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Abstract

Crossmodal integration of audio/visual information is vital for recognition, interpretation and appropriate reaction to
social signals. Here we examined how rhesus macaques process bimodal species-specific vocalizations by eye
tracking, using an unconstrained preferential looking paradigm. Six adult rhesus monkeys (3M, 3F) were presented
two side-by-side videos of unknown male conspecifics emitting different vocalizations, accompanied by the audio
signal corresponding to one of the videos. The percentage of time animals looked to each video was used to assess
crossmodal integration ability and the percentages of time spent looking at each of the six a priori ROIs (eyes, mouth,
and rest of each video) were used to characterize scanning patterns. Animals looked more to the congruent video,
confirming reports that rhesus monkeys spontaneously integrate conspecific vocalizations. Scanning patterns
showed that monkeys preferentially attended to the eyes and mouth of the stimuli, with subtle differences between
males and females such that females showed a tendency to differentiate the eye and mouth regions more than
males. These results were similar to studies in humans indicating that when asked to assess emotion-related aspects
of visual speech, people preferentially attend to the eyes. Thus, the tendency for female monkeys to show a greater
differentiation between the eye and mouth regions than males may indicate that female monkeys were slightly more
sensitive to the socio-emotional content of complex signals than male monkeys. The current results emphasize the
importance of considering both the sex of the observer and individual variability in passive viewing behavior in
nonhuman primate research.
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Introduction

Successful integration into complex social environments
requires humans and nonhuman primates to recognize,
manipulate, and behave according to the immediate social
context. Key elements of this task are building representations
of relations between self and others, and flexibly using these
representations to guide social behavior [1,2]. This set of skills
relies upon the ability to distinguish and interpret social cues
that are often broadcast over multiple sensory modalities.
Hence, crossmodal integration has become a crucial
component of social success in primates.

The remarkable behavioral [3-6] similarities between humans
and nonhuman primates include the use of species-specific
facial expressions and vocalization [7-9]. For both species,
decoding the specific “message” of a social display relies on

crossmodal integration. The rhesus communicative system is
comprised of a small repertoire of relatively fixed calls
characterized with distinct facial expressions, postures, and
gestures and associated with particular social contexts. This
repertoire has been successfully used to explore the
evolutionary basis and neural mechanisms of visual speech
perception (reviewed by [10]).

Recent studies have demonstrated that rhesus macaques
spontaneously recognize the correspondence between facial
and vocal expressions [11]. When pairs of videos depicting two
different conspecific vocalizations (i.e., coo and threat) are
presented simultaneously with the auditory track matching one
of the videos, rhesus macaques look longer to the congruent
stimulus video. This is interpreted as spontaneous integration
of the auditory and visual components of the stimuli. This
paradigm, however, does not rule out the possibility that
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monkeys merely rely upon the temporal coincidence of facial
movements with the onset of the vocal track. A subsequent
electrophysiological experiment using the same videos
presented sequentially and including a non-biological,
mechanical control that mimicked the mouth movements of the
videos (in space and time) indicates that integration of the
bimodal vocalizations is not dependent upon temporal
coincidence [12]. However, given that the videos in the latter
experiment were presented individually, the possibility remains
that the preference for congruence observed in the preferential
viewing paradigm is attributable to the mechanical or temporal
coincidence of the auditory and visual components of the
stimulus videos. The mechanisms underlying this spontaneous
preference for congruence have yet to be systematically
explored; and little is known about the visual scanning
strategies used by monkeys during crossmodal integration. It
has been demonstrated that human subjects modify their
scanning strategies of audiovisual stimuli based on the
information they are instructed to extract and the efficacy of the
social signals [13-16]. It has also been suggested that men and
women are differentially sensitive to the emotional content of
audiovisual social communication [17], which may manifest as
sexual dimorphic scanning strategies.

To date, the only investigation to monitor how monkeys look
at socially salient bimodal stimuli was designed to explore the
evolutionary basis for humans’ use of facial cues to enhance
speech comprehension [18]. This report highlighted the
importance of the eye region to rhesus monkeys, but did not
directly identify the facial cues needed to support a preference
for congruence. Nor did this report assess sex differences in
the way male and female rhesus macaques process socio-
emotional stimuli. Accordingly, the goals of the present
investigation were to assess integration ability in surrogate
nursery-reared male and female rhesus macaques using a
preferential viewing paradigm; determine whether spontaneous
integration ability is solely dependent upon temporal or
mechanical coincidence of the auditory and visual components
of species-typical vocalizations using an ethologically relevant
mechanical control; and characterize the scanning strategies
during the preferential viewing paradigm to determine what
features the male and female rhesus macaques use to process
the stimuli using eye-tracking technology.

