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Abstract: Quality of service (QoS) requirements for live streaming are most required for video-on-
demand (VoD), where they are more sensitive to variations in delay, jitter, and packet loss. Dynamic
Adaptive Streaming over HTTP (DASH) is the most popular technology for live streaming and
VoD, where it has been massively deployed on the Internet. DASH is an over-the-top application
using unmanaged networks to distribute content with the best possible quality. Widely, it uses
large reception buffers in order to keep a seamless playback for VoD applications. However, the use
of large buffers in live streaming services is not allowed because of the induced delay. Hence,
network congestion caused by insufficient queues could decrease the user-perceived video quality.
Active Queue Management (AQM) arises as an alternative to control the congestion in a router’s
queue, pressing the TCP traffic sources to reduce their transmission rate when it detects incipient
congestion. As a consequence, the DASH client tends to decrease the quality of the streamed video.
In this article, we evaluate the performance of recent AQM strategies for real-time adaptive video
streaming and propose a new AQM algorithm using Long Short-Term Memory (LSTM) neural
networks to improve the user-perceived video quality. The LSTM forecast the trend of queue delay
to allow earlier packet discard in order to avoid the network congestion. The results show that the
proposed method outperforms the competing AQM algorithms, mainly in scenarios where there are
congested networks.

Keywords: long short-term memory; artificial neural networks; live streaming; active queue manage-
ment; video streaming; DASH; queue delay

1. Introduction

Over the past few decades, the increase in demand for video streaming has grown,
driven by applications such as teleconference, Internet Protocol Television (IPTV), security
systems, Video-on-Demand (VoD), and live video streaming [1]. According to Sandvine
Global Internet Phenomena Report [2], companies like Netflix and YouTube account for
more than 26% of global network traffic in 2020, during the first few months of COVID-19
global shutdown. According to Cisco [3], the video over IP will be 82% of all global Internet
traffic in 2022. Additionally, new advanced and efficient encoding algorithms have made
possible the transmission of High Definition (HD) video all over the Internet.

Advanced Video Coding (H.264/MPEG-4 AVC) is one of the well-known encoding
algorithms that provide better image quality, improving video compression, and requiring
smaller storage capacity when compared to previous encoding standards [4,5]. The encoded
video bitstream is typically very bursty with a Variable Bit Rate (VBR), then commonly
leading to a self-similar behavior of aggregated traffic. The series of encoded frame
sizes usually present long-term dependency [4,6], where a router’s queue can be severely
affected by this behavior. Access networks have capacity-limited when compared with
the over-provisioned Internet backbone [7–9], and most of the observed congestion occurs
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in these access networks [10,11]. According to Adams [12], a congestion occurs when the
arrival packet rate at incoming link interface exceeds the departure rate at output interface.
Congestion can cause packet losses in the network due to insufficient queue capacity,
and then these drops could affect quality parameters of transmission causing high latency
and resources‘ waste [13].

As an alternative to reduce packet losses, the Internet Service Providers (ISPs) increase
the router’s buffer length in an attempt to better accommodate the traffic. This trend was
driven by cheaper memory prices [7], which in turn may dramatically increase end-to-end
latency and jitter, and severely impairing the perceived quality of live video streaming.
This phenomenon is known bufferbloat. Large buffers cause high queue delay, especially
during congestion events. On the other hand, smaller buffers reduce queue delay, but at
the cost of increasing packet loss and decreasing link utilization [12]. According to Floyd,
Gummadi, and Shenker [14] it is not possible to have simultaneous high link utilization
and low queuing delays.

Dynamic Adaptive Streaming over HTTP (DASH) has become a de facto standard for
VoD, and is widely used for live streaming services [15]. In DASH, the videos are encoded
in multiple versions with different bitrates/quality using H.264/AVC. Each version is
fragmented into few seconds of video segments and stored in the server. A DASH client is
responsible to start and manage the connection where it chooses the video segments that
best adapt to estimated instantaneous bandwidth [16,17]. Segments are delivered using
conventional HTTP web servers.

IP networks were not designed to provide suitable Quality of Service (QoS) for real-
time video. End-to-end latency and packet discard in the router’s queue impairs the quality
of live videos. In DASH VoD system, the client buffer stores many segments as possible,
mitigating effects of delay, jitter, and packet retransmission. However, large buffers should
be avoided in live streaming, once a few seconds of buffer delay are not admitted. Packets
of live videos have a deadline either on the server or on the client, becoming useless after a
few seconds. Thus, the bufferbloat phenomenon results in video quality reduction for live
DASH and AQM can be used to prevent congestion of router’s queues and improve the
quality of video as perceived by the user [18].

AQM is the proactive packet marking/dropping algorithm designed to cooperate
with feedback mechanisms of transport protocols, providing fairness between flows [12],
preventing buffer overflow, and avoiding network collapse. According Marek et al. AQM
is a network approach to congestion prevention that works in combination with the TCP
protocol [19]. Random Early Detection (RED) was the first AQM algorithm proposed [12]
and is originally designed to exploit TCP rate adaptation capability. RED tracks the
average queue size and drops (or marks if used in conjunction with ECN) packets based
on statistical probabilities.

