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Abstract

The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and
the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature
large, natively unfolded domains with phenylalanine–glycine repeats (FG domains). These domains of nucleoporins play key
roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular
modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain
from the yeast nucleoporin Nup116. The results showed that its FG motifs function as intramolecular cohesion elements
that impart order to the FG domain and compact its ensemble of structures into native premolten globular configurations.
At the NPC, the FG motifs of nucleoporins may exert this cohesive effect intermolecularly as well as intramolecularly to form
a malleable yet cohesive quaternary structure composed of highly flexible polypeptide chains. Dynamic shifts in the
equilibrium or competition between intra- and intermolecular FG motif interactions could facilitate the rapid and reversible
structural transitions at the NPC conduit needed to accommodate passing karyopherin–cargo complexes of various shapes
and sizes while simultaneously maintaining a size-selective gate against protein diffusion.
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Introduction

The nuclear pore complex is a supramolecular protein structure

in the nuclear envelope that controls nucleo-cytoplasmic traffic

and communication (Figure 1A) [1]. A key NPC architectural

feature is a poorly understood semi-permeable diffusion barrier at

its center, which allows passive diffusion of particles less than 3–

4 nm in diameter (or 30–40 kDa in mass for a folded protein) and

opens to allow facilitated transport of larger particles up to 39 nm

in diameter [2]. The NPC is composed of ,30 proteins or

nucleoporins (nups) that are present in multiple copies [3,4].

Among these, a group that contains numerous phenylalanine-

glycine repeats (FG nups) (a subset is shown in Figure 1B) line the

transport conduit of the NPC (Figure 1A). These FG nups function

as stepping-stones for karyopherin movement across the NPC

[5,6] and as structural elements of the NPC protein diffusion

barrier [7,8].

The three dimensional structure of S. cerevisiae FG nups is

unusual because their 150–700 amino acid (AA) FG domains are

natively unfolded [9] in their functional state [6]. Since there are

,150 FG nups in each NPC [4], it is currently hypothesized that

its transport conduit is lined and/or flanked by 150 natively

unfolded FG domains. Together these FG domains constitute

,12% of the total NPC mass or .6.5 MDa of its ,55 MDa

structure in yeast [10]. The FG domains of nups were initially

hypothesized to function as repulsive entropic bristles that create a

virtual gate at the NPC periphery [11,12], and later as cohesive

polypeptide chains that form a hydrogel at the NPC center

[8,13,14]. More recently, an analysis of all nup FG domains in S.

cerevisiae indicated that some FG domains (the GLFG-rich

domains) bind to each other weakly via hydrophobic attractions

between their FG motifs, whereas other FG domains (the FxFG-

rich domains) do not form such cohesions [7]. Despite the fact that

different subtypes of FG domains are defined by their content of

FxFG, GLFG or SAFGxPSFG motifs, their ability to interact with

each other (i.e., their cohesiveness) seems to correlate best with the

AA composition of the sequences between FG motifs, rather than

with the specific FG motif [7]. Hence, the human FG nups may
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also interact with each other, despite having only one GLFG-rich

nup among its eleven members [3].

It is generally assumed that natively unfolded proteins have

some preferred 3-D structures dictated by intra-molecular

cohesion [15,16]. Current evidence that the FG domains of nups

have some structure is based on CD and FTIR spectroscopic

analysis, which indicates that FG domains have anywhere from

5% to 20% a-helical and b-sheet content at any given moment [9],

yet the locations of such structures in the protein are probably

ever-changing. The conformational flexibility inherent to natively

unfolded proteins and protein domains such as those in the FG

nups, places them beyond the reach of classical structural biology

tools such as X-ray crystallography and homology-based compu-

tational methods [17–20]. However, it is clear that these and other

unfolded proteins participate in a wide range of key cell biological

processes [21–23] and that their native plasticity bestows specific

functional properties, such as rapid molecular interaction times

and the ability to bind multiple proteins simultaneously [24]. In

the case of nucleoporin FG domains, a key function is to bind

multiple karyopherins [6] with very rapid interaction times [25].

Thus, in contrast to folded proteins, the structure of natively

unfolded proteins must be described as a dynamic ensemble of

interconverting conformers.

Since traditional experimental methods for elucidating protein

structure cannot be used with natively-unfolded proteins, new

approaches are needed to study and describe their dynamic

ensemble of structures. In this emerging area of research, Jha et al

[26,27] have recently introduced a general statistical coil model,

and Bernado et al [28,29] have estimated the nuclear magnetic

resonance (NMR) measured residual dipolar couplings (RDCs)

[30] from dynamic simulations to characterize the ensemble-

averaged conformations of a-synuclein. Also, Ollerenshaw et al

[31] have applied a native-centric topological model to understand

the essential folding/unfolding dynamics SH3 domains, and

Pappu and co-workers have characterized poly-glutamines as a

function of chain-length conformational sampling by molecular

dynamics (MD) and Monte Carlo simulations [32]. Most of these

computational investigations suggest the existence of a preferred

ensemble of conformers for each protein, rather than suggesting

pure random coils.

Here we conducted molecular dynamics simulations and

biophysical measurements on a small FG domain from the yeast

nucleoporin Nup116 (Q02630) to test the hypothesis that

phenylalanines in its FG motifs function as intramolecular cohesion

elements that impart structure. Apart from its cell biological

significance, we chose this protein as a model system to investigate

how a combination of molecular dynamics simulations and

biophysical measurements can be used to characterize the

ensemble of structures adopted by a natively unfolded protein,

such as the FG domain of a nucleoporin.

Results

In the analysis that follows we first used MD simulations to

generate a statistical ensemble of coil conformations for a 111 AA

region of the Nup116 FG domain containing ten FG motifs (wild-

type), and of a mutant version thereof lacking the phenylalanines

in the ten FG motifs (F.A mutant) (Figure 1B and 1C). The MD

trajectories were then analyzed to evaluate the degree of secondary

structure, the overall dimensions of the protein conformations, and

the contribution of the FG motifs to the intramolecular cohesion of

coils (i.e., compaction) in the dynamic ensemble of nup structures.

The simulated FG domains were then expressed in bacteria,

purified to homogeneity, and analyzed by NMR spectroscopy and

sizing columns to quantify their average shape through measure-

ments of diffusion coefficient and Stokes radii. Finally, mathemat-

ical and biophysical analyses were combined to estimate the

tertiary structure that best describes the natively unfolded domain

of the representative FG nucleoporin.

Molecular Dynamics Simulations
Twenty independent MD simulations were performed at 300 K

(25uC) on the wild-type (6 ns) and F.A mutant (5 ns) versions of a

Nup116 FG domain (AA 348–458) starting from a fully-extended

conformation. The goal of these simulations was to sample the

conformational distribution of the proteins as close as possible to

their native distribution in solution. As soon as the simulations

started, within the first 100 ps, the extended FG domains collapsed

into a more cohesive or compact ensemble of structures with small

patches of unstable (see below) secondary structure. Since the wild-

type and mutant FG domains are highly flexible and disordered,

the resulting end-structures from each of the twenty simulations

did not resemble one another as expected for natively unfolded

proteins (see Figure 1C for representative examples). Despite the

fact that the nup structures were ever-changing (see below), the

ensemble of structures for each did ‘‘converge’’ to a similar size

early in the simulation according to various metrics of size, which

changed little in the last 3 ns. This was evidenced by a constant

radius of gyration (Figure S1) and by statistical analyses that

showed no significant change in the range of Rg values during the

last 3 ns (data not shown).