Method

Ethics Statement
All procedures were approved by the Animal Care and Use

Committee of the University of Texas Health Science Center at
Houston in Houston, TX and of Emory University in Atlanta, GA
and carried out in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
Power analyses were completed to determine that a minimum
of 5 trials were required to detect large effects at 80% power in
a cohort of monkeys with 3 males and 3 females.

Subjects
Six adult rhesus monkeys (Macaca mulatta) aged 4-6 years

(3 males, 3 females) were used in this investigation. Animals

were surrogate-peer reared in a socially enriched environment
that promoted species-specific social skills and alleviated
psychological stress [19-21]. Surrogate-peer rearing involved
individual housing in size-appropriate wire cages that allowed
physical contact with animals in neighboring cage(s), as well as
visual, auditory, and olfactory contact with all other infants in
the nursery. Each infant was provided a synthetic plush
surrogate and cotton towels for contact comfort. The infants
received daily social interaction with age- and sex-matched
peers as well as with human caregivers, and had repeated
assessments of memory, emotional reactivity, social behavior,
and reward appraisal throughout their lives.  These animals
served as sham-operated controls in a program of experiments
designed to characterize the functional and neuroanatomical
development of hippocampus, amygdala and orbital frontal
cortex. Accordingly, they received sham operations at 10-12
days of age, which included small bilateral craniotomies with no
penetration of the dura layer (for details, see 19) and
underwent multiple magnetic resonance imaging (MRI) scans
to assess gross neural development between 2 weeks and 2.5
years of age [22].  All neuroimaging and surgical procedures
were performed under deep anesthesia (Isoflurane, 1-2%) and
using aseptic procedures. Animals received pre- and post-
surgical treatments to minimize risk of infection (Cephazolin, 25
mg/kg, per os) and control swelling (dexamethazone sodium
phosphate, 0.4 mg/kg, s.c.). Topical antibiotic ointment
(bacitracin-neomycin-polymyxin) was applied daily and
acetaminophen (10mg/kg, p.o.) was given four times a day to
relieve pain.

Crossmodal Integration Task
A preferential viewing paradigm similar to that used by

Ghazanfar and Logothetis [11] was selected in the present
investigation.

Apparatus.  Testing was completed in a sound-attenuated
room. Monkeys were seated in a primate chair 2-feet from of a
24-inch, flat panel LCD monitor with attached speaker and
small eye-tracking camera (60 Hz; ISCAN, Inc.; Woburn, MA).
Head movements were gently minimized with a restraint device
attached to the primate chair. Ambient white noise was played
to further dampen unrelated noises and a curtain concealed all
additional equipment.

Stimuli.  Animals were presented two side-by-side digital 2-
sec videos of the facial gestures associated with species-
typical calls (coo, grunt, scream and threat). The videos were
those used by Ghazanfar and Logothetis [11] and depicted two
unknown rhesus monkeys (stimulus animals) emitting the
vocalizations. One stimulus animal generated the coo and
threat vocalizations and the other stimulus animal generated
the grunt and scream vocalizations (see Figure 1). Videos were
640 x 480 pixels and spaced apart maximally (200 pixels) on a
solid black background. The sound track corresponding with
one of the presented facial gestures was heard through the
speaker centered beneath the monitor. The auditory and visual
components were played in a continuous loop for 10 sec (5
repetitions). Stimulus presentation was controlled using the
Presentation software package (Neurobehavioral Systems, Inc;
Albany, CA).
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Task.  The auditory component and the left-right position of
the two facial gestures were counterbalanced. Stimuli were
presented under two different conditions: Synchronized and
Desynchronized. The Synchronized condition was used as the
standard for integration assessment and were constructed
such that the onsets of the auditory and visual components
were simultaneous. A total of eight trials in the Synchronized
condition were administered across four testing sessions (2
trials/day). The Desynchronized condition was employed to
assess whether integration ability relied only upon the