Several AQM methods are reported in the literature, but few of them explore how rate-
adaptive video traffic interacts with the AQMs [8]. Most AQMs randomly discard packets
during congestion periods, regardless of the nature of the traffic pattern. The self-similar
behavior of video traffic and the problem of bufferbloat may increase the average packet
delay. This, in turn, impairs the quality of live streams, as the packets have strict delay limits.
Live video streaming traffic has predictable features, which can be used to implement a new
class of AQM algorithms. Considering DASH live streaming, AQM could assist DASH to
prevent quality degradation caused by network congestion, performing early discards and
anticipating congestion, leading to a smoother adaptation procedure, resulting in better
average video quality, and reducing the number of DASH quality switches.

In this article, we present as main contribution a new AQM method to improve video
quality for live DASH streaming. The proposed AQM uses Long Short-Term Memory
(LSTM) [20] with Neural Networks to predict the behavior of the queue fed by DASH
live video. Based on the forecast of queue delay, the new proposed method performs
a random early discard to prevent future congestion, forcing traffic sources to reduce
their transmission rate. This process induces the DASH clients to decrease the quality



Entropy 2021, 23, 948 3 of 18

of segments before congestion arises. We show that proposed method improves average
user-perceived video quality. LSTM has been shown to model temporal series with Long
Range Dependence (LRD) more accurately than conventional Artificial Neural Networks
(ANN) and traditional forecasting models [21]. LSTM-NN is computationally efficient,
with a worst-case time complexity given by O(n), where n is the number of weights [20],
allowing its implementation in routers. Performance evaluation was done using real DASH
servers and clients transmitting through a simulated network implemented with Network
Simulator version 3 (NS-3) [22]. The quality of the received video was estimated with
the structural similarity index (SSIM) and with the number and duration of interruptions.
We present performance comparisons between proposed method and state-of-the-art AQM
algorithms: RED, adaptive RED (ARED), Controlled Delay (CoDel), and Proportional
Integral Controller Enhanced (PIE). To the best of our knowledge, there are no previous
studies evaluating the impact of AQMs in end user’s perceived video quality, as well as an
AQM designed for improved quality of live DASH. Results show that the average SSIM
varies greatly, depending on the AQM method implemented in the routers and as the
network congestion increases. Considering live DASH, the proposed method outperforms
all the competing AQMs.

The remainder of this article is organized as follows: Section 2 gives an overview of
MPEG-DASH technology. Section 3 presents the main AQM methods available for use in
DASH video streaming. Section 4 presents LSTM neural networks. The proposed method
is described in Section 5, and Section 6 presents the performance evaluation. Finally,
the conclusions are presented in Section 7.

2. Adaptive Video Streaming with DASH

Modern video distribution platforms across the Internet have adopted DASH as the
primary video delivery technique [9]. In order to propose a standard for video delivery
over HTTP, searching for compatibility between different vendors, MPEG (Moving Picture
Expert Group) created a solution called MPEG-DASH [23]. MPEG-DASH specifies that
the video is encoded in different bitrates/quality, divided into segments of a few seconds,
with respect to the temporal sequence.

DASH client is responsible for initiating and managing the connection with the server,
and dynamically requests the segments that best adapt to network load condition and
the current status of playback buffer. Upon initiating a session, the client requests the
Media Presentation Description (MPD) file to the server. MPD informs the available
segments, the video resolution, the bitrates, timing, and type (live or VoD). As soon as
this file is received and analyzed, the client requests the segments. As the video goes on,
DASH dynamically requests segments that best match to the current network load.

The client’s buffer of DASH operating VoD services should be enough to store 20 to
30 s of video [15] to ensure a continuous playback experience. However, in real-time video
streaming, such long delays are not possible. Thus, decreasing the size of buffer to less
than 2 s of video requires the DASH player to quickly respond to changes in the network
bandwidth [15]. Unlike VoD, in live streaming segments are created gradually according
to the live event. The server continuously updates the segments, deleting the oldest and
creating new ones, to maintain clients synchronized in live point. Network congestion may
lead to lost segments for two reasons: (1) expired while on the flight or (2) segment deleted
on the server.

Since DASH has become a commercial standard, it attains industry recognition as
a streaming solution that enables interoperability between content servers and clients
of different vendors [24]. The distinction between vendors will focus on the application
Adaptation Logic (AL). DASH AL takes into account the bandwidth changes in the network
and client buffer state to select the most suitable quality level of a segment. Dubin, Hadar,
and Dvir [24] proposed an AL method called Adaptive Buffer Moving Median (ABMM) to
improve the overall user-perceived quality due to wrong bandwidth and client’s buffer
state estimation. According to the authors, ABMM AL is a buffer-sensitive algorithm that
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calculates how many segments exist in the client’s buffer along with the median bandwidth
estimations. The results show that the proposed ABMM increases the client quality of
experience when compared with the original AL algorithm.

