further confirm the role of SNS in regulating
macrophagic activities in inflammatory injury, we performed in
vitro and in vivo studies and then found that macrophage
indeed largely infiltrated in LPS-induced injury sites, which

Figure 5. SNS-inhibited NLRP3 inflammasomes formation in RAW264.7 cells. RAW264.7 cells were treated with 100 ng/mL LPS for 6 h (mRNA
level detection) or 24 h (protein level detection), or 100 ng/mL LPS and SNS (low dose at 12.5 μM, medium dose at 25 μM, high dose at 50 μM)
for 6 h (mRNA level detection) or 24 h (protein level detection). (A) In silico docking analysis for the interaction of SNS and SIRT1. (B)
Quantification of SIRT1 mRNA expression after indicated treatments. (C, D) Immunofluorescence analysis of the NRF2 and SOD2 after indicated
treatment. NRF2 and SOD2 were red, and DAPI was blue. (E) Fluorescence intensity of (C) and (D) quantified by ImageJ. (F) Western blot
analysis of SIRT1 and NRF2 after indicated treatments. n = 7, **p < 0.01, ***p < 0.001.
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accompanied with releasing massive pro-inflammatory cyto-
kines, including TNF-α, IL-1β, and IL-6. Our results then
showed that SNS played an anti-inflammation role to
significantly inhibit macrophage infiltration, M1-type polar-
ization, and releasing pro-inflammatory cytokines. We did not

confirm the effect of SNS on regulating immune response
under normal condition. Otherwise, we and others might
suggest that the immunomodulatory effects of SNS are under a
complex context that should be further explored in future
studies.

Figure 6. SIRT1 silence would attenuate SNS-induced NRF2 signaling in RAW264.7 cells. RAW264.7 cells were treated with 100 ng/mL LPS for
24 h, or 100 ng/mL LPS and SNS (low dose at 12.5 μM, medium dose at 25 μM, high dose at 50 μM) for 24 h. (A) Quantification of SIRT1
mRNA expression to examine the knockdown efficiency. (B) After SIRT1 silence, immunofluorescence SIRT1 protein level to examine the
knockdown efficiency. SIRT1 was red, and DAPI was blue. (C, D) After SIRT1 silence, immunofluorescence analysis of the NRF2 and SOD2 after
indicated treatment, respectively. NRF2 and SOD2 were red, and DAPI was blue. n = 7, *p < 0.05.
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In the present study, when we explore the underlying
mechanism of SNS in regulating inflammation, we unexpect-
edly found that SNS actually interacted with the conserved
activator binding site of SIRT1. The Sirtuin family acts as the
NAD+ cofactor which belongs to class III Histone deacetylase
(HDAC).31 As the first cataloged member of the Sirtuin family,
SIRT1 exhibits various bioactivities in anti-inflammation,
antioxidant, and antitumor.32,33 SIRT1 deletion caused
excessive inflammation and oxidative stress in multiple organs,
which subsequently contribute to chronic inflammatory
diseases.34 These previous studies reasoned us to investigate

the effect of SNS on regulating SIRT1 expression and its
activities. In line with the previous study, our results further
showed that SNS rescued SIRT1 expression under an LPS-
induced inflammatory injury model. Accumulating studies had
indicated that NRF2 served as a key downstream target of
SIRT1 that played important roles in antioxidative stress and
immunomodulation. For example, SIRT1 presented as a
predominant regulator to promote Nrf2 expression in diabetic
complications treatment.33 Astragaloside IV activated not only
SIRT1/NRF2 signaling to inhibit oxidative stress but also
SIRT1 to suppress NLRP3-mediated inflammatory cytokines

Figure 7. SIRT1 silence would attenuate SNS-induced inhibition of macrophage polarization and its inflammation in RAW264.7 cells. RAW264.7
cells were treated with 100 ng/mL LPS for 6 h, or 100 ng/mL LPS and SNS (low dose at 12.5 μM, medium dose at 25 μM, high dose at 50 μM)
for 6 h. (A) After SIRT1 silence, quantification of M1 macrophage markers mRNA expression after indicated treatments. (B) After SIRT1 silence,
quantification of M2 macrophage markers mRNA expression after indicated treatments. (C) After SIRT1 silence, quantification of inflammatory
cytokines mRNA expression after indicated treatments. n = 7, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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releasing, including IL-1, TNF-α, and IL-6.35 In line with these
previous findings, our results also suggested that SNS might
activate SIRT1/NRF2 signaling to promote SOD2 tran-
scription and then ameliorate LPS-induced inflammatory
injuries.

NLRP3 inflammasome activation is the key molecular event
in M1 macrophage polarization releasing pro-inflammatory
cytokines. For instance, LPS promoted M1-type macrophage
polarization to promote NLRP3 inflammasome formation to
release pro-inflammatory cytokines IL-1β and IL-18.36 SIRT1

overexpression would decrease endogenous LPS production
and inhibit macrophagic NLRP3 inflammasome formation to
suppress NF-κB-induced inflammation, which together to
alleviate hepatic inflammatory injury and fibrosis.37 Naringenin
activated transcription factor EB to suppress NLRP3
inflammasome formation, which in turn facilitates M2
macrophage polarization.38 In line with these previous findings,
our result also showed that SNS significantly activated SIRT1
to facilitate M2 macrophage polarization and inhibit NLRP3
inflammasome formation.

Figure 8. SIRT1 silence would impair SNS-induced inhibition of macrophagic NLRP3 inflammasomes formation in RAW264.7 cells. RAW264.7
cells were treated with 100 ng/mL LPS for 6 h (mRNA level detection) or 24 h (protein level detection), or 100 ng/mL LPS and SNS (low dose at
12.5 μM, medium dose at 25 μM, high dose at 50 μM) for 6 h (mRNA level detection). (A) After SIRT1 silence, immunofluorescence analysis of
the NLRP3 and ASC after indicated treatment. NLRP3 was red, ASC was green, and DAPI was blue. (B) After SIRT1 silence, quantification of
NLRP3 and IL-1β mRNA expression after indicated treatments. (C) After SIRT1 overexpression, quantification of NRF2, IL-10, NLRP3, IL-1β,
iNOS, and CD206 mRNA expression after indicated treatments. n = 6, ****p < 0.0001.
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5. CONCLUSIONS
This study reports an active natural compound SNS that
protected against LPS-induced inflammatory injuries in the
lungs and liver. In the molecular context, SNS targeted SIRT1
to activate NRF2/SOD2 signaling to induce M0 macrophage
facilitating M2 macrophage polarization and inhibiting NLRP3
inflammasome formation, subsequently decreasing the pro-
inflammatory cytokines TNFα and IL6 expression, while
increased anti-inflammatory cytokine IL-10 expression. Taken
together, our results provided a potential and promising
strategy for inflammatory injury treatment.
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