Figure 1.  Schematic of Stimulus Presentation with
ROIs.  Screen shots of coo-grunt (A) and scream-threat (B)
pairings with borders of eye and mouth ROIs. In (A), the
audible vocalization was a “coo” and in (B), the audible
vocalization was a “threat”. ROIs were determined such that
the entire region was included throughout the entire video,
resulting in slightly extended ROIs in the still representation of
the videos. Stimulus sets were comprised of all possible
combinations of videos. Labels were not part of stimuli.
doi: 10.1371/journal.pone.0081825.g001

mechanical properties of the stimuli (i.e. the coincidence of
mouth movements with the auditory component). Trials in the
Desynchronized condition were constructed such that the onset
of the auditory component was delayed 330 - 430 msec from
the onset of the visual component, a delay range that has been
shown to disrupt the perception of the stimuli as a single event
[23] and resulted in no overlap between the mouth movements
and sound. A total of eight trials in the Desynchronized
condition were administered across two testing sessions (4
trials/day).

Measures
Integration Assessment.  In a given trial, there was one

congruent video (i.e., depicted the facial gestures that matched
the audio component) and one incongruent video (i.e., facial
gestures did not match the audio track). Crossmodal
integration was determined by comparing the percent looking
time to each video to the chance level of 50%. Integration of
the audio and visual components was inferred when monkeys
showed a preference for one of the video clips (i.e., looked
significantly more than chance to either the congruent or
incongruent stimulus video). Accordingly, an inability to
integrate the complex social signals would be demonstrated by
monkeys exhibiting equal looking times to each video in the
pair.

Scanning Pattern Characterization.  Percentages of
looking time to a priori regions of interest (ROIs) of the videos
were recorded. Static ROIs of the eyes and mouth were
created with the ISCAN P.O.R. Fixation Analysis software
(v1.2, ISCAN, Inc., Figure 1) such that each ROI encapsulated
the entire feature of interest throughout the entire 2-sec video.
The region of the video not included in either the “eyes” or
“mouth” ROI was analyzed as the third ROI labeled “other”.
There were six ROIs in each trial: eyes, mouth, and other for
each of the two stimulus videos. Scanning patterns were
characterized by comparing the amount of time animals spent
looking at each ROI, which was calculated from the summation
of the fixation durations in a given ROI. A fixation was defined
as the eye gaze coordinates remaining within 1° x 1° visual
angle for at least 50 msec. Fixations were categorized by ROI
using the ISCAN P.O.R. Fixation Analysis Software, and
variability in looking time across trials and animals was
accounted for by expressing looking to each ROI as a
percentage of total looking ((ROI/Total)*100).

Statistical Analyses
All measures were normally distributed (Shapiro-Wilk W =

0.799-1.000, p = 0.112-0.973). Integration abilities were
assessed separately for the Synchronized and Desynchronized
conditions by comparing the percentages of looking to the
congruent stimuli to the chance level of 50% using a one-
sample t-test. Repeated measures ANOVA were used to
evaluate sex differences and to compare the integration
abilities across conditions. Scanning patterns of the ROIs of
each stimulus video in a trial were analyzed using repeated
measures MANOVA (stimulus video x ROI x sex) with simple
interactions and simple comparisons used to conduct planned
comparisons of the relative looking to individual ROIs across
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stimulus video and sex. The assumption of equality of
variances was met for all analyses (Levene’s: F(1,4) =
0.007-7.357, p = 0.053-0.939) except for two measures in the
analysis of the congruent and incongruent stimulus videos
across all trials (Levene’s: F(1,4) = 8.952 - 9.336, p =
0.038-0.040). Natural log transformations were used to correct
for the violations.

Results

Overall Integration and Scanning Patterns
Integration Assessment.  In the Synchronized condition

(Figure 2), animals exhibited spontaneous integration of
complex crossmodal social signals by looking significantly
more than chance to the congruent stimulus video (t(5) =
2.941, p = 0.032). Qualitatively this effect appears to be driven
by the behavior of the females (see Figure 2, open symbols),
but this apparent sex difference was not statistically significant
(F(1,4) = 2.186, p = 0.213). In the Desynchronized condition,
animals did not show a preference for congruence (t(5) =
-1.115, p = 0.316; Figure 2), and males and females did not
differ (F(1,4) = 0.060, p = 0.819).