3. AQM Methods for Video Streaming

The router’s queue is a place where network congestion arises. Hence, the AQM algo-
rithm gets more accurate and faster information about congestion than traffic sources [12].
Moreover, the AQM can advise the traffic sources about eminent congestion, sending
an explicit congestion notification (ECN), marking or dropping packets. In response,
TCP sources reduces their transmission rate as a matter of preventing queue overflow and
prevent further packet loss [25]. Besides achieving high link utilization and congestion
avoidance, AQM schemes should promote robustness, performing consistently well even
with variations in network parameters [26]. The performance of AQM increases if the
long-range dependence property of network traffic is taken into account [27].

RED [28] was one of the first AQM methods. It is a queue-based AQM, tracking the
queue size through an exponential weighted moving average (EWMA). The method uses
two main thresholds, minth and maxth. If the average value of the queue size is below minth,
no packet is discarded. If this value is greater than minth, but lower than maxth, packets
can be discarded with probability given by pa = pb/(1− count.pb), with pb = maxp(avg−
minth)/(maxth−minth), where maxp is the maximum discard probability. If average queue
size exceeds maxth, all incoming packets are discarded. A well-known weakness of RED is
that the throughput depends on the traffic load and the RED parameters [14]. RED does not
perform well when the average queue size becomes larger than maxth, reducing throughput
and increasing packet dropping. To avoid this, RED requires a constant parameter tuning
to adapt to the current traffic conditions. Adaptive RED [29] is an alternative to RED.

ARED dynamic adjust maxp according to instantaneous network conditions, improving
robustness. In ARED, maxp is adapted using the queue length, enhancing the throughput
and reducing packet loss by keeping the average queue length away from maxth. Adaptive
RED was originally proposed by Feng et al. [29] and after modification by Floyd et al. [14].
In Floyd et al.’s version, maxp is adapted to keep the average queue length within a target
range half way between minth and maxth. Floyd’s Adaptive RED slowly and frequently
adapts maxp over time scales greater than a typical round-trip time, allowing the adjustment
of dropping probability in response to changes in the average queue size. The ARED is not
the optimal solution but seems to work well in a wide range of scenarios [14].

Adapting maxp to maintain the average queue size within a target range is one issue
of RED addressed by ARED. For high congested links, RED and ARED schemes induce a
higher delay, increase the number of discarded packets and are not efficient to keep a good
throughput. In order to solve those problems, Patel and Karmeshu [30] suggested a new
method to evaluate the discard probability: if the average queue size is between minth and
maxth, packets are discarded with probability given by p2 = 1− {p1[−log(p1)]/(count +
1)}, with p1 = pb. The results show that the AQM scheme prevents the queue length from
exceeding maxth, increasing the throughput. Also, the scheme maintains the average queue
length in lower levels because a better selection of packet discard probability, decreasing
end-to-end delay in situations of network congestion.

Bufferbloat is the undesirable latency caused by the excessively large and frequently
full buffers in network routers. Large buffers have been inserted all over the Internet
without sufficient thought or testing [31]. This phenomenon causes high latency and jitter,
with negative effects on the applications. Controlled Delay Management (CoDel) [32] is an
AQM designed to provide a solution for the bufferbloat problem. Its operation is based
on the queuing delay control by creating a timestamp of packet arrival time. CoDel uses
two keys variables: target and interval. In conformance with RFC 8289 [33], ideal values of
target are 5% to 10% of the connection Round Trip Time (RTT). Because most unbloated
RTTs in open terrestrial-based Internet have a ceiling of 100 milliseconds [34], default
values of interval and target are set as 100 and 5 milliseconds, respectively. At each interval,
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CoDel computes the delay of all packets dequeued for forwarding. If the minimum queue
delay is lower than the target, or the buffer contains fewer than MTU worth of bytes, packets
are not dropped. If minimum delay is greater than the target, CoDel enters in drop mode,
and a single packet is discarded. Then, the next interval is set in accordance with the inverse
square root of the number of successive intervals in which CoDel is in drop mode. Thus,
default sequence of the interval in drop mode is given by 100, 100/

√
2, 100/

√
3, . . .. Once

the minimum delay of all packets in interval goes below the target, CoDel exits the drop
mode, no packets are discarded, and interval returns to its default value. According to the
authors, CoDel became attractive to queue management because itn segments: is easy and
efficient to implement, in addition to being parameterless [32].

PIE [35] is a method that combines the benefits of RED and CoDel. PIE is a lightweight-
design controller with the aim to control the average queuing latency to a reference value.
The design does not require per packet extra processing and is simple to implement.
Like CoDel, the parameters are self-tuning. PIE may randomly drop a packet in the
presence of congestion; however, congestion detection is based on the queuing latency like
CoDel instead of the queue length like conventional AQM schemes. PIE discards packets
randomly according to a probability. The drop probability is computed using the current
estimation of the queuing delay and the delay trend, which means the delay increases
or decreases. PIE algorithm updates the drop probability periodically using Little’s law
(queue delay is given by the ratio between queue size and arrival rate) and the delay
threshold. In addition, the scheme uses a maximum allowed value for packet bursts to be
allocated in the buffer. Auto tuning of parameters is used not only to maintain stability
but also to adapt to sudden changes. Once the drop probability is updated periodically,
short packet bursts are allowed during this time without any extra discard. Pan et al. [35]
argue that PIE design is stable for an arbitrary number of flows with heterogeneous RTTs
and achieves low latency and high link utilization under various congestion situations.