To describe quantitatively the structural dynamics of the FG

domains, we calculated the auto-correlation function of a vector of

the 118 W and 118 Y angles along the peptide backbone of FG

domain structures sampled every 1 ps from the MD trajectory.

Figure S2 shows the autocorrelation functions with a 200 ps

window from the final 3 ns of simulation of all twenty wild-type

and F.A mutant FG domain simulations, along with the

comparable auto-correlation function from the MD simulation

of a control protein that is folded (fibroblast growth factor 1). For

each of the replicate nup simulations, the correlation in the W–Y
angles dropped from 1 to 0.738 (60.031) or 0.741 (60.023) in 1 ps

for the wild-type or mutant FG domains, respectively, and then

slowly decayed over 200 ps to 0.672 (60.037) or 0.665 (60.029),

Author Summary

The nuclear pore complex is a molecular filter that gates
macromolecular exchange between the cytoplasm and the
nucleoplasm of cells. It contains a size-selective diffusion
barrier at its center composed of proteins named FG
nucleoporins. These nucleoporins feature large, structural-
ly disordered domains that are highly decorated with
phenylalanine–glycine (FG) sequence motifs. The dynamic
structure of these disordered FG domains excludes them
from classical structural biology analyses such as X-ray
crystallography; thus, new approaches are needed to
characterize their shape. Here computational and biophys-
ical approaches were used to elucidate the ensemble of
structures adopted by the FG domain of a nucleoporin.
The analyses showed that the FG motifs function as
intramolecular cohesion elements that compact the shape
of the FG domain, forcing it to adopt loosely knit globular
configurations that are constantly reconfiguring. Within
the nuclear pore complex, dozens of these nucleoporin FG
domains may stack as loosely knit globules forming a
porous sieve that gates molecular diffusion by size
exclusion.

Dynamic Ensemble of Nucleoporin Structures
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Figure 1. The yeast nuclear pore complex, some of its FG nucleoporins, and an ensemble of protein structures generated by MD
simulations of a Nup116 FG domain. (A) A simplified diagram of the yeast nuclear pore complex (green), its cytoplasmic fibrils (yellow), its
nuclear basket (red) and some of the GLFG-rich domains of nups that line the transport conduit (blue). The GLFG-rich domains are depicted as a
doughnut-shaped array of laterally-cohesive, native pre-molten globules. Other FG domains are excluded for simplicity. The nuclear envelope is in
gray. (B) GLFG-rich nucleoporins in the yeast NPC transport conduit. The vertical tick marks in the nups mark the location of each FG motif: GLFG
motifs are in yellow, FxFG motifs in red, and other variants in different colors. The fragment of Nup116 (AA 348–458) indicated was selected as a
representative FG domain for this study. The F.A mutant version lacks the phenylalanine residue in FG motifs, which were replaced by alanine. (C)
The AA sequences for the wild-type and mutant Nup116 FG domains used for MD simulations. The phenylalanine (or alanine) in FG motifs is indicated
in red. The AA sequences in gray are not part of Nup116; they are affinity-tags used in the purification of the FG domain. The numbers in the black
bold font indicate the AA position in the Nup116 sequence. The numbers in gray indicate the AA position in the FG domain fragment analyzed. The
protein structures shown are a representative subset of the twenty MD simulation structures generated for each FG domain at 350 K. The Rg values
of the representative structures are within the average range for each FG domain (see Figure 2A).
doi:10.1371/journal.pcbi.1000145.g001

Dynamic Ensemble of Nucleoporin Structures
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respectively. In contrast, for the control protein fibroblast growth

factor 1, the autocorrelation function dropped to only 0.875 in

1 ps, and then to 0.864 over the 200 ps auto-correlation window.

These results indicate that the AA chain backbone of wild-type

and mutant FG domains is constantly changing structure and is

highly dynamic in comparison to a folded protein.

Structural Analysis of the Simulated FG Domains
The ensemble of structures for each of the twenty MD

trajectories generated for the wild-type and mutant FG domains

were sampled at 1 ps intervals during the final 3 ns of the

simulations, yielding a total of 60,000 structures for each protein.

The secondary structure content was then analyzed in detail to

determine the fraction of time during the simulations that each AA

residue spent as part of a ‘‘helical’’ structure (either an a-helix or a

310-helix). In general, no significant difference in overall helical

content between wild-type and mutant FG domains was observed.

The alpha- and 310- helical structures that did form ranged in size

from 2–6 AA residues and did not persist for more than 35 ps on

average (data not shown). The maximum duration of an a-helix

and a 310-helix was 97 and 699 ps, respectively (data not shown).

Using the same set of 60,000 structures, two measures of protein

compactness were calculated: the radius of gyration (Rg) and the

end-to-end distance between terminal residues. The average (61

standard deviation) end-to-end distance for the wild-type FG

domain simulated at 300 K was 20.42 Å (69.51), and for the

mutant was 20.69 Å (67.78) (data not shown). The predicted

radius of gyration was 14.52 Å (61.18) for the wild-type and

14.41 Å (61.24) for the mutant FG domain (Figure 2A). The

simulations sampled different regions of conformation space

because significant run-to-run variations were observed in the

probability distributions for each structural parameter. The similar

Rg and end-to-end distance values obtained for the wild-type and

mutant FG domains implied that both proteins occupy equivalent

hydrodynamic volumes. However, this conclusion was at odds

with two different quantitative measurements of the physical

dimensions of purified FG domains (see below).

Interestingly, it has been reported that increasing MD

simulation temperature can yield protein dimensions that more

closely resemble those obtained by NMR protein conformation

measurements [33,34]. Indeed, when we extended the nup MD

simulations for an additional 1 ns at 325 K (52uC) or at 350 K

(77uC), a very different picture emerged (Figure 2A). At 325 K

there was a slightly greater difference in the average radius of

gyration between the wild-type (15.1161.43 Å) and the mutant

(15.7662.58 Å) FG domains. Five of the twenty mutant

simulations now had an average Rg greater than 18 Å, but all

the wild-type simulations had an average Rg below 18 Å,

indicating that the mutant FG domain is larger (Figure 2A). In

addition, the average end-to-end distance for the wild-type FG

domain was 20.84 Å (610.75) compared to 24.26 Å (613.16) for

the mutant (data not shown). At 350 K, there was a much greater

difference between their radii of gyration (Rg). The average Rg was

17.40 Å (63.11) for the wild-type FG domain and 23.68 Å

(66.05) for the mutant domain (Figure 2A and 2B). At 350 K,

fifteen of the twenty mutant simulations had an average Rg greater

than 20 Å, compared to only three for the wild-type simulations

(data not shown). Consistently, the average end-to-end distance for

the wild-type FG domain was 29.95 Å (616.04) compared to

52.56 Å (625.31) for the mutant (Figure 2C). The larger

dimensions obtained for the wild-type and mutant FG domains

at 325 K and 350 K compared to 300 K were likely due to

thermal ‘‘melting’’ during the additional 1 ns of simulation. These

data combined provide a first indication that the F.A mutant

Nup116 FG domain is not as intramolecularly cohesive or compact

as the wild-type version.