Scanning Pattern Characterization.  Figure 3 illustrates
notable differences in monkeys’ exploration of the congruent
and incongruent stimulus videos in the Synchronized condition.
On the congruent stimulus video (Figure 3A), they spent more
time looking to the eye region than the mouth region (F(1,4) =
69.115, p = 0.001), and looked longer to the eye and mouth
regions than to the rest of the video (eyes > other F(1,4) =
45.672, p = 0.003; mouth > other F(1,4) = 21.927, p = 0.009).
There was a weak trend for a sex difference in the relative
looking to the eye and mouth regions (ROI x Sex interaction:
F(1,4) = 5.262, p = 0.084), with females exhibiting a larger
differentiation than males (Figure 3A inset). On the incongruent
stimulus video (Figure 3B), monkeys spent comparable
amounts of time looking at the eyes and either the mouth or
rest of the stimulus video (eyes = mouth: F(1,4) = 0.001, p =
0.972; eyes = other: F(1,4) = 2.544, p = 0.186) but looked more
to the mouth than the rest of the stimulus video (mouth > other:
F(1,4) = 9.558, p = 0.037). No sex differences were observed
for the incongruent stimulus video.

There were no interactions of Condition with either ROI
(F(2,8) = 0.121, p = 0.887) or Stimulus Video and ROI (F(2,8) =
0.086, p = 0.918); neither were there interactions between
these factors and Sex (Condition x ROI x Sex: (F(2,8) = 0.004,
p = 0.996; Condition x Stimulus Video x ROI x Sex: F(2,8) =
1.904, p = 0.211). This indicates that scanning of trials in the
Desynchronized condition did not differ from that of trials in the
Synchronized condition. Planned simple effect comparisons of
Condition at the individual ROIs confirmed that animals spent
comparable proportions of time looking at the eyes (congruent:
F(1,4) = 1.550, p = 0.281; incongruent: F(1,4) = 2.518, p =
0.188), mouth (congruent: F(1,4) = 0.280, p = 0.625;
incongruent: F(1,4) = 2.406, p = 0.196) and rest of the stimulus
videos (congruent: F(1,4) = 0.365, p = 0.578; incongruent:
F(1,4) = 0.014, p = 0.911) of the Synchronized and
Desynchronized conditions.

Discussion

The results confirm previous findings that rhesus macaques
spontaneously integrate the auditory and visual components of
complex social cues emitted by novel conspecific males [11].
They further suggested that these abilities might be influenced
by, but perhaps not dependent upon, the mechanical properties
of stimuli. Finally, monkeys looked at the eyes of the congruent
stimulus video more than other facial cues, with females

Figure 2.  Integration Assessment.  Percentages of looking
time (± s.e.m.) to the congruent stimulus video in the
Synchronized and Desynchronized conditions. The dashed line
represents chance level of 50%. Values greater than 50%
represent greater looking to the congruent video and values
less than 50% represent greater looking to the incongruent
video. Symbols represent individual data points for males
(filled) and females (open). (*) p < 0.05.
doi: 10.1371/journal.pone.0081825.g002
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showing a slightly larger differentiation between eyes and
mouth than males.

Individual Variability
Before discussing the implications of these results, it is

important to acknowledge the impact of individual variability on
the current findings. This investigation employed an
experimental design that assesses the animals’ spontaneous
looking behavior. Therefore, unlike more cognitive crossmodal
matching tasks that require responders to determine the inter-
sensory relatedness of two stimuli in order to receive a reward,
there is no right or wrong video in a preferential viewing
paradigm. Inferences were based on where the animals
“prefer” to look, which could vary substantially across animals.
For example, the female represented by the open triangle
demonstrated a preference for congruence in the Synchronized
condition but looked more to the incongruent stimulus video in
the Desynchronized condition. Assessment of scanning
patterns of this animal revealed that it looked most to the eye
region of the congruent video, but in the incongruent video, it
fixated most on the mouth region. Comparatively, the female
represented by the open circle demonstrated a clear
preference for the congruent video in the Synchronized
condition but looked more equally to the videos in the
Desynchronized condition; and this animal’s scanning patterns
across the congruent and incongruent videos were strikingly
similar to each other, with a strong preference of the eye region
in both videos.