Emerging AQM schemes, such as PIE and CoDel, are being progressively deployed
either at the ISP end or home gateway to prevent bufferbloat [8,36]. However, none of
available AQMs were specifically designed to cooperate with DASH live streamings, taking
into account the predictable video traffic pattern.

Abbas, Manzoor, and Masroor [37] present an AQM scheme to improve fairness
between flows, identifying and penalizing unresponsive flows, since they keep on sending
packets despite the congestion indications. Called CHOKeH, the algorithm reduces the
drop rate of responsive flows without the need to maintain any per-flow state. The basic
idea of CHOKeH is similar to RED, using the average queue size to measure the network
congestion and two thresholds, minth and maxth. For each packet arrival, if the average
queue size is between minth and maxth, CHOKeH splits the current queue size in two
regions of equal length, the rear and front regions. CHOKeH randomly choose the drop-
candidates of each region with differently probabilities. This procedure ensures that high
bandwidth unresponsive flows with many recent arrivals are penalized. The results show
that the CHOKeH achieves better throughput and a stable behavior of average queue size
than competing AQMs.

4. LSTM for Video Traffic Prediction

The ANNs are widely used for video traffic prediction because of their ability to learn
complex patterns and estimate linear and non-linear functions [21]. Real-time video traffic
prediction using ANNs outperforms linear forecasting models, such as Auto-Regressive
Integrated Moving Average (ARIMA) and Fractionally Auto-Regressive Integrated Moving
Average (FARIMA) [38,39].

An ANN consists of interconnected units called neurons [40]. Each neuron is com-
posed by xn inputs with synaptic weights (wn), which are associated to a unique summation
and activation function. The output of a neuron is yn = f (∑ xn · wn), where f is the activa-
tion function (e.g., linear, sigmoid, hyperbolic tangent).
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The way neurons are arranged creates the ANN architecture. Usually, the neurons
are organized in three layers: (a) an input layer, (b) one or more hidden layers, and (c) an
output layer. The most popular ANN architectures are the Feed Forward Neural Network
(FFNN) and the Recurrent Neural Network (RNN). In the FFNN, information flows only
from the input layer toward the output. By contrast, RNN contain one or more feedback
layers connected to the hidden layer.

A supervised learning algorithm analyzes the training data to adjust the weights of
the ANN that best adapt to training cases. Thereby, ANN learns the correlated pattern
between input and output data set [21,40]. When a new unseen input is presented, the ANN
calculates the output according with the learned pattern. The Backpropagation algorithm is
the most popular method for ANN training, adjusting weights by calculating the gradient
of the loss function, which search for the local or global minimum error [40]. However,
if the propagated error is too small, the Backpropagation algorithm tends to make small-
scale updates in the weights of network, definitely interrupting its learning. This is known
as vanishing and exploding gradient problem [41]. To get around this problem, LSTM has
been designed by changing the structure of the neurons of traditional RNN [21,41].

4.1. Long Short-Term Memory

Proposed by Hochreiter and Schmidhuber [20], the LSTM is a special type of RNN [42].
Its architecture is composed by units called memory blocks, which are more complex
than regular neurons of ANN, as illustrated in Figure 1. Besides resolving the gradient
problem, LSTMs are capable to retain information longer than regular RNNs [41,43].
Furthermore, LSTM predicts time series with long-range dependence more accurately than
the RNN [41,44]. According Dashtipour et al. LSTM is a successful augmented RNN model
which is used to learn sequential information with dependencies that LSTM can store and
use to compute information for a long time period [45].

LSTM
block

LSTM
block

Output

Sigm

Forget
Gate Imput

Gate Candidate
Values

Output
Gate

Memory
Cell

Xt

yt-1

Ct-1

yt

C t

LSTM
block

Output

yt

Input Input

Sigm Sigmtanh

tanh

Figure 1. LSTM two hidden layers network.

LSTM memory block comprises four main units: the memory cell, the forget gate,
the input gate, and the output gate. The memory cell (Ct) is recurrently connected and
is in charge to maintain or forget information at every new interaction. The forget gate
( ft) determines which information should be removed from previous state of memory cell
(Ct−1). For that, ft uses the current input of the network (xt) and the output at previous
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time step (yt−1). The most used sigmoid function (σ) scales all values of ft into a range
from 0 (completely forget) to 1 (completely remember):

ft = σ(w f [xt, yt−1]) (1)

where w f is the weight matrix.
In the next step, LSTM determines how much new information should be added to

the memory cell (Ct). This is comprised by the operations of candidate values (C̃t) and
input gate (it), calculated as:

C̃t = tanh(wC̃[xt, yt−1]) (2)

it = σ(wi[xt, yt−1]) (3)

where wC̃ and wi are the weight matrices for candidate values and input gates respectively.
Both operations use the network’s current time step input (xt) and previous out-

put (yt−1). The C̃t uses tanh as activation function whereas it adopts a sigmoid. Thus,
the memory cell is updated as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

Lastly, the output gate operations (Ot) determine how much information from the
memory cell should be used to compute the output of the memory block (yt), given by:

Ot = σ(wo[xt, yt−1]) (5)

yt = tanh(Ct ∗Ot) (6)

where wo is the weight matrix of output gate.
Figure 1 illustrates the LSTM details and layer connections. Because of the coordina-

tion between memory cell and gates, LSTM is seen as a powerful tool to predict time series
with long range dependence.