Intramolecular Distances between FG Motifs in the
Nup116 FG Domain

As a way of assessing the dynamic structure of the FG domain,

particularly from the point of view of the FG motifs, we plotted the

distances between the backbone b-carbons (Cb) for the ten sites

that correspond to the phenylalanine (Phe, F) or to the substitute

alanine (Ala, A) residues in the various FG motifs. The distances

used were from the MD simulations at 350 K, which yielded

structures (Figure 1C) that better reproduced the dimensional

difference between the wild-type and mutant FG domains

measured by NMR analysis and in sieving columns (see below).

The distance analysis yielded 45 F–F (or A–A) distances for each

structure (Table S1). Probability distributions for each Cb-to-Cb
distance were calculated and analyzed looking for significant

differences between the wild-type and mutant FG domain

configurations. To estimate the sharpness of the Cb-to-Cb
distance distributions, the number of 1 Å wide bins that had

greater than 10% of the probability distribution was counted; no

bin had more that 20% of the probability distribution. This metric

was calculated for all 45 Phe–Phe Cb-to-Cb distances in all twenty

replicates of the FG domain simulations. In stable tertiary

structures, these distances occur as one sharp-peak distribution

around the equilibrium inter-residue distance; in a fully random

ensemble of structures, they occur as a very broad distribution;

and in semi-structured proteins, they occur as one or more

intermediate-width distributions. Figure 3A shows two represen-

tative examples of the probability distributions obtained from the

MD trajectories at 350 K; the values shown correspond to the

distribution of distances between phenylalanine F84 and F93 in

the wild-type FG domain (Figure 1C) or alanine A84 and A93 in

the F.A mutant domain. Overall, for the wild-type FG domain

simulations, the majority of the simulations analyzed had more

than three peaks; by comparison, only a minority of the F.A

mutant simulations analyzed exhibited a similar level of sharpness

in the distance distributions (data not shown). These results

provide tentative evidence that the wild-type FG domain is more

structured than the mutant. Repeating this analysis to include only

peaks with the distance distributions of ,15 Å yielded a very

similar result (data not shown).

To permit comparisons of the average inter-residue distances,

the probability distributions obtained for the Cb-to-Cb distances

were fit to a single Gaussian distribution even though in some

cases there were multiple distinct peaks (Figure 3A). This was only

a rough approximation to the observed probability distribution,

but the assumption was justified in the context that these ensemble

of structures were to be used (see below). After all, these structures

are rapidly inter-converting and the width of the Gaussian is broad

enough to accommodate all of the major peaks in the distribution.

For example, in the case of the F84–F93 distance distribution, a

Gaussian centered at 16.2 Å with a width of 11 Å covered both

peaks at 10 and 20 Å (Figure 3A).

Probability distributions of all inter-residue distances obtained

from the MD simulations were subjected to clustering using the

Pearson squared correlation. This was done to determine how any

two of the distributions sampled in regular intervals of the MD

simulations are correlated with each other. The correlation

coefficient does not depend on the specific measurement units

used because other correlation coefficients, such as Euclidian

distance metric, yielded similar clustering effects (data not shown).

Figure 3B shows the matrix intensity plots of the correlations for

the wild-type and mutant FG domains. The indices of the matrix

Dynamic Ensemble of Nucleoporin Structures
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correspond to the various Phe–Phe pairs (or Ala–Ala pairs) listed

in Table S1. Indices 1 through 9 correspond to the distance from

the first Phe (at position 13; see Figure 1C) to the other 9 Phe

(positions 23 through 113), while indices 10–18 correspond to

similar distances from the second Phe (at position 23) to the other

eight Phe’s (positions 32 through 113) and so on. Altogether, the

clustering analysis showed that there is a stronger correlation

between the various Phe–Phe distributions in the ensemble of wild-

type FG domain structures than between the various Ala–Ala

distributions in the ensemble of mutant FG domain structures.

Figure 2. Molecular dimensions of the simulated FG domain structures. (A) Average radii of gyration of Nup116 FG domains simulated at
different simulation temperatures. Box-plot of average radii of gyration (Rg) in units of Angstroms calculated from twenty replicate 1 ns simulations at
300, 325, and 350 K for the wild-type and F.A mutant FG domains. (B) Histogram of radii of gyration (calculated using only the atoms in the peptide
backbone) for the 10,000 FG domains structures sampled from the 350 K simulations. (C) Histogram of end-to-end distances (calculated from the
terminal C and N atoms) for 10,000 FG domain structures obtained by sampling every 1 ps of the final 500 ps of each of the twenty replicate MD
simulations at 350 K.
doi:10.1371/journal.pcbi.1000145.g002

Dynamic Ensemble of Nucleoporin Structures
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This indicated that the wild-type FG domain is generally more

ordered than the mutant.

To obtain a broader view of the dynamical correlation between

inter-residue distances in the FG domains, the Pearson correlation

coefficient between all 990 distinct interresidue distances in all 20

simulation replicates of each FG domain were calculated, yielding

19,800 correlation coefficients. In this case, a value of 1.0 would

indicate a perfect linear correlation between two inter-residue

distances (as one inter-residue distance grew larger, the other

would grow by a proportionate amount); a value of 0.0 would

indicate no correlation between a distance pair; and a value of

21.0 would indicate perfect anticorrelation. Figure S3 shows

back-to-back histograms of the resulting correlation coefficients.

For the wild-type FG domain, 9.0% of the observed correlation

coefficients had values above 0.7 versus 7.1% in the F.A mutant.

This demonstrated that the ensemble of wild-type FG domain

structures shows a bias towards higher correlation coefficients

between inter-residue distances than the F.A mutant domain,

indicating more structural coherence in the wild-type FG domain

than in the mutant.

To better describe the relationship between FG motifs in the FG

domain, the distances between F–F pairs (or substitute A–A pairs)

were also categorized into groups representing distances of 10–15,

15–20, or .20 Å. These are shown in Figure 3C as thick red,

medium blue, or thin green lines, respectively. A list of all distances

for both proteins is given in Table S2. Among the F–F distances in

the wild-type FG domain, seven F–F pairs are less than 15 Å apart

(red text in Table S2 and red-thick lines in Figure 3C). In contrast,

the F.A mutant FG domain had only two A–A pairs with such

short distances. In the wild-type FG domain, four F–F pairs were

in the range of 15–20 Å apart (blue), while seven F–F pairs were

farther than 20 Å (green). In the F.A mutant, there were eight A–

A pairs with distances in the mid-range (15–20 Å), and three pairs

showing distances greater than 20 Å. These results demonstrate

Figure 3. Interresidue distances in the simulated FG domains. (A) Plots of the probability distribution of inter-atomic distances in the wild-
type and mutant FG domains. The distance distribution between the backbone b-carbons of phenylalanine (F) or alanine (A) residues in positions 84
and 93 (see Figure 1C) is shown as a representative example. The solid line in each plot corresponds to a Gaussian fit to the probability distribution.
(B) Pearson squared correlation plots of the atomic distance between F–F or A–A pairs in the wild-type and mutant Nup116 FG domains. The
numbers in the axes correspond to the various F–F or A–A pairs that result from all possible combinations (listed in Table S1). The correlation map
shows how each of the pairs is related to the others. The insert depicts the contour level of the Pearson coefficient. (C) Schematic representations of
Phe-to-Phe distances in the wild-type FG domain and Ala-to-Ala distances in the F.A mutant domain. The calculated average distance between the
Phe or Ala residues in the pair-wise combinations is thickness and color coded. Thick red lines represent distances between 10 and 15 Å; medium
blue lines represent distances between 15 and 20 Å; and thin green lines represent distances greater than 20 Å.
doi:10.1371/journal.pcbi.1000145.g003