This variability should be considered when interpreting the
lack of a preference for congruence in the Desynchronized
condition. Studies employing non-social control conditions have

Figure 3.  Scanning Patterns.  Percentages of looking time (±
s.e.m.) to the eyes (e), mouth (m), and other (o) of the
congruent stimulus video (A), the incongruent stimulus video
(B). Inset in A: Percentages of looking time (± s.e.m.) to the
eyes (diamonds/solid line) and mouth (circles/dashed line) of
the congruent stimulus video in for males and females. (*) p ≤
0.05.
doi: 10.1371/journal.pone.0081825.g003

previously shown that integration ability does not rely solely on
the mechanical properties of the stimuli [12]. This brings to
question whether the lack of preference observed in the
Desynchronized condition of the current investigation was due
to the social complexity of the stimuli. As illustrated in Figure 2,
in the Desynchronized condition, two animals looked slightly
more towards the congruent video, whereas two animals
looked slightly more and two animals looked substantially more
towards the incongruent video. The social complexity of the
stimuli makes it difficult to interpret how the Desynchronized
videos were processed. One reasonable explanation for the
variability seen across animals is that different animals focus
on different aspects of the stimuli (e.g., social content or
mechanical properties). Thus, although the lack of significant
preference in the Desynchronized condition could indicate that
rhesus macaques relied on the temporal coincidence of the
auditory and visual components for integration into a single
construct, contradictory previous findings [12] combined with
the individual variability and lack of differences in scanning
patterns across the Synchronized and Desynchronized
conditions observed in the current study suggests that further
analysis is needed.

Viewing of Eye Regions
Characterization of the scanning patterns indicated that

rhesus monkeys attended to the eye regions of the stimulus
animals as they evaluated the dynamic, bimodal vocalizations.
This interest in the eye region adds to a number of previous
studies reporting that both humans and monkeys preferentially
investigate the eye regions of conspecifics presented either in
static images [24-34] or dynamic, naturalistic videos [18,35-37].
Both humans and rhesus monkeys broadcast important socio-
emotional information through their eyes (e.g., their emotional
or mental state, social intentions, or focus of their attention),
thus attending to the eye region provides the observer with a
wealth of socially relevant information [38].

Interestingly, males and females exhibited subtle differences
in their looking of the eye and mouth regions of the congruent
stimulus video, with females showing a slightly greater
differentiation between the regions than males. Although
differential scanning by males and females has not been
empirically investigated in monkeys, previous studies have
shown that humans modify their gaze behavior based on the
information they intend to extract. Thus, when instructed to
focus on emotion-related cues (e.g., prosody) or make social
judgments, human subjects look more to the eye region than
the mouth region [13,14]. However, when attending to speech-
specific aspects of the communication signal (e.g., phonetic
details in high levels of ambient noise), they focus significantly
more to the mouth region [15,16]. Interestingly, when allowed
to passively view videos of vocalizing actors, human subjects
also preferentially attend to the eye regions [36,37]. It can
thereby be inferred that, during passive viewing, humans
preferentially attend to the socio-emotional aspects of the
stimuli. By extension, the present findings suggest that
monkeys attended to the socio-emotional aspects of the
stimuli. The results further suggest that female monkeys may
be slightly more sensitive to the socio-emotional content of
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complex signals than male monkeys. Although further studies
are clearly needed to better understand the significance of this
sex difference, the data parallel recent findings in humans
indicating that women recognize crossmodal emotional
expressions of fear and disgust strikingly better than men [17].

Conclusions
Humans and nonhuman primates live in complex social

environments where social signals are primarily transmitted via
faces and vocalizations. The ability to process audiovisual
information is necessary for the recognition of individuals and
their emotional states. Rhesus macaques possess the ability to
integrate the audio and visual components of species-specific
vocalizations, and females may be slightly more attuned to the
socio-emotional aspects of complex, species-specific social
signals. The current results emphasize that subsequent
investigations in nonhuman primates should take into account
the sex of the observer, as well as considerable individual
variability in passive viewing behavior.

Characterization of these types of naturally occurring
behavioral differences in normal subjects and the identification
of the neural substrates of those differences are particularly
important for research on disorders characterized by deficits in
emotional crossmodal integration, such as autism spectrum
disorder [39-42], pervasive developmental disorder [43,44]; and
schizophrenia [45-47]. Only a few functional neuroimaging
studies in humans have begun to identify neuroanatomical
correlates of emotional crossmodal integration and have shown

greater responses to bimodal emotional expressions (face and
voice) than unimodal emotional expressions in the amygdala
[48], medial temporal gyrus, anterior fusiform gyrus [49], and
posterior superior temporal gyrus ([50]), as well as the
thalamus [51]. None have documented sex differences in
activation patterns. Although several investigations have
empirically demonstrated emotional crossmodal integration
abilities in nonhuman primates (e.g. [51-53]), to date, the
neural substrates of these abilities in monkeys have yet to be
investigated.
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