5. Proposed Method

We propose an AQM strategy that randomly discards packets according to a predicted
queue delay, as CoDel and PIE. The method uses LSTM neural network to forecast arising
congestion in router’s queue. In response, real-time DASH client early reduces the quality
of segments requested. As a result, the number of quality switches will be reduced when
network gets congested, which tends to improve the average SSIM, decrease number of
video interruptions, and the interruption duration.

LSTM was written in python with Keras deep learning Application Programming
Interface [46]. The topology of LSTM was designed with three inputs and a single output.
Each input is assigned with time shifted queue delay (xt−2,xt−1, xt). The LSTM output
indicates the forecast queue delay (yt). For every δ milliseconds, NS-3 simulator updates xt
according the current queue delay xt =

ql
C , where ql is the number of bytes in queue, and C

is the link rate.
The proposed AQM uses three queue delay thresholds: lower (lowth), middle (midth),

and upper (upth). For each packet arrival, if the expected packet delay, yt, is lower than
lowth, the packet is enqueued. If yt exceeds lowth, but is lower than the middle threshold
(midth), the algorithm performs a random drop with probability p1 given by:

p1 =
(yt − lowth)

(midth − lowth)
∗ w (7)

where w represents maximum limit for the discard probability, p1.
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If yt exceeds midth, but is lower than the upper threshold (upth), the algorithm per-
forms a random drop with probability p2 given by:

p2 =
[yt − (w ∗ yt)−midth + (w ∗ upth)]

(upth −midth)
(8)

where w represents the minimum discard probability for p2.
According to (7) and (8), w is the upper bound of p1 and the lower bound of p2. If yt

exceeds upth, all incoming packets are discarded. RED uses the same principle to induce
the decrease of TCP congestion window. However, it makes discards according to a EWMA
queue length rather than predicted queue delay. Furthermore, RED needs a careful tuning
of its parameters for various network conditions. Proposed AQM is not parameterless;
however, if we suppose that all traffic is live streaming over DASH, the parameters can be
set accordingly, and considering the learning ability of LSTM, reparametrization will not be
necessary to adapt to new network load conditions. This is possible if the router in access
network uses a traffic classifier, what is feasible. Thereby, the user-generated traffic can be
separated in distinct queues, allocating the live DASH traffic in a single one. The queuing
policy is first-in, first-out (FIFO), and the proposed algorithm is presented in Algorithm 1.

Algorithm 1 Proposed AQM algorithm
Every δ milliseconds:

Run LSTM and Update yt;
For each packet arrival;
if lowth < yt ≤ midth then

evaluate probability p1;
n← rand();
if p1 ≤ n then

drop the arriving packet;

end
end
else if midth < yt ≤ upth then

evaluate probability p2;
n← rand();
if p2 ≤ n then

drop the arriving packet;

end
end
else

drop the arriving packet;

end

6. Performance Evaluation

The performance evaluation was done by integrating “real” DASH server and client
into a NS-3 simulation. DASH server and client were implemented using virtualization.
The network topology was implemented as recommended by International Telecommu-
nication Union (ITU) Recommendation G.1050 [47]. ITU-T G.1050 describes a model for
evaluating multimedia transmission performance over IP networks. Figure 2 presents the
implemented scenario for simulations. The Digital Subscriber Line (DSL) simulates the
bottleneck in the access network, connecting the client and edge routers by a 6 Mbps link.
This enabled us to generate background traffic to evaluate the AQM algorithms at several
congestion levels. The remaining links were set to 1 Gbps and 100 Mbps as proposed by
ITU recommendation. DASH server and client were implemented using the GPAC Project
on Advanced Content [48]. They were installed in virtual machines and were attached to
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the simulated scenarios through a tap bridge. The AQM was installed at the edge router,
also as illustrated by Figure 2.

Edge

DASH
SERVER

Edge
1 Gbps

30 ms

1 Gbps
100 ns

Client
DSL: 6 Mbps

1 ms

Client-1

DASH
CLIENT

Core Core

Router Router Router Router

AQM Queue
100 Mbps

1 Gbps

100 ns100 ns

1 Gbps

Bottleneck

Router

Stream Flow

Client-N

ISP Core Network

Tap bridge

NS3 Tap Bridge

Tap bridge

NS3 Tap Bridge

NS3 SIMULATOR

Server-N

Server-1

Background 

client

Background 

server
traffic traffic 

Figure 2. Scenario used in simulations.