Dynamic Ensemble of Nucleoporin Structures

PLoS Computational Biology | www.ploscompbiol.org 6 August 2008 | Volume 4 | Issue 8 | e1000145



that the intramolecular distances between FG motifs in the wild-

type and mutant FG domains are quantifiably different from each

other. There was a tendency for FG motifs in the wild-type FG

domain to be proximal to each other (i.e., to cluster), which was

absent in the mutant. This conclusion is consistent with the

hypothesis that the FG motifs in the wild-type Nup116 FG domain

interact intra-molecularly in a manner similar to what has been

observed for intermolecular interactions between this Nup116 FG

domain and other FG domains of nups [7].

Self-Diffusion Coefficient Measurements of Nup116 FG
Domains by NMR

The structural predictions made by the in silico modeling

prompted us to seek physical evidence that the phenylalanine

residues in FG motifs function as structural cohesion elements that

form putative intra-molecular interactions within the Nup116 FG

domain. In principle, a change in the dynamic ensemble of FG

domain structures resulting from the substitution of all Phe’s to

Ala’s could be detected by NMR. A less-ordered mutant FG

domain would exhibit a slower diffusion coefficient. The wild-type

and F.A mutant versions of the Nup116 FG domain were

purified to ‘homogeneity and subjected to NMR analysis. Plots of

the one-dimensional 1H NMR spectra are shown in Figure 4 (left

panels). It was anticipated that the hydration of the FG domains

would be significantly different from that of ordered, globular

proteins [35,36] due to the lack of stable folded structures in the

FG domains [9]. When presaturation of the water was used there

was a significant reduction in the intensity of the amide region of

Figure 4. Analysis of Nup116 FG domains by NMR. Left panels: Aromatic and amide region of the water-gate residual water suppressed one-
dimensional NMR spectra for the purified FG domains. Tall peaks in the spectrum between 7.1 and 7.3 ppm arise from the Phe residues in the wild-
type domain, which are absent in the F.A mutant. The sensitivity of the mutant FG domain spectrum is lower due to a lower protein concentration
than the wild-type FG domain. Right panels: Plot of the self-diffusion coefficient measurements performed using BPP-SED for the wild-type and
mutant FG domains. Circles depict the experimental points and squares, and lines correspond to the fit to the diffusion data. The error bars are
smaller than the size of the symbols.
doi:10.1371/journal.pcbi.1000145.g004

Dynamic Ensemble of Nucleoporin Structures
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the nup spectrum due to fast exchange with the solvent protons

[37,38]. This observation, combined with the narrow chemical

shift dispersion of the amide resonances (7.9–8.5 ppm) in both nup

spectra, was a clear indication that both FG domains are natively

unfolded and highly dynamic. NMR experiments conducted at

lower temperatures (5 and 10uC, compared to 25uC) gave similar

results, but offered no significant improvement in the spectral

dispersion (data not shown).

Experimental self-diffusion measurements (intensity vs. product

of the area of gradient pulse strength and the diffusion length) of

the FG domains and the corresponding exponential fits are also

shown in Figure 4 (right panels). The data yielded self-diffusion

coefficients (Ds
expt) values of 13.17 (60.26) and 12.18

(60.12)610211 m2 s21 for the wild-type and mutant FG domains,

respectively. This indicated slower diffusion for the less-ordered

mutant FG domain. Despite the mass of the F.A mutant domain

being smaller (11.9 kDa) than wild-type (12.6 kDa) (due to the

replacement of 10 Phe for Ala) the diffusion constant of the mutant

was smaller on average, suggesting that its effective hydrodynamic

volume is larger. As expected for unfolded proteins [39], the

diffusion of the wild-type and mutant FG domains was

significantly slower than a folded protein of higher molecular

weight [39,40], indicating that the wild-type and mutant FG

domains have unfolded structures that sample a relatively large

conformational space.

Characterization of the Nup116 FG Domain in Sizing
Columns

To further characterize the hydrodynamic properties of the

wild-type and mutant Nup116 FG domains, each was analyzed by

FPLC in a sieving column to determine its Stokes radius. The

expectation was that the less ordered mutant FG domain would

occupy more hydrodynamic space and would elute faster from the

sizing column. Purified wild-type and mutant versions of the

Nup116 FG domain were subjected to size-fractionation through

an FPLC Superdex 75 column and their elution profiles were

compared to that of commonly-used size standards, such as

carbonic anhydrase (29 kDa, Rs = 23.5Å), ovalbumin (45 kDa,

Rs = 29.8Å), and BSA (68 kDa, Rs = 35.6Å). The Stokes radius for

the wild-type FG domain was measured at 25.2 (60.6) Å (Table 1),

which is larger than carbonic anhydrase despite the FG domain

having less than one-half the mass. This highlighted the fact that

the FG domain is natively unfolded. The F.A mutant domain

eluted faster from the sieving column and migrated as a particle

with a Stokes radius equivalent to 27.1 (60.6) Å, which is larger

than the wild-type FG domain despite the mutant having less mass

(Table 1). This apparent loss of compaction for the mutant FG

domain compared to the wild-type (a ,20% change in

hydrodynamic volume) was consistent with its slower NMR

diffusion coefficient (Figure 4) and with the computationally-

predicted difference in hydrodynamic dimensions between them at

350 K (Figure 2). The observed loss of intra-molecular cohesion in

the mutant FG domain supported our hypothesis that FG motifs

within the natively-unfolded FG domain of Nup116 interact

intramolecularly via phenylalanines that cluster through hydro-

phobic attractions. In essence, the hydrophobic interactions

between FG motifs likely bias the arrangement of coils within an

FG domain to form an ensemble of dynamic non-random tertiary

structures with a quantifiable level of intramolecular cohesion.

