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ABSTRACT
The genus Alternaria is a widely distributed major plant pathogen that can act as
a saprophyte in plant debris. Fungi of this genus frequently infect cereal crops and
cause such diseases as black point and wheat leaf blight, which decrease the yield and
quality of cereal products. A total of 25 Alternaria sp. isolates were collected from germ
grains of various wheat cultivars from different geographic regions in Kazakhstan.
We investigated the genetic relationships of the main Alternaria species related to
black point disease of wheat in Kazakhstan, using the inter-primer binding site (iPBS)
DNA profiling technique. We used 25 retrotransposon-based iPBS primers to identify
the differences among and within Alternaria species populations, and analyzed the
variation using clustering (UPGMA) and statistical approaches (AMOVA). Isolates of
Alternaria species clustered into two main genetic groups, with species of A.alternata
and A.tennuissima forming one cluster, and isolates of A. infectoria forming another.
The genetic diversity found using retrotransposon profiles was strongly correlated with
geographic data. Overall, the iPBS fingerprinting technique is highly informative and
useful for the evaluation of genetic diversity and relationships of Alternaria species.

Subjects Agricultural Science, Biodiversity, Genetics, Mycology
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INTRODUCTION
Kazakhstan is an important bread wheat exporter due to the exceptional grain quality and
high protein content of wheat crops. Spring wheat is the main export crop in Kazakhstan,
grown on approximately 14.3 million ha (FAO, 2013), most of which is concentrated
in North Kazakhstan. In this region, climatic conditions favor the development of
pathogenic microorganisms in wheat crops, reducing the productivity and quality of
grain (https://stat.gov.kz/) (Fehér et al., 2017).

The genusAlternaria is widely distributed, and can act as both a saprophyte in plant debris
and a plant pathogen (Lawrence et al., 2013). Fungi of the genusAlternaria commonly infect
cereal crops and cause diseases such as black point and wheat leaf blight, which decrease the
yield and quality of cereal products (Woudenberg et al., 2015). Specifically, deterioration
of cereal products is caused by mycotoxins produced by Alternaria fungi, which can have
carcinogenic and allergic effects (Pinto & Patriarca, 2017; Somma et al., 2019; Tralamazza
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et al., 2018; Wenderoth et al., 2019). Successful breeding work on resistance to fungal
diseases requires knowledge of their genetic variability in each ecological region (Xu, 2016).
However, precise taxonomic identification poses a substantial challenge, especially for the
Alternaria genus, which exhibits significant variability in its cultural and morphological
characteristics (Shamim et al., 2017). Nevertheless, this remains an important issue to
address, as Alternaria spp. were found to predominate the mycobiota in wheat from North
Kazakhstan’s main wheat-producing area (Gannibal, Klemsdal & Levitin, 2007).

A number of different techniques are currently available to identify genetic differences
between organisms and perform comparative analyses based on genomic DNA. One of
the most common methods to study the genetic diversity of Alternaria is polymorphism
analysis of internal transcribed (ITS) and intergenic spacer (IGS) regions of ribosomal DNA
(Andersen et al., 2009;Ozer & Bayraktar, 2018). Another class ofmolecular tools tomeasure
genetic diversity is molecular markers such as RAPD (Random Amplified Polymorphic
DNA) (Williams et al., 1990), AFLP (Amplified Fragment Length Polymorphism) (Vos et
al., 1995), ISSR (Inter-Simple Sequence Repeat) (Sivolap, Kalendar & Chebotar, 1994;
Zietkiewicz, Rafalski & Labuda, 1994), or SSR (Simple Sequence Repeat). Molecular
markers have become enormously important because they enable the quantification
of genetic diversity, measure inbreeding, characterize new species, taxonomy, and
evolutionary origin. However, each type of marker comes with disadvantages including
time/labor requirements, cost, speed, effectivity, genome coverage, and degree of
polymorphism detection. For example, RAPD is an inexpensive and time-effective
technique used to analyze genomic polymorphism among related organisms (Williams
et al., 1990). However, this method is sensitive when the PCR conditions change due
to mismatches between primer and template, and mismatches can lead to inefficient
amplification of targeted regions of DNA template. The ISSR technique is an extended
version of the RAPD technique, which retains the same positive and sensitive features
as RAPD (Zietkiewicz, Rafalski & Labuda, 1994). RAPD and ISSR are the most common
DNA-based techniques that provide highly discriminating information with relatively good
reproducibility. Similarly, AFLP analysis has the capability to detect various polymorphisms
in different genomic regions simultaneously. However, AFLP is a more complex—and
hence time-consuming—method. It involves several steps, including two PCR rounds and
restriction-ligation with an adaptor. The AFLP protocol is critically dependent on DNA
quality, but is capable of revealing numerous polymorphic bands with just a few primer
combinations.

In addition to these DNA profiling methods for investigating genetic variation
in fungi, using multicopy and genomic abundance of retrotransposons can extend
knowledge of phylogenetic relationships and estimate genetic diversity (Hosid et al., 2012;
Kalendar, Amenov & Daniyarov, 2019; Kalendar & Schulman, 2014; Kalendar et al., 2017).
Retrotransposon-based DNA profiling applications offer a simple, cost-effective (Gribbon
et al., 1999; Kalendar et al., 2011; Kalendar & Schulman, 2006) and highly reproducible
way to study genetic polymorphisms. These beneficial features are based on the fact
that retrotransposons (in particular, Long Terminal Repeat (LTR) retrotransposons) are
distributed throughout the genome and are involved in recombination events that occur
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duringmeiosis (Belyayev et al., 2010;Hosid et al., 2012; Schulman & Kalendar, 2005;Vicient
et al., 2001;Vicient, Kalendar & Schulman, 2005). Transcriptionally active retrotransposons
also play an important role in gene regulation and adaptation to ecological stress, because
their activity is induced by stressful environmental conditions (Vicient et al., 2001).

According to the concept of ‘‘two-speed’’ genomes, phytopathogenic fungi potentially
cause multiple gene rearrangements produced by retrotransposons. As many plant
pathogenic fungi have genomes expanded by retrotransposon insertions, the hypothesis
that ‘‘bigger can be better’’ was proposed as a mechanism of antagonistic co-evolution with
a host (Raffaele & Kamoun, 2012). Ultimately this promotes rapid evolution of pathogenic
microorganisms. The ‘‘two-speed’’ genome concept highlights compartmentalization
into repeat-dense regions with higher recombination rates, and gene-dense regions that
remains fairly conserved over evolutionary time. The ‘‘two-speed’’ genome hypothesis
explains the independence of genes encoding essential housekeeping functions in the
core genome, while allowing novel genes to evolve in the accessory genome (Dodds, 2010;
Dong, Raffaele & Kamoun, 2015). These findings have led to the ‘‘two-speed genome’’
model in which endogenous fungi genomes have a bipartite architecture with gene-sparse,
retrotransposon-rich elements that are thought to contribute to the potential to rapidly
evolve virulence.

LTR retrotransposon sequences are commonly used to identify the molecular genetic
polymorphism within lines and varieties of plant and animal breeds. Specifically, PCR
methods based on detection of transposable element insertion site polymorphisms
include Inter-retrotransposon amplified polymorphism (IRAP) (Kalendar et al., 1999),
REtrotransposon-Microsatellite Amplified Polymorphism (REMAP) and Sequence-
Specific Amplification Polymorphism (SSAP) (Waugh et al., 1997). However, DNA
profiling applications based on retrotransposons are limited by a paucity of knowledge
about nucleotide sequences of LTR retrotransposons in species without a sequenced
genome. In particular, phytopathogenic fungi have a small genome, so the development of
geneticmarkers based on retrotransposons is difficult relative to species with a large genome
(e.g., green plants and animals; Mandoulakani et al., 2015; Doungous et al., 2015; Ghonaim
et al., 2020; Leigh et al., 2003; Li et al., 2020; Teo et al., 2005; Vukich et al., 2009; Vuorinen
et al., 2018). However, the Inter-primer Binding Site (iPBS) amplification technique has
proved to be a powerful DNA fingerprinting method that does not require information
about retrotransposon sequences (Kalendar et al., 2010). Both retroviruses and LTR
retrotransposons use cellular transfer RNAs (tRNAs) as primer molecular to guide the
reverse transcription of retrotransposons during their replication cycles. Primer tRNA
is selectively packaged into the virion, where it is placed onto the primer binding site
(PBS) of the viral RNA genome and the reverse transcriptase (RT)-catalyzed synthesis
of minus-strand complementary DNA (cDNA). These LTR retrotransposons and all
retroviruses contain a tRNA-conservative PBS, usually for methionine initiator tRNA
(tRNAiMet).

In the case of retrotransposons, the PBS is either complementary to the 3′ end or to
an internal region of the primer tRNA. The iPBS amplification method is based on the
virtually universal presence of a tRNA complement as a PBS in LTR retrotransposons
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that utilize conserved PBS sequences as PCR primers for detection of polymorphism
between different individuals, as well as polymorphism within transcription profiles
(Monden, Yamaguchi & Tahara, 2014). This method can also be applied for quick cloning
of unknown LTR segments from genomic DNA, and for species identification based on
information about LTR retrotransposons. The effective iPBS method has been applied
to a wide range of studies on plants and animals. The fact that most retrotransposons
are nested, inverted, and truncated allows them to be easily amplified from nearly every
organism using inverted PBS primers. Moreover, this method can be used as a universal
and high-efficiency tool for direct detection of DNA polymorphism (Doungous et al., 2020;
Milovanov et al., 2019). Primers that were developed for amplification of the conserved
PBS regions showed their effectiveness in the cloning of LTR retrotransposons (Kalendar
et al., 2010), including non-autonomous elements that did not contain protein-coding
regions such as TRIM (Terminal Repeat Retrotransposons In Miniature) (Kalendar et al.,
2008) and LARD (Large Retrotransposon Derivatives) (Kalendar et al., 2004).

Thus far, the application of the iPBS method for investigating the genetic diversity of
fungal pathogens has been very limited (Borna et al., 2016; Ozer & Bayraktar, 2018; Özer,
Bayraktar & Baloch, 2016; Ş̌kipars et al., 2018; Wu et al., 2019). To date, retrotransposon
sequences have been used to study the genetic diversity of only a few Alternaria species
isolated from wheat seeds. However, the black point disease complex from wheat grains has
numerous Alternaria species. No genetic diversity studies have been conducted on the most
common species, including A. alternata, A. tenuissima, A. arborescens, and A. infectoria,
using the transposable element insertion site polymorphism amplification method. Here,
we investigated the genetic relationships of the main Alternaria species related to black
point disease of wheat in Kazakhstan using the iPBS DNA profiling technique.

MATERIAL AND METHODS
Fungal materials and culture conditions
In total, 25 single-spore isolates of Alternaria sp. were collected from wheat grains of
various wheat cultivars from different geographic regions in Kazakhstan (Table 1; Fig. 1).
Two hundred seeds were arbitrarily selected from each wheat cultivars. The grains were
surface-sterilized by shaking in 10% commercial bleach ‘‘Domestos’’ for 10 min and rinsed
three times in sterile water for 1 min each time. Grains were then plated on Petri dishes of
potato carrot agar and incubated for 7 days at 25 ◦C in the light. All isolates were identified
based on morphological observation and sequencing of the ITS region. Morphological
identification of Alternaria species was carried out according to Lawrence et al. (2013) and
Lawrence, Rotondo & Gannibal (2015).

DNA extraction
Alternaria species isolates were grown in Petri dishes containing Chapek media without
agar in darkness at 25 ◦C for one week. Mycelium was scraped with a sterile scalpel and
collected into 2-ml tubes. Genomic DNA was extracted from fungal mycelia (50 mg) using
modified CTAB extraction buffer (2%, 2M NaCl, 10 mM Na3EDTA, 100 mM HEPES,
5.3) with RNAse A treatment (http://primerdigital.com/dna.html). A detailed protocol for
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Table 1 Isolates of Alternaria sp. used in this study.

Species Sources in Kazakhstan ID of isolate

Alternaria tenuissima Akmola region 2018009
2018124

Aktobe region 2018069
Karaganda region 2018075

Alternaria infectoria Akmola region 2018062
2018067

Kostanay region 2018083
2018128

Almaty region 2018061
Pavlodar region 2018041
North Kazakhstan region 2018056

Alternaria alternata Akmola region 2018013
2018037
2018085
2018123
2018130
2018131
2018133
2018134

Almaty region 2018088
2018122

North Kazakhstan 2018137
2018139

Aktobe region 2018132
Pavlodar region 2018136

DNA isolation was followed as described in Kalendar et al. (2020). The DNA pellets were
dissolved with 1×TE buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.0). The DNA quality
was checked spectrophotometrically with a Nanodrop apparatus (Thermo Fisher Scientific
Inc., Waltham, MA, USA) and also checked by 1% agarose gel, run at 90 V for 20 min.

PCR protocol for inter-primer binding sites
The genetic variability of Alternaria sp. isolates was analyzed by using 25 PBS primers
designed by Kalendar et al. (2010). PCR reactions were performed in a 25 µl reaction
mixture. Each reaction mixture contained 25 ng of template DNA, 1×Phire R© Hot Start
II PCR buffer with 1.5 mM MgCl2, 1 µM primer, 0.2 mM each dNTP, and 0.2 µl Phire R©

Hot Start II DNA polymerase (Thermo Fisher Scientific Inc.). PCR amplification was
carried out in a Bio-Rad Thermal Cycler T100 under the following conditions: initial
denaturation step at 98 ◦C for 1 min, followed by 30 amplifications at 98 ◦C for 5 s, at
50−60 ◦C (depending on primer sequence) for 20 s, and at 72 ◦C for 60 s, followed by a
final extension of 72 ◦C for 3 min. All PCRs were repeated at least twice for each isolate.
All PBS primers were tested to assess the genetic diversity of Alternaria isolates using iPBS
amplification for DNA profiling. Primers that generated few PCR products were excluded.
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Figure 1 Map of Kazakhstan showing where isolates of Alternaria species were sampled. The color
reflects to species of Alternaria. Numbers refers to a total number of species isolated. The geographic lo-
cation map was drawn using QGIS 3.10.0-GRASS (QGIS Geographic Information System. Open Source
Geospatial Foundation) (https://www.qgis.org/en/site/).

Full-size DOI: 10.7717/peerj.9097/fig-1

Primers with a weak profile or that produced mainly monomorphic amplification products
were also excluded. PCR products were separated by electrophoresis at 70V for 8 h in 1.2%
agarose gel with 1xTBE buffer. A Thermo Scientific (100–10,000 base pairs) GeneRuler
DNA Ladder Mix (#SM0332) was used as a standard DNA ladder. The PCR products were
visualized with a ChemiDoc-It2 Imaging System (UVP, LLC, Upland, CA, USA; Analytik
Jena AG, Jena, Germany) and a PharosFX Plus Imaging System (Bio-Rad Laboratories Inc.,
Hercules, CA, USA) with a resolution of 50 µm, after staining with ethidium bromide.
PBS primers generated in the PCR yielded clearly distinct amplification products, showing
considerable variability among the isolates belonging to different Alternaria species.

Data scoring and analysis
Only clear scorable bands were used for studying genetic variability among the isolates of
Alternaria sp. from wheat grains. Each band of a unique size was assumed to correspond
to a unique locus. To construct a binary matrix, reproducible fragments were scored as
present (1) or absent (0). GenAlex 6.5 (Peakall & Smouse, 2012) was used to calculate
the total number of alleles, Shannon information index (I), genetic differentiation index
(PhiPT) among populations, and the number of private alleles per population. Analysis
of molecular variance (AMOVA) among and within populations was also calculated with
GenAlex 6.5. A dendrogram was constructed using the UPGMA method in MEGA X
software (Kumar et al., 2018).
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Table 2 PBS primers used in the analyses of genetic polymorphism of Alternaria sp.

Primer
ID

Sequence (5′- 3′) Tm◦ Ca TL PL PPL
(%)

PIC Range of
amplicons
(bp)

2242 GCCCCATGGTGGGCGCCA 69.2 19 19 100 0.951 200–3,000
2221 ACCTAGCTCACGATGCCA 58.0 18 18 100 0.941 100–3,000
2237 CCCCTACCTGGCGTGCCA 65.0 16 16 100 0.924 100–3,000
2217 ACTTGGATGTCGATACCA 52.5 5 2 60 0.251 100–2,500
2245 GAGGTGGCTCTTATACCA 53.1 5 2 40 0.258 200–3,000
2253 TCGAGGCTCTAGATACCA 53.4 9 3 33 0.190 200–3,000
2232 AGAGAGGCTCGGATACCA 56.6 6 2 33 0.124 100-2.000
2225 AGCATAGCTTTGATACCA 50.5 10 3 30 0.122 300–3,000
2228 CATTGGCTCTTGATACCA 51.9 7 2 28 0.132 100–3,000
2251 GAACAGGCGATGATACCA 54.3 7 2 28 0.175 100–4.000
2249 AACCGACCTCTGATACCA 54.7 11 3 27 0.168 300–10,000
2220 ACCTGGCTCATGATGCCA 59.0 8 2 25 0.135 300–2,500
2246 ACTAGGCTCTGTATACCA 50.9 9 2 22 0.154 200–3,000
2219 GAACTTATGCCGATACCA 51.5 9 2 22 0.120 100–2,500
2395 TCCCCAGCGGAGTCGCCA 66.0 5 1 20 0.161 100–3,000
2230 TCTAGGCGTCTGATACCA 54.0 15 3 20 0.119 100–10,000
2398 GAACCCTTGCCGATACCA 57.1 16 3 18 0.118 400–2,500
2218 CTCCAGCTCCGATTACCA 56.1 6 1 16 0.115 200–4,000
2222 ACTTGGATGCCGATACCA 55.7 12 2 16 0.118 300–10,000
2226 CGGTGACCTTTGATACCA 54.2 12 2 16 0.114 200–3,000
2255 GCGTGTGCTCTCATACCA 57.1 13 2 15 0.113 100–3,000
2244 GGAAGGCTCTGATTACCA 53.7 20 3 15 0.117 100–3,000
2224 ATCCTGGCAATGGAACCA 56.6 14 2 14 0.117 100–10,000
2243 AGTCAGGCTCTGTTACCA 54.9 7 1 14 0.115 100–3,000
2229 CGACCTGTTCTGATACCA 53.5 9 1 11 0.112 300-2,500

Notes.
aTm melting temperature, calculated with 1µM concentration and without Mg2+ (Kalendar et al., 2017a, Kalendar et al.,
2017b).

RESULTS
PCR amplicon polymorphisms
In the preliminary tests, all PBS primers were screened to evaluate their ability to produce
clear banding profiles among the isolates. In total, 25 18-mer PBS primers were used
(Kalendar et al., 2010). The amplification profile of the PBS primers presented a unique
combination of reproducible and scorable bands ranging from 100 to 10,000 bp (Table 2).
The iPBS fingerprinting pattern of the fungi genotypes from three primers (2221, 2237,
2242) are shown in Figs. 2–4. The number of amplified bands varied from 15 to 40. On
average, each primer generated 20 bands in the profile, with an average of eight that were
polymorphic. All PBS primers used for DNA amplification generated a total of 328 scorable
reproducible bands (Table 2).
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Figure 2 Electrophoretic analysis of PCR product from iPBSmarker 2242. Sample order (1–4
Alternaria tenuissima, 5-11 Alternaria infectoria, 12-25 Alternaria alternata) listed in Table 1. M-Thermo
Scientific GeneRuler DNA Ladder Mix (100–10,000 bp).

Full-size DOI: 10.7717/peerj.9097/fig-2

The amplification profiles for three PBS primers (2221, 2237, 2242) were extremely
useful compared to the other PBS primers. Among these, primer 2242 showed the highest
PIC index value. DNAprofiling using PBS primers was highly efficient for isolates belonging
to different types of Alternaria. The generated amplification products were significantly
variable among isolates, both within and among species.

Genetic diversity among Alternaria sp.
In total, 25 PBS primers were used to analyze the polymorphism of 25 Alternaria isolates.
Several PBS primers showed a high level of polymorphism and were used in further studies
to investigate the genetic diversity of other fungal species. Primers with a weak profile or
that produced mainly monomorphic amplification products were excluded.

Of the 328 amplified fragments, 228 (69%) were polymorphic (see Table 3 for genetic
diversity statistics). The main diversity in the iPBS profile arose from Alternaria alternata
isolates (160 polymorphic bands out of 198), which was the most abundant species among
the isolates (15 out of 25). Notably, the level of detectable polymorphism detected in
our study is lower than that reported in similar studies using the iPBS method on both
plants (Doungous et al., 2015; Doungous et al., 2020) and other fungi species (Milovanov
et al., 2019; Monden, Yamaguchi & Tahara, 2014; Teo et al., 2005; Vukich et al., 2009). The
amplified PCR products ranged from 200 to 3000 bp and had on average 10-30 bands per
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Figure 3 Electrophoretic analysis of PCR product from iPBSmarker 2237. Sample order (1-4
Alternaria tenuissima, 5-11 Alternaria infectoria, 12-25 Alternaria alternata) listed in Table 1. M-Thermo
Scientific GeneRuler DNA Ladder Mix (100–10,000 bp).

Full-size DOI: 10.7717/peerj.9097/fig-3

Figure 4 Electrophoretic analysis of PCR product from iPBSmarker 2221 Sample order (1-4
Alternaria tenuissima, 5-11 Alternaria infectoria, 12-25 Alternaria alternata) listed in Table 1.
M-Thermo Scientific GeneRuler DNA Ladder Mix (100–10,000 bp).

Full-size DOI: 10.7717/peerj.9097/fig-4
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Table 3 Genetic diversity of Alternaria sp based on iPBS fingerprinting.

No Species NI NTI PPL (%) PB NPB

1 Alternaria alternate 15 198 80.8% 160 9
2 Alternaria infectoria 6 78 47.4% 37 3
3 Alternaria tenuissima 4 52 59.6% 31 4
- Total 25 328 61.0% 228 16

Notes.
NI, number of isolates; NTI, number of bands per genotype; PPL%, percentage of polymorphic loci; PB, number of polymor-
phic bands; NPB, number of private bands.

Table 4 Analysis of molecular variance (AMOVA) for 25 isolates of Alternaria sp based on iPBS fin-
gerprinting.

Source df SS MS Est. Var. % PhiPT P

Among Pops 2 38.333 19.167 1.771 21% 0.206 0.001
Within Pops 22 150.467 6.839 6.839 79%
Total 24 188.800 8.611 100%

Notes.
Df, degree of freedom; SS, sum of squares; MS, mean square; Est. Var., estimated variance; PhiPT, genetic differentiation in-
dex among populations.

isolate. The percent of polymorphic loci (PPL%) among Alternaria sp. were ranked in the
following descending order: Alternaria alternata (80%), Alternaria tenuissima (59%), and
Alternaria infectoria (47%).

Analysis of molecular variance (AMOVA) was used to calculate the number of effective
alleles per locus (Ne) based on three PBS primers (2221, 2237, 2242) (Table 4). Ne ranged
from 1.189 (A. infection) to 1.310 (A. alternata). AMOVA revealed that 79% of the total
variation was due to differences among isolates within populations, and the variation
between populations reflected only 21% of the total variation. These results are also
consistent with the low Shannon’s indices (0.198–0.315). The overall Shannon’s index
(I = 0.266) suggests that more than 20% of the genetic diversity is explained by differences
between isolates. Based on these results, we conclude that most of the genetic variation
(79%) was distributed among isolates across the regions. It is worth mentioning that the
fungal isolates aremostly similar at the genetic level despite long distances between different
wheat growing zones in Kazakhstan.

The expected variation among groups was 1.771, while within groups it was 6.839, and
8.611 for the total. Hence, the genetic variance was mainly attributed to genetic diversity
within groups. The genetic difference (PhiPT) between the three groups was high (0.206).
GenAlex 6.5 software (Peakall & Smouse, 2012) was used to analyze iPBS profile data. The
number of different alleles found within each population (Ne) and the number of effective
alleles per locus were generally higher in the Alternaria alternata samples (Table 5). The
PIC values ranged from 0.939 to 0.940, and all PBS loci were highly informative (0.5 < PIC
< 0.25).

Phylogenetic analysis showed that the iPBS markers were effective at grouping the 25
Alternaria isolates at the species level. The UPGMA dendrogram grouped all 25 isolates
(which represented three populations) into two major clusters (Fig. 5). Among these,
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Table 5 Summary of Alternaria species diversity indices calculated on the basis of iPBSmarkers.

Species N Na Ne I He uHe PIC

Alternaria tenuissima 4 1.113 1.304 0.284 0.187 0.214 0.940
Alternaria infectoria 6 1.038 1.189 0.198 0.123 0.135 0.940
Alternaria alternata 15 1.623 1.310 0.315 0.197 0.204 0.939

Notes.
N, Number of isolates; Na, number of alleles; Ne, number of effective alleles per locus; I, Shannon’s Information Index;
He, expected heterozygosity; uHe, unexpected heterozygosity.

Figure 5 UPGMA dendrogram of 25 Alternaria isolates generated from three iPBS primers. Isolates
for each species are allocated in separate branches.

Full-size DOI: 10.7717/peerj.9097/fig-5

18 and 7 isolates were grouped in clusters 1 and 2, respectively. Although half of the A.
alternata isolates were collected from the Akmola region, their position in the dendrogram
indicates similarity with isolates from other regions. Only two isolates from the Akmola
region (137 and 139) were allocated to a separate sub-cluster and had some genetic
similarities. Isolates of A. infectoria clearly formed a separate cluster. This species is also
very different morphologically from A. alternata and A. tenuissima. Isolates of A. alternata
and A. tenuissima were located in the same sub-cluster, although they are separated from
each other.
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DISCUSSION
Resolving the taxonomy of the genus Alternaria is a very challenging task because this genus
is characterized by significant polymorphisms in morphological and cultural features, as
well as biological properties. For example, A. alternata and A. tenuissima are the most
morphologically similar; (Nilsson et al., 2014) also showed that the ITS profiles of these
species are 100% identical. Differences between the two species were revealed only at the
level of plasma membrane ATPase and calmodulin loci (Lawrence, Rotondo & Gannibal,
2015). Moreover, there is some controversy regarding the harmfulness of A. alternata and
A. infectoria species on wheat plants. This is likely due to the complexity of identifying the
species composition of these fungi. Although it is an endophyte, its status as a pathogen is
undetermined because it does not synthesize known mycotoxins.

Pathogenic fungi species can infect small grain cereals (wheat, barley, and oat), causing
losses by seedling blight, reduced seed germination, or seedling foot and stalk rot. Another
potential risk is the presence of fungi toxins; not only do they contaminate cereals, but
they could also result in harmful contamination of foods and feedstuffs. Microscopic fungi
of the Alternaria genus are most often isolated from wheat seeds. These fungi are the
dominant component of the grain microbiome in many regions of the world. Considering
the significant danger of toxigenic species of Alternaria, these fungi have recently received
much attention (Patriarca, 2016; Tralamazza et al., 2018).

Identifying the genetic variability in populations within a particular type of Alternaria
species is important for the development of strategies to counter these fungi, i.e., for
breeding programs. Various genetic markers and fingerprinting technologies (RAPD,
ISSR, AFLP, and SSR) have been widely used to identify the genetic diversity of fungal
populations. Much research has been carried out on other Alternaria species (A. solani, A.
brassicicola) that cause vegetable diseases. However, for species that contaminate wheat,
the information is very limited. Methods used to study genetic diversity are technically
complicated and costly or have low efficiency. PCR-based DNA profiling technologies
based on interspersed repeat sequences such as retrotransposons (Kalendar, Amenov &
Daniyarov, 2019; Kalendar et al., 2011) have been intensively employed. In eukaryote
genomes, LTR retrotransposons are the major repetitive sequence class and have a high
density across the genome. Moreover, stress and adaptation are powerful forces shaping
the distribution and accumulation of retrotransposons (Belyayev et al., 2010; Ramallo,
Kalendar & Schulman, 2008; Schulman & Kalendar, 2005). Thus, the success and diversity
of retrotransposons in a genome are shaped by both the properties intrinsic to the elements
and the evolutionary forces acting at the host-species level. Clarification of how these forces
act together is paramount to understanding the impact of retrotransposons on organismal
biology.

The structure of retrotransposons contains conserved sites that belong to typical
retroviruses for all eukaryotes. In this regard, the iPBS method developed by Kalendar et al.
(2010)has advantages for applications in the evaluation of genetic diversity, because it allows
direct detection of polymorphism regardless of the eukaryotic species. It is particularly
beneficial when detecting genetic diversity among fungi isolates; since it can detect
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polymorphisms in many anonymous loci across the genome simultaneously, it is a highly
effective method for studying clonal variability (Doungous et al., 2020;Kalendar et al., 2010;
Milovanov et al., 2019). Moreover, since most of the retrotransposons are often mixed with
each other, the PCR process amplifies many products because the primers are designed
to target conserved regions of retrovirus and LTR retrotransposon primer binding sites.
Retrotransposon activity or recombination events lead to novel genomic polymorphisms,
which can be detected by this method and used to identify reproductively isolated lines
(Mascagni et al., 2017; Sanchez et al., 2017; Underwood, Henderson & Martienssen, 2017).

CONCLUSION
In conclusion, this study demonstrated the effectiveness of iPBS amplification for
DNA profiling and identification of the endophytic fungi Alternaria species in wheat
grains. Interestingly, the genetic diversity found here using retrotransposon profiles was
strongly correlated with geographic data. One explanation for this observation is that
the scored retrotransposon polymorphisms in fungal genomes are related to ecological
and environmental stresses. Moreover, retrotransposons in fungal genomes are usually
clustered near genes, and thus most likely to be under selection. Finally, permanent
changes in retrotransposon content dynamically change fungal genomes; even strains of
a single fungal species can display a certain percentage of variability during cultivation in
response to different environmental conditions. Abiotic and biotic stresses, including plant
interaction, are well known to activate retrotransposons (Belyayev et al., 2019; Kalendar
et al., 2000; Ramallo, Kalendar & Schulman, 2008). The iPBS marker analysis allowed us
to determine the genetic diversity and population structure of Alternaria species isolates
and identify various Alternaria species. This knowledge may be helpful in understanding
host adaptation to this pathogen; knowledge of population genetic structure of a pathogen
provides information about its potential to overcome host genetic resistance. iPBS markers
could be a useful tool for studying population biology and genetics of this fungus at a global
level. The results show rapid LTR retrotransposon evolution in endophytic fungal genomes
through integration, losses, and transfers of retrotransposons in almost every species and
strain (Giraud et al., 2008). The relationships between the plant host and the endophytic
fungal genome can potentially influence the quantity and quality of LTR retrotransposons
and the host ecological niche. Hence, the retrotransposon-based DNA profile is highly
informative, enabling geographic resolution of Alternaria species and giving insight into
local factors that may be driving genome adaptation. In addition, DNA profiling based on
retrotransposons can be an inexpensive way to establish genetic diversity and to determine
the species of fungi.
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