Background traffic sources were implemented using the On–Off application class of
NS-3. The duration of On and Off states is modeled by random variables. During the Off
period, no traffic is generated and in the On state, a Constant Bit Rate (CBR) is produced.
Modeling On and Off states, respectively, with the Pareto and Exponential probability
distributions, enables the simulation of video traffic with self-similar characteristics [49,50].
The On and Off states were configured using the duration and time interval between
video frames, respectively. The On–Off Pareto model has self-similar characteristics [49,50],
with Hurst parameter given by H = 3−α

2 [51]. The H parameter is typically adjusted
between 0.5 and 1.0 for long-range dependent time series, and according to Fitzek and
Reisslein [52] the VBR encoding have Hurst parameters above 0.7 for all aggregation levels,
with a high degree of long-range dependence. Furthermore, α and xm parameters were set
to produce self-similar background traffic with Hurst parameter of 0.85.

Several simulations were performed by varying (i) the AQM method used and (ii) num-
ber of background traffic sources. The former were varied from 0 to 14 flows, using maximum
transfer unit of 1500 bytes and generating a traffic rate of 500 kbps—as they are TCP sources
the traffic will adapt according to network conditions. For each video and background
traffic intensity, in addition to the proposed method and Droptail, the following AQMs
were tested: RED, ARED, CoDel, and PIE. The RED’s maxth threshold was set to 500 packets
and minth of 250 packets. This induces RED to allow a maximum of 1 s of queue delay.

Droptail uses a 3 Gigabytes queue to simulate a bufferbloat problem, then the queue
has enough size memory to store all incoming packets without tail drops.

6.1. Video Traffic Sources

We use six full-HD (high definition, 1920× 1080), raw video sequences in the tests:
Big Buck Bunny (BBB), Sunflower (SF), Rush Hour (RH), Pedestrian Area (PA), and Riverbed
(RB), which are all publicly available [53]. Table 1 summarizes the characteristics of the
videos used, such as video total length, number of frames, genre, detail, motion activity,
format of raw video source, and frame rate. The videos were selected from different genres,
detail, and motion activity, improving the diversity in performance evaluation. The detail
feature provides a summary of the histogram descriptors in the pictures of raw video
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sequence and the motion activity captures the degree or intensity of scene changes [54].
Motion activity has the following meaning [55]: (1) very low intensity, (2) low intensity,
(3) medium intensity, (4) high intensity, and (5) very high intensity.

Table 1. Characteristics of videos used in performance evaluation.

Video Length Frames Genre Detail Motion Raw Frame
(s) Activity Format Rate (fps)

BBB 40 1440 Animation 3.52 1.63 YUV420 24
SF 20 500 Nature 4.04 2.57 YUV420 25
RH 20 500 Scene 3.17 3.12 YUV420 25
PA 15 375 Scene 3.15 4.42 YUV420 25
RB 10 250 Nature 4.72 4.13 YUV420 25

The BBB is the longest video sequence used in the tests, with 1440 frames and 40 s,
presenting very low motion intensity and medium detail, those two characteristics lead
to a good compression ratio. The SF video uses a fixed camera to capture a bee in the
foreground and a flower in the background, with low motion intensity and high detail.
RH and PA videos display, respectively, medium and high motion intensity, and medium
detail. PA shows people passing by to a very close camera while RH records the vehicle
traffic in a rush hour in the city of Munich. RB uses a fixed camera to capture water
movements, presenting high motion intensity and detail. We included a Touchdown Pass
(TP) video to test the sports genre. TP illustrates fast-moving players on an American
football field and consists in 570 frames, 19 s, raw video format of YUV422, and 30 fps.

The encoding was done offline using the FFmpeg tool [56]. Live segment was generated
following the Live-H.264 profile, according to the MPEG-DASH standard [57]. Live video seg-
ments were generated with length of 1 s as recommended by S. Lederer et al. [16]. The Group
of Picture (GOP) was set to IBBPB, which means an overall of five frames, with two B-
frames between I- and P-frames and one B-frame in the end of the GOP. This configuration
was done for all 25 fps videos. Only BBB and TP videos were encoded with a GOP of six
frames (IBBPBB) with two B-frames between I- and P-frames. Each single second DASH
segment contains five GOPs [57]. Segments were encoded using the following representa-
tions: 0.349, 0.600, 0.927, 2.114, and 4.464 Mbps, compatible with other studies [58] where it
is used videos with HD resolution.

6.2. Performance Metrics

The evaluation of the proposed method was performed by estimating the quality
of the received DASH video through the SSIM. SSIM is an objective method developed
by Wang and Bovik [59] to estimate image quality from the combination of three factors:
correlation loss, luminance distortion, and contrast. According to Wang et. al. [60], SSIM is
a full-reference image quality assessment that takes advantage of known characteristics of
the human visual system (HVS).

Most quality assessment metrics rely on quantifying the difference in the value of
each pixel between the sample and reference images, computing the mean square error
(MSE). In the opposite way, the SSIM calculates the Structural Similarity between two given
images exploring the luminance, contrast and structural information of both [60].