The Measured Hydrodynamic Volume of the Nup116 FG
Domain Predicts a Native Premolten Globular Structure

The hydrodynamic volume or Stokes radius of a protein in

different structural configurations (e.g., a folded globule, a molten

globule, a premolten globule, a coil, an extended coil) can be

estimated from its mass using mathematical equations [41]. These

equations were derived from the analysis of large data sets

containing experimentally-determined hydrodynamic values for

proteins in those structural configurations. Here, using the mass of

the wild-type and mutant Nup116 FG domains, we calculated

their hypothetical Stokes radius in each structural configuration

and compared these predicted values to our experimentally-

measured Stokes radii values (Table 1). The goal was to identify

the structural configuration of each FG domain that best matched

the biophysical measurement obtained for its hydrodynamic

volume. For the wild-type FG domain, a predicted native pre-

molten globule structure matched best its measured Stokes radius,

and for the F.A mutant, a predicted native coil structure was the

best match (gray boxes, Table 1). These results support the

hypothesis that GLFG motifs in nucleoporins function as intra-

molecular cohesion elements, because their absence caused a loss

of compaction in the Nup116 FG domain, shifting its dynamic

ensemble of structures from native premolten globular configura-

tions to native coil configurations.

Discussion

We have used a combined computational and biophysical

approach to characterize the dynamic ensemble of structures

adopted by a natively unfolded or intrinsically unstructured

protein. Specifically, we characterized the ensemble of conforma-

tions adopted by a fragment of the FG domain of the S. cerevisiae

nucleoporin Nup116 (AA 348–458) and of a mutant version

thereof (F.A) lacking the phenylalanines in its predominantly

Table 1. Hydrodynamic dimensions of the purified Nup116 FG domains.

Estimated Stokes
radius from MD
simulations at 350 K

Measured
Stokes radius Predicted Stokes radius (Rs in Å) based on massa

FG domain AA’s Rh = Rs (Å) Rs (Å) MW (Da) Folded
Molten
globule

Premolten
globule Coil

Extended coil
in urea

Extended
coil in GnHCl

Nup116 348–458 23.164.1b 25.260.6b 12,632b 16.9b 20.3* 26.2b 28.6* 29.9b 31.2b

Nup116 F.A 348–458 29.665.4b 27.160.6b 11,861b 16.6b 19.9* 25.6b 27.8b 28.9b 30.1b

Boldface highlights the best-match between measured Stokes radius and predicted Stokes radius based on mass.
aPredicted Stokes radii based on mass using Uversky’s equations [41].
bIncludes a 9 AA tag at the N-terminus (858 Da) and a 6 AA His-tag (841 Da) at the C-terminus in addition to the nup sequence (see Figure 1C).
doi:10.1371/journal.pcbi.1000145.t001
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GLFG motifs (Figure 1). Both FG domains were found to be

highly dynamic and disordered, yet contained quantifiable

structural differences between them. The MD simulations

predicted a more cohesive and/or compact ensemble of structures

for the wild-type FG domain compared to the F.A mutant based

on the average radius of gyration and end-to-end distances

(Figure 2). This structural prediction was supported by the inter-

phenylalanine or inter-alanine distance analysis (i.e., the distance

between wild-type or mutant FG motifs, respectively) (Figure 3C),

which indicated shorter distances between the FG motifs in the

wild-type domain; and by the Pearson correlations of F–F (or A–A)

pair distances in the FG domains (Figure 3B), which indicated that

the Nup116 FG domain has increased probability of sampling

geometries that are more ordered when the phenylalanines in the

FG motifs are present. The structural predictions made by the MD

simulations were confirmed by direct physical examination of

purified FG domains, through NMR-based measurement of their

hydrodynamic properties (Figure 4) and by measurement of their

hydrodynamic radii in sieving columns (Table 1). In all of the

analyses, the wild-type FG domain was found to be more compact

than the mutant domain. Unlike the simulations at 350 K, the

lower temperature simulations (e.g., at 300 K) did not reproduce

this difference in hydrodynamic volumes. Hence, the MD

simulations at the higher temperature (350 K) for this class of

natively-unfolded proteins may reproduce more accurately their

physical properties in solution. As a caveat, the magnitude of the

size difference between the nups simulated at 350 K is larger than

the magnitude of the difference in their physical dimensions as

measured in the sizing columns (Table 1). Notwithstanding, the

simulation values matched, within the experimental error of the

simulations (s.d. 618%), the measured Stokes radii for the purified

FG domains. Since only 20 single-molecule simulations were used

to predict the dimensions of the FG domains, whereas ,35 trillion

molecules were used to accurately measure their average

dimension in the sieving columns (s.d. 62%), it seems likely that

a greater number of simulations for greater time-periods could

increase the congruency between simulated and measured values.

The mass and physical dimensions of the Nup116 FG domain

fragment analyzed here (AA 348–458; MW = 12.6 kDa;

Rs = 25.260.6), together with the scaling relations developed by

Uversky’s group [41], led us to conclude that this Nup116 FG

domain fragment is best described as a dynamic ensemble of

native pre-molten globular structures (Table 1). This structural

information can in turn be used to predict the physical dimensions

of the full-length Nup116 FG domain (AA 1–960; see [42]) based

on its mass and assuming that it also adopts native premolten

globular structures. Using the scaling relations, which convert

protein mass to physical dimensions in any of a number of

structural configurations [41], we estimated that the entire

Nup116 FG domain would occupy a hydrodynamic volume

equivalent to a 12-nm-diameter sphere (Table S3). For compar-

ison, its volume would be equivalent to a 16-nm-diameter sphere if

it were to adopt less compact native-coil configurations; or to a 19-

nm-diameter sphere if it were to adopt extended-coil configura-

tions; or to a 7-nm-diameter sphere if it adopted a tightly folded

configuration (data not shown). Likewise, size estimations can be

done for other full-length nucleoporin FG domains that have

similar AA composition and FG motif type as Nup116 (e.g., the

GLFG nup subfamily shown in Figure 1B) [42]. Such analysis

predicts that their FG domain dimensions would be equivalent to

spheres with diameters of 7, 7, 11, and 7 nm for Nup49 (AA 1–

251) (Q02199), Nup57 (AA 1–255) (P48837), Nup100 (AA 1–800)

(Q02629), and Nup145n (1–216) (P49687), respectively, assuming

native premolten globular configurations for each case (Table S3).

These predicted dimensions for the FG domains are generally

consistent with the 16–46% larger dimensions reported for the full-

length FG nups containing the FG domain, the folded NPC

anchoring domain and a Protein A tag (Table S3) [43].

Interestingly, all of these FG domains including the Nup116 FG

domain appear to be large enough to butt against each other

locally within the NPC (at least within a single spoke and probably

between adjacent spokes) given their close anchoring at the NPC

(see paragraph below) [43,44], yet appear to be too small to span

across the NPC transport conduit from their tether sites within the

NPC scaffold (,19 to 32 nm away from the conduit center; Table

S3) to the space occupied by the FG domains of nups anchored at

the opposite side (see Figure 1A and Figure S5A). This is because

the NPC transport conduit has an estimated radius of 19 nm

[2,43,44], which is significantly larger than the estimated diameter

for these FG domains (,7–12 nm). Notwithstanding, large

fluctuations in the dimensions of FG domains, which are intrinsic

to natively unfolded structures, or steric hindrance effects caused

by the spatial confinement between closely-anchored FG domains

[12,45] could cause the FG domains to extend further out into the

transport conduit (Figure S5B). The cohesive properties between

FG domains within the conduit [7,14] (also see below), or the

cross-linking action of karyopherins within the conduit (i.e.,

karyopherins appear to bind multiple FG motifs in different FG

domains simultaneously) [45–47] could transiently stabilize some

of the extended FG domain conformations (Figure S5B and S5C,

respectively) [14].

The evidence presented here suggests that the FG motifs in

Nup116 function as structural, intramolecular cohesion elements

that bias the arrangement of coils within the FG domain and

condense its dynamic ensemble of structures into more cohesive,

less disordered states. In the case of the Nup116 FG domain

examined, its FG motifs are responsible for shifting its ensemble of

structures from native-coil configurations (as seen for the mutant)

to native pre-molten globular configurations (Table 1 and

Figure 1C). In principle, all types of FG motifs (GLFG, FxFG,

SAFG, PSFG, etc.) [42] could exert cohesion through hydropho-

bic pairing, stacking, zippering, or otherwise clustering of the

aromatic ring of phenylalanine side chains through energetically

favorable aromatic edge-to-face interactions, as opposed to less

favorable face-to-face (p–p) interactions [48]. Interestingly, a

report by Dhe-Paganon et al., defined a ‘‘phenylalanine zipper’’

motif within the hydrophobic core of APS, which is critical for

APS dimerization [49]. There, the aromatic side chains of ten

phenylalanine residues are uniquely stacked to form a zipper that

is stabilized by helical secondary structures in the protein

backbone. Although FG domains do not appear to have stable

secondary structures, residues surrounding the FG motif, such as

the leucine residue of GLFG motifs or the second phenylalanine

residue in FxFG motifs, could enhance the hydrophobic clustering

effect by increasing the local hydrophobicity of the Phe residue in

the FG motif and/ or by influencing the orientation of its Phe ring.

A two dimensional representation of the Nup116 FG domain AA

sequences in a hydrophobic cluster analysis (HCA) [50,51]

illustrates its hydrophobic ‘‘LF’’ patches very well (Figure S4).

Although HCA is most commonly used in determining hydro-

phobic clusters in helical patterns [31], it is also informative in the

absence of a structural fold because it allows the identification of

hydrophobic features between nearby AAs. The HCA analysis

highlighted LF patches and MFMF-connections in the wild-type

Nup116 FG domain, which were missing in the F.A mutant

domain. This implied that the F.A mutant FG domain is less

compact because it does not have hydrophobic patches and

connections to make intra-molecular interactions.
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Our finding that the FG motifs can function as intramolecular

cohesion elements has important implications for the general

architecture and function of the NPC, especially if the ability of

these FG motifs to mediate intramolecular cohesion of coils

functionally mimics their demonstrated ability to mediate

intermolecular cohesion between FG domains [7]. Indeed, the

representative FG domain of Nup116 analyzed here and the FG

domains of other (but not all) FG nups (Nup49, Nup57, Nup100,

nNup145, and Nup42) engage in homotypic and heterotypic

interactions with each other in vitro and in vivo via FG motifs [7].

By analogy to the Nup116 FG domain, this group of cohesive FG

domains may also exhibit intramolecular cohesion of their own FG

motifs. At the NPC, such intra- and intermolecular FG motif

interactions could be in competition with each other, possibly

causing the FG domains to fluctuate between monomeric and

polymeric states (Figure S5B). Alternatively, such interactions

could be in a dynamic equilibrium with each other to form a

metastable quaternary structure (Figure S5A). According to the

two-gate and the hydrogel models of NPC architecture, the FG

motifs of nups within the NPC conduit engage in intermolecular

cohesions with each other to form a highly flexible network of

cohesive polypeptide chains, which forms a size-selective sieve or

gate [7–9,13,14]. The cohesiveness of such network(s) is

presumably maintained by the weak but numerous interactions

between FG motifs [52]. However, if the intra- and intermolecular

interactions between FG motifs were in competition with each

other at the NPC, then intramolecular cohesions could effectively

prevent the FG domains from forming a network altogether by

causing them to ‘‘fold back’’ on themselves (i.e., an autoinhibitory

mechanism).

What type of FG motif interaction dominates at the NPC,

either intramolecular or intermolecular, is indeed an important

question whose answer may rely largely on four parameters: the

distance between FG domain anchor sites at the NPC, the

volume of space occupied by each FG domain, the space

available at the NPC for each FG domain, and the steric

hindrance effect between neighboring FG domains [12,45,53].

As discussed above, the estimated dimensions for the ‘‘cohesive’’

GLFG-rich domains of yeast nups (7–12 nm diameter spheres)

combined with the close proximity between their anchor points

within each spoke (most are #5 nm apart from others anchored

adjacently and #10 nm from others anchored above or below in

the z-axis; see Table S3) implies that at least within a spoke and

probably between adjacent spokes the FG domains of these nups

butt against each other to occupy overlapping space [43,44].

This close positioning could allow or even promote the

formation of a supra-molecular quaternary structure of cohesive

FG domains at the NPC through a multitude of inter-molecular

FG motif interactions. This structural assembly could take the

form of a meshwork of intertwined polypeptide chains [14,52],

or alternatively, based on the data presented here, the assembly

could take the form of a doughnut-shaped array of laterally-

cohesive, native pre-molten globules (as depicted in Figure 1A

and Figure S5A). Most importantly, local reversible shifts in the

equilibrium between intra- and intermolecular FG motif interac-

tions could facilitate the fast structural changes in the NPC

permeability barrier, which are presumably coupled to the

passage of karyopherin-cargo complexes of different shapes and

sizes during transit across the NPC (Figure S5C). As karyo-

pherin–cargo complexes disrupt (either by mass action or by

direct interaction with the nup FG domain) intermolecular FG

motif interactions during transit (as predicted for all FG nups in

the hydrogel model, or for a discrete subset of nups in the two-

gate model) [7,8,14], the FG motifs liberated as a result would

become available to form intramolecular interactions. This could

cause the FG domains to fold back on themselves (i.e., to

compact), effectively opening the permeability barrier by

suddenly occupying less space.

It remains to be determined whether other types of nup FG

domains, which do not display intermolecular cohesions with each

other via FG motifs [7], can nevertheless form intramolecular

cohesions of their own FG motifs to adopt compact configurations.

According to the ‘‘virtual gate’’ [11], the ‘‘oily spaghetti’’ [54] and

the ‘‘two gate’’ [7,55] models of FG domain architecture, these FG

domains would exist as highly-extended polypeptide chains, as

observed for the Xenopus Nup153 FG domain [12]. Interestingly, in

the case of Nup153, its extended FG domain appears to compact

upon binding a karyopherin [45]. Clearly, a more detailed

structural characterization of the various FG domains as they

interact with karyopherins and each other is needed to fully

understand the dynamic and highly flexible structure of the NPC

transport conduit.

Materials and Methods

Classical Molecular Dynamics Simulation
MD simulations of individual FG domains were started from a

fully extended backbone structure (i.e., with the W and Y angles set

to 180u for all residues except for the three proline residues, which

put a 60u bend in the sequence). A different random number seed

was chosen for each of the different simulations to randomize the

initial atom velocities. Twenty separate simulations were run for

either 6 ns (wild-type) or 5 ns (mutant) each using different initial

atomic velocities and analyzed at 1 ps intervals. The wild-type

fragment required an additional nanosecond of dynamics to have

its radius of gyration converge. All MD simulations were

performed with AMBER [56–58] using implicit solvent models.

Each molecule was simulated in the presence of a Generalized

Born/Surface Area (GB/SA) implicit solvent model [59] that

calculates an effective solvation energy as an empirical parameter

multiplied by the exposed surface area of different atom types.

Each molecule was simulated using the GB/SA implicit solvent

implementation in Amber versions 7 and 8. Each system is energy-

minimized using 100 cycles of conjugate gradients. Constant-

temperature molecular dynamics at 300 K with a coupling

constant of 2.0 ps was performed on the minimized systems using

the standard partial charges for the Amber force field and Bondi

radii for the atoms. Bonds containing hydrogens were constrained

using SHAKE and a time step of 2 fs was used in all simulations. A

cutoff of 250 Å was used for the electrostatic interactions, which

for this system is equivalent to infinity. The salt concentration

(Debye-Huckel screening) was set at 0.15 M. Secondary structure

analysis: For the final 3 ns of each simulation, the structure was

analyzed every 1 ps using a standard program for identifying

secondary structure from atomic coordinates (Define Secondary

Structure of Proteins; DSSP) [60]. Radius of gyration and end-to-end

distance analyses: For the final 3 ns of each simulation, radii of

gyration and the end-to-end distances between terminal residues

were calculated using the program CARNAL and ptraj,

distributed with AMBER 7 [57,58]. High temperature molecular

dynamics simulations: Molecular dynamics were performed at

elevated temperatures for each of the 20 wild-type and mutant

FG domain simulations. The GB/SA simulations were all

restarted after 5 ns coupled to a heat bath at 325 or 350 K with

all other parameters of the simulation kept the same. The

simulations were run for 1 ns, and the final 500 ps were used for

analysis.
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Autocorrelation Functions
To determine the degree of dynamical change in the ensemble

of FG domain structures, the autocorrelation function was derived

for a vector (total vector length = 236) composed of the 118 W and

118 Y angles (in the 111 AA nucleoporin sequence with a 9 AA N-

terminal tag; see Figure 1) along the peptide backbone of

structures sampled every 1 ps from the MD trajectory. The

autocorrelation function was computed as the dot-product of

successive W–Y vectors using every 1 ps step as a new time origin

and calculating the correlation function out to 200 ps. Several

different time windows were used in the autocorrelation

calculation, but all gave the same result. For comparison purposes,

the same autocorrelation function was calculated for the first 118

W–Y angles (out of 130) for an MD trajectory of a well-folded

protein (fibroblast growth factor 1; PDB ID = 1AXM).

Calculation of Probability Distributions
The MD trajectories of 45 F–F distances between the Cb atoms

were analyzed to calculate the probability distributions. System-

atically, each of the F–F distance was interrogated and all of the

distances were binned (1 Å bins from 0 to 60 Å) to form a

histogram of distance distributions. Probability distributions were

calculated for each of the twenty simulations independently, and

the values obtained were averaged at the end. A similar procedure

was adopted for the mutant FG domain where the distance

between the Cb atoms of the Ala residue was used. Final

probability distributions were used without any normalization.

Intramolecular Distance Constraints
As a first approximation, the probability distributions were fit to

a Gaussian distribution (probability versus distance). This is a

conservative approach and is expected to be valid considering the

number of structures generated (60,000) during the molecular

dynamics simulations and in the absence of any constraints. The

center of the Gaussian is considered as the mean distance between

the F–F (or A–A), while the width at half-maximum is used as the

allowed variation in the constraint. Clustering analysis: The

correlation between different F–F probability distribution reflects

the degree to which these variables (F–F distances) are related. The

most common measure of correlation is the Pearson Product

Moment Correlation (http://www.r-project.org/) and reflects the

degree of linear relationship between the two variables. In order to

determine whether probability profiles of the F–F interaction

correlate, a similarity matrix with a Pearson square metric was

calculated. The correlation was used to indicate the presence (or

absence) of relationship between various F–F interactions.

Synthesis, Expression, and Purification of FG Domains
The coding sequence for the representative 111 AA Nup116 FG

domain was amplified from genomic S. cerevisiae DNA using PCR

and was cloned into the vector pGEX-2TK in frame with the

coding sequence for glutathione S-transferase (GST) at the 59 end,

and in frame with the coding sequence for six contiguous histidines

at the 39 end. Site directed mutagenesis was then used to alter the

coding sequence for the mutant F.A FG domain. The correct

coding sequences were confirmed by DNA sequence analysis. The

FG domains were expressed in a E. coli BL21+ strain as fusion

proteins with GST (glutathione S transferase) at the N-terminus

and a HIS tag (six contiguous histidine residues) at the C-terminus.

Glutathione coated Sepharose beads were then used to isolate

each GST-FG domain fusion from crude bacterial cell extracts.

The isolated FG domains were eluted from the beads by specific

thrombin proteolysis of the GST tag. Nickel-coated beads were

then used to capture and isolate the FG domain through its C-

terminal His-tag, and the captured proteins were eluted from the

beads using imidazole. Finally, the eluates were concentrated in a

Centricon 3 unit and were size fractionated in an FPLC Superdex

200 sizing column that was equilibrated in 50 mM NaH2PO4, pH

of 6.5 for the NMR analysis, or in an FPLC Superdex 75 column

equilibrated in 20 mM Hepes, pH 6.8, 150 mM KOAc, 2 mM

Mg(OA)2 for determination of Stokes radii.

Determination of Stokes Radii
Tandem-affinity purified wild-type and F.A mutant Nup116

FG domains were subjected to size-fractionation through an

analytical-scale FPLC Superdex 75 column. FG domains (100 ml

of 7.5 mg/ml) were injected at a flow rate of 0.5 ml/min at 4uC
into a column that was preequilibrated in 20 mM Hepes pH 6.8,

150 mM KOAc, 2 mM Mg(OAc)2, and 0.5 ml fractions were

collected. The FG domain elution profiles were monitored by UV

absorbance at 280 nm and by SDS-PAGE analysis of the eluates.

The nup elution profiles were compared to those of carbonic

anhydrase (29 kDa, Rs = 23.5 Å), ovalbumin (45 kDa,

Rs = 29.8 Å), and BSA (68 kDa, Rs = 35.6 Å), which served as

molecular size standards. The elution volume of the standards was

plotted in relation to their Stokes radii, allowing for estimation of

the FG domain Stokes radii from the resulting linear regression

formula.

NMR Experiments
NMR experiments were performed on tandem-affinity purified

FG domains dissolved in 50 mM NaH2PO4, pH 6.5. Final protein

concentrations were ,0.5 mM for both wild-type and mutant FG

domains. NMR experiments were performed in a Varian INOVA

600 MHz spectrometer equipped with a 5 mm probe with a single-

axis (along Z) shielded magnetic field gradients. One dimensional 1H

NMR experiments were obtained using the water suppression

scheme 1-3-3-1 Water-gate [61]. Self-diffusion coefficient measure-

ments were obtained using a BPP-SED (bipolar-gradient pulse pair

selective echo dephasing) sequence [62].

