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Background. The Centers for Disease Control and Prevention (CDC) uses standardized antimicrobial administration ratios 
(SAARs)—that is, observed-to-predicted ratios—to compare antibiotic use across facilities. CDC models adjust for facility char-
acteristics when predicting antibiotic use but do not include patient diagnoses and comorbidities that may also affect utilization. 
This study aimed to identify comorbidities causally related to appropriate antibiotic use and to compare models that include these 
comorbidities and other patient-level claims variables to a facility model for risk-adjusting inpatient antibiotic utilization.

Methods. The study included adults discharged from Premier Database hospitals in 2016–2017. For each admission, we ex-
tracted facility, claims, and antibiotic data. We evaluated 7 models to predict an admission’s antibiotic days of therapy (DOTs): a CDC 
facility model, models that added patient clinical constructs in varying layers of complexity, and an external validation of a published 
patient-variable model. We calculated hospital-specific SAARs to quantify effects on hospital rankings. Separately, we used Delphi 
Consensus methodology to identify Elixhauser comorbidities associated with appropriate antibiotic use.

Results. The study included 11 701 326 admissions across 576 hospitals. Compared to a CDC-facility model, a model that added 
Delphi-selected comorbidities and a bacterial infection indicator was more accurate for all antibiotic outcomes. For total antibiotic 
use, it was 24% more accurate (respective mean absolute errors: 3.11 vs 2.35 DOTs), resulting in 31–33% more hospitals moving into 
bottom or top usage quartiles postadjustment.

Conclusions. Adding electronically available patient claims data to facility models consistently improved antibiotic utilization 
predictions and yielded substantial movement in hospitals’ utilization rankings.

Keywords.  antibiotic stewardship; antimicrobial use; benchmarking; risk adjustment.

Reducing inappropriate antibiotic use in inpatient settings is 
a nationally recognized priority for combating antibiotic re-
sistance [1]. A  system for measuring and comparing antibi-
otic use across hospitals is fundamental to achieving this goal: 
comparator data help facilities contextualize their use against 
other institutions and, by identifying outlier hospitals, may 
uncover targets for intervention to improve antibiotic utiliza-
tion. However, because hospitals treat different types of patients 
with different diagnoses and underlying conditions, usage rates 

across hospitals may appropriately vary [2]. Although it is im-
possible to control for every variable that affects rates of antibi-
otic use, controlling (“risk-adjusting”) for the most important 
factors facilitates fairer and more meaningful interhospital 
comparisons.

Facilities that submit antibiotic utilization data to the Centers 
for Disease Control and Prevention (CDC) National Healthcare 
Safety Network (NHSN) Antimicrobial Use and Resistance 
Module can receive standardized antimicrobial administration 
ratios (SAARs) for select units [3]. SAARs compare a hospital 
unit’s observed-to-predicted antibiotic utilization (also histori-
cally called “observed-to-expected” ratios [4]). Currently, CDC 
statistical models adjust for unit type and certain hospital char-
acteristics to calculate predicted antibiotic use [5, 6]. As CDC 
has itself recognized, however, additional patient factors may 
also affect antibiotic utilization [6, 7]. For example, some of the 
potentially relevant clinical constructs that NHSN models do 
not directly adjust for when predicting antibiotic use include 
patient diagnoses and comorbidities. To this end, a recent study 
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by Yu et al (2018) explored a large number of patient-level vari-
ables for comparing unit-level antibiotic use across 35 Kaiser 
Permanente California hospitals and found that many were sig-
nificantly associated with antibiotic use in their risk-adjustment 
models [4].

Although SAARs are not currently used for public reporting 
or reimbursement purposes, they are National Quality Forum 
(NQF)-endorsed and are currently a quality and efficiency 
Measure under Consideration by the Centers for Medicare and 
Medicaid Services (CMS) [6, 8]. Yu et al’s findings, coupled with 
other prior research [9], provide mounting evidence that any 
candidate SAAR model should account for patient-mix to op-
timize antibiotic utilization comparisons. However, translating 
this conclusion into models suitable for wider policy use also 
raises additional considerations. Models would need to be val-
idated beyond a single hospital network or geographic region 
and preferably across an entire facility, including the many 
unit locations that do not currently qualify for NHSN SAARs. 
Ideally, too, models would only include readily implementable 
patient variables, that is, those that are easily electronically 
available, relatively standardized across facilities, and available 
for all discharges. And most importantly, to mitigate against the 
risk of unfairly penalizing hospitals, to the fullest extent pos-
sible models would predict appropriate antibiotic use [10].

Motivated by the preceding considerations, the objective 
of the current study was to compare models that incorporate 
claims data-derived patient variables to the current CDC NHSN 
facility-variable model for risk-adjusting inpatient antibiotic 
utilization. To achieve this goal