Suppose that x and y are two image signals and considering one of then to have a
perfect image, the SSIM can be computed as:

S(x, y) = f (l(x, y) · c(x, y) · s(x, y)) (9)

where l(x, y), c(x, y) and s(x, y) are the luminance, contrast, and structural comparison
between x and y, and f (·) is the combination function. The estimated value of SSIM is
given from 0 to 1. A value of 1 indicates that the x and y are very similar while 0 means
that x and y are very different [60].
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In addition, we evaluated the number and duration of interruptions in the received
video. An interruption occurs when the video playback is temporally stalled as a conse-
quence of buffer starvation due network congestion [61]. As long as the download rate is
greater or equal to the rate at which the video is played, the playback is not interrupted.
If the download rate falls below the playback rate, the DASH client automatically switches
to a lower representation. However, if the network conditions become noticeably bad even
a lower bit rate segment cannot be downloaded in time. Thus, in a DASH live streaming,
network congestion can lead to the expiration of a segment. According to Juluri, Tamara-
palli, and Medhi [61], these interruptions events lead to a poor user perceived experience.
Apart from the number of interruptions, its duration is also an important metric in live
streaming. We show that the proposed method outperforms the competing AQMs in terms
of average SSIM, and number and duration of interruptions.

To forecast the real-time queue delay, we use a standard three-layer LSTM neural
networks [62]. To train and test LSTM, a 60, 000-row data set containing queue delay
samples was used. The training data set was built running the simulated scenarios with
12 active background traffic sources and using a Droptail queue policy in bottleneck router.
LSTM was trained for 20 epochs holding 65% of the total data set. Once trained, LSTM can
forecast an unseen data pattern with acceptable accuracy.

6.3. Method Parameterization

As the proposed method discards packets according to a predicted queue delay,
we evaluated the impact of delay in average SSIM to set values to lowth, midth, and upth.
The Touchdown pass, Big Buck Bunny, and Sunflower videos were transmitted in a NS-
3 point-to-point simulated network with a link rate of 6 Mbps. They were chosen for
presenting a diversity from high, medium, and low detail and motion activity. The link
delay was increased from 50 to 300 milliseconds with steps of 10 milliseconds. We take the
average SSIM of all three videos and mapped it into a Mean Opinion Score (MOS) metric
as showed in Table 2.

Table 2. Mapping between SSIM and MOS [63].

MOS SSIM

5 (excellent) >0.99
4 (good) ≥0.95 & <0.99
3 (fair) ≥0.88 & <0.95

2 (poor) ≥0.5 & <0.88
1 (bad) <0.5

MOS is a popular subjective metric often used to rate user’s Quality of Experience,
ranking the video from 5 (excellent) to 1 (bad) [64]. Table 3 presents the SSIM impact
when link delay goes increasing and its MOS mapping. With average queue delay above
150 milliseconds, the average SSIM is high and the MOS is good, close to excellent. Thus,
we use 150 milliseconds as the lowth. Below this threshold, no packet discards are needed.
As link delay crosses 150 milliseconds and keeps on increasing, MOS is reduced from 4 to 2,
until the link delay reaches 240 milliseconds. Therefore, midth was set to 240 milliseconds.
Between 150 and 240 milliseconds, the proposed method discards packets with probability
p1. The variable w was set to 0.8, concentrating the most of packets discard between those
thresholds. Above 240 milliseconds, MOS goes down to 1, and attains the worst value
(bad). Hence, upth was set to 300 milliseconds. Between 240 and 300 milliseconds, the
proposed method discards packets with probability p2.
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Table 3. Mapping between SSIM and MOS [63].

Delay SSIM Avg MOS

50 0.983 4
60 0.923 4
70 0.983 4
80 0.981 4
90 0.979 4

100 0.979 4
110 0.976 4
120 0.978 4
130 0.978 4
140 0.971 4
150 0.958 4

160 0.905 3
170 0.868 2
180 0.856 2
190 0.692 2
200 0.779 2
210 0.694 2
220 0.634 2
230 0.618 2
240 0.587 2

250 0.429 1
260 0.37 1
270 0.296 1
280 0.274 1
290 0.277 1
300 0.262 1

Variable δ has been set to 100 milliseconds, which gives the LSTM neural network
enough time to make the prediction. Because we use a hybrid scenario, mixing simulated
and real traffic, values lower than 100 milliseconds interfered in the live streaming, thus
decreasing all AQM performance. This is because of the CPU performance of used machine
(an Intel i7 seventh generation).

6.4. AQM Performance Evaluation

Figure 3 presents the average SSIM as a function of the active background sources.
It is possible to see that the proposed method outperforms the competing AQMs, mainly
when the bottleneck link is highly congested. ARED presents the second best performance.
Droptail displays the worst SSIM, because of the bufferbloat phenomenon, which causes a
massive increase in the queue delay. The RED discard policy and the burst pattern of the
background traffic sources decrease RED performance. However, it is possible to observe
that RED’s performance is improved when the network became more congested—this was
also induced by the small buffer size of 750 Kbytes used for RED. In this case, DASH clients
are no longer able to probe enough link bandwidth and start to request only lower-quality
segments. This reduces the quality switches and enables the client to download more
video segments.