Hydrodynamic Calculations
Translational diffusion tensor values were calculated based on

the beads-model approximation of Garcı́a de la Torre and

Bloomfield [63]. This method has been used successfully to

calculate translational as well as rotational diffusion tensors of

proteins [40,64]. All atoms were considered as beads of equal size

(s= 5.1 Å). The overall isotropic translational self-diffusion

coefficient was calculated by taking the average of the principal

values of the diffusion tensor.

Calculating Hydrodynamic Radius from the Radius of
Gyration for the Simulated FG Domains

The hydrodynamic radius (Rh) for the wild-type and mutant

Nup116 FG domains was calculated from the radius of gyration

(Rg) values obtained from the simulations using the scaling

relationship given in [39]. For native proteins, the scaling

relationship is Rh = Rg/0.77, and for proteins in strong denaturing

conditions, the scaling relationship is Rh = Rg/1.06. For the wild-

type and mutant Nup116 FG domains simulated at 300 and

325 K, the hydrodynamics radius was obtained by Rh = Rg/0.77.

In the 350 K simulations, some of the protein conformations were

highly extended (as in denaturing conditions) and a single scaling

value was not appropriate. In this case, if the Rg for a structure was

less than 30.7 Å for wild-type and 29.6 Å for the mutant, it was

scaled by 1/0.77; if the Rg was greater, the value was scaled by 1/
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1.06. The Rg cutoff values of 30.7 Å (wild-type) and 29.6 Å

(mutant) were obtained by using Uversky’s relationship: Rh (8 M

urea) = (0.22)*M0.52, where M is the molecular mass [41]. The

molecular mass for the simulated wild-type FG domain was 11,791

Daltons and for the mutant domain was 11,030 Daltons. The

calculated Rh values were 22.564.0 for the wild-type FG domain

and 28.665.2 for the mutant. To compare these Rh values to the

Stokes radii values (Rs, same as Rh) for the purified FG domains in

sieving columns, the contribution of a C-terminal His-tag (6

histidine residues/841 Da), which was added (post simulations) to

the FG domains to aid in the purification of only full-length FG

domains, had to be factored in. This was done using Uversky’s

scaling relationship by calculating Rs for the FG domains with the

additional tag assuming a native pre-molten globular configuration

for the wild-type and a native coil configuration for the mutant (see

Table 1). The Rs estimated from the molecular dynamics

simulations for the wild-type and mutant FG domains were

multiplied by the ratio (Rs (His-tag)/ Rs (no-tag)) to yield the final

values of 23.1 (64.1) Å for the wild-type FG domain and 29.6

(65.4) Å for the mutant FG domain reported in Table 1.

Supporting Information

Table S1 List of 45 distance indices between the Cb atoms of

Phe or substitute Ala residues in the wild type or mutant FG

domains, respectively.

Found at: doi:10.1371/journal.pcbi.1000145.s001 (0.06 MB

DOC)

Table S2 List of distance constraints obtained from the Gaussian

fit to interresidue distance distribution.

Found at: doi:10.1371/journal.pcbi.1000145.s002 (0.11 MB

DOC)

Table S3 The dimensions and locations of GLFG-rich domains

of nups at the NPC.

Found at: doi:10.1371/journal.pcbi.1000145.s003 (0.07 MB

DOC)

Figure S1 Plots of radii of gyration versus time of the simulated

Nup116 FG domains. Radii of gyration (Rg) in units of Angstroms

(Å) over the last 3 ns of the MD simulations for twenty replicate

simulations at 300 K for the wild-type and F.A mutant FG

domains. The plots show no systematic increase or decrease in the

Rg values during this time window.

Found at: doi:10.1371/journal.pcbi.1000145.s004 (6.97 MB TIF)

Figure S2 Structural dynamics of the simulated FG domains.

Autocorrelation vector of all phi and psi angles calculated with a

1 ps time step averaging over all 2800 autocorrelation windows in

the last 3 ns simulations time. A separate line is plotted for each of

the twenty wild-type replicates (blue lines), F.A mutant replicates

(red lines), and the fibroblast growth factor 1, as reference (green

line).

Found at: doi:10.1371/journal.pcbi.1000145.s005 (2.24 MB TIF)

Figure S3 Comparison of internal structural correlation between

the simulated FG domains. Back-to-back histograms of the

Pearson correlation coefficients calculated between all F–F (or

A–A) distance pairs measured every 1 ps during the last 3 ns of

simulation time at 300 K in all 20 replicates. Note that the wild-

type FG domain shows a systematic bias towards higher

correlation coefficients, indicating more internal structural corre-

lation in comparison to the F.A mutant.

Found at: doi:10.1371/journal.pcbi.1000145.s006 (0.74 MB TIF)

Figure S4 A hydrophobic cluster analysis (HCA) of the Nup116

FG domain. (A) HCA analysis of the wild-type and F.A mutant

FG domains (AA 348–458) was performed using the web server

http://bioserv.impmc.jussieu.fr/hca-file.html. The AA sequences

used are listed in Figure 1C. The notation for the various symbols

follows the original references on HCA: a star for proline, a

diamond for glycine, a square with a dot for serine, a square

without a dot for threonine, and a box surrounding hydrophobic

residues [50,51].

Found at: doi:10.1371/journal.pcbi.1000145.s007 (3.51 MB TIF)

Figure S5 The dynamic behavior of GLFG-rich domains of

nucleoporins within the transport conduit of the yeast nuclear pore

complex. These FG domains are depicted as a dynamic ensemble

of premolten globular structures that can fluctuate widely in

dimensions. Other types of FG domains are excluded for

simplicity. (A) In their ‘‘ground state’’ the GLFG-rich domains

are too small to span across the NPC transport conduit from their

tether sites within the NPC scaffold, but are large enough to

contact each other locally within a single NPC spoke (see top

panel) and between adjacent spokes (see bottom panel), based on

their close anchoring at the NPC (see Table S3). In this panel, the

FG motifs are shown in equilibrium between intra- and

intermolecular interactions. (B) Fluctuations in the dimensions of

FG domains (which are intrinsic to natively unfolded structures)

and steric hindrance effects between FG domains (due to their

close anchoring) could cause the FG domains to extend further out

into the transport conduit. The cohesive properties between FG

domains within the conduit (and the cross-linking action of

karyopherins; see below) could transiently stabilize some of the

extended conformations. In this panel, the FG motifs are shown in

competition between intra- and intermolecular interactions. (C)

During transit across the nuclear pore complex, karyopherin-cargo

complexes likely separate and bridge FG domains by interacting

with their FG motifs. In this panel, the FG motifs are shown in

competition between intra- and intermolecular FG motif interac-

tions as well as in competition with karyopherins. In all panels, the

nuclear envelope is shown in gray, the nuclear pore complex in

green, its cytoplasmic fibrils in light yellow, its nuclear basket in

light red, the GLFG-rich domains of nucleoporins in blue, and

their intra- and intermolecular FG motif interactions in bright red.

For panel C, karyopherins are shown in black and their cargo in

bright yellow.

Found at: doi:10.1371/journal.pcbi.1000145.s008 (1.58 MB TIF)
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