We also evaluate the average SSIM for all videos to allow a better understanding of
video quality degradation. As illustrated in Figure 4, the proposed method outperforms
the competing AQMs. For 12, 13, and 14 active background sources, the proposed method
has a gain of 0.02, 0.16, and 0.22, respectively, over the better-ranked AQMs.
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Figure 3. Average PSNR for video (a) BBB, (b) RH, (c) SF, (d) TP, (e) PA, and (f) RB.
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Tables 4 and 5 show the number (N) and duration (D) of interruptions for BBB and
RB videos. Each segment is 1 s long. One can see that the proposed method outperforms
the competing AQMs for both metrics. Considering the BBB video, the proposed AQM
interrupts the video only once and by 1 s in highest level of congestion. For the same
level, ARED and PIE interrupt the video twice for 19 s, whereas CoDel, Droptail, and RED,
for more than 20 s. When ten backgrounds sources are active, Droptail and RED interrupt
the video for 15 and 12 s, respectively. Droptail stops the video 4 times. This is due to
bufferbloat phenomenon. In the case of RED, the cause is queue occupation instability,
which makes the customer switch abruptly between the quality of segment.

Table 4. Number and duration of interruptions for BBB video.

Background Traffic Sources-> 10 12 13 14

N D (s) N D (s) N D (s) N D (s)

Proposed Method 0 0 0 0 0 0 1 1
ARED 0 0 1 1 2 9 2 19
CoDel 0 0 2 9 1 28 1 32
Droptail 4 15 1 35 1 38 1 40
RED 2 12 1 20 1 13 1 26
PIE 0 0 1 3 1 19 2 19

Table 5. Number and duration of interruptions for RB video.

Background Traffic Sources-> 10 12 13 14

N D (s) N D (s) N D (s) N D (s)

Proposed Method 0 0 0 0 0 0 0 0
ARED 0 0 0 0 1 2 1 3
CoDel 0 0 0 0 1 2 1 6
Droptail 0 0 1 9 1 9 1 10
RED 1 2 1 7 1 2 0 0
PIE 0 0 0 0 1 2 1 4

As shown in Table 5, the proposed AQM does not interrupt the RB video. RED is the
only AQM that stalls the video when 10 backgrounds source are running, which is worse
than Droptail. On the other hand, when 14 backgrounds sources are active, RED does not
interrupt the video. As mentioned earlier, this is because of the high level of congestion
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and the size of queue used for RED, which denies the DASH client to request the highest-
quality segments. When 12 or more background sources are active, Droptail fails to play
the entire video.

Figure 5 presents the quality transition among the segments for BBB video with
10 background sources. RED and Droptail allow the DASH client to request the highest
quality of segments, even with the network congested. Self-similar traffic has a great
variability, which is also reflected in the queue occupation. The DASH client ends up
losing the next segments timeout on the server. As a consequence, the video’s playback is
stalled for both RED and Droptail, negatively impairing the quality perceived by the user.
In simulations using background traffic without self-similarity, the impairment in quality
is much lower. This behavior was noticed in several simulations. In the opposite way,
the proposed method is able foresee the queue behavior and induces the DASH client to
reduce the quality of segments in small steps. The combination between delay thresholds
and the two linear discard probabilities, based on predicted queue delay, achieves a
smoothed transition between segments.

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

0 10 20 30 40

0
10

00
30

00

Segment Number

Se
gm

en
t Q

ua
lity

 (k
bp

s)

● Proposed Method

0 10 20 30 40

0
10

00
30

00

Segment Number

Se
gm

en
t Q

ua
lity

 (k
bp

s)

RED

0 10 20 30 40

0
10

00
30

00

Segment Number

Se
gm

en
t Q

ua
lity

 (k
bp

s)

CoDel

0 10 20 30 40

0
10

00
30

00

Segment Number

Se
gm

en
t Q

ua
lity

 (k
bp

s)

Droptail

(a) (b)

(c) (d)

Figure 5. Quality switches for (a) proposed method, (b) RED, (c) CoDel, and (d) Droptail.

Overall, the proposed method presents better average PSNR than competing AQMs.
The use of proposed method results in shorter and less frequent interruptions in video
playback. With more than 10 traffic sources, Droptail shows the worst performance for
both. Indeed, the bufferbloat phenomenon increases packet latency, which causes segment
expiration and often freezes video playback.

7. Conclusions

The current generation of DASH client player requires large buffers to store a signifi-
cant number of segments to avoid video freezing in VoD systems. However, considering
the live video streaming, the use of large buffers is not allowed, because large buffers
may result in higher delay because of the buffering time, mainly in situations of network
congestion. Choosing video segments with better quality increases network congestion,
which paradoxically worsens the user-perceived quality. If the network conditions become
noticeably bad even a low-quality segment cannot be downloaded in time. This could lead
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to an expiration of in-flight segments or in the server. This, in turn, can freeze the video for
a couple seconds, impairing in the user-perceived quality.

In this article, we propose as main contribution a new AQM algorithm to support
DASH live video streaming. Long Short-Term Memory was used to forecast the queue delay,
anticipating the congestion—this is possible because video traffic is highly auto-correlated
and can be predicted. The performance evaluation was done combining computer simula-
tion and real video streaming. We also evaluate the performance of several AQM strategies
available in the literature to live video streaming, which is another contribution of this
article. Results indicate that the proposed method achieves a better average PSNR for
real-time video streaming than ARED, CoDel, Droptail, PIE, and RED. Also, the proposed
AQM algorithm decreases the number and duration of video interruptions, mainly for
congested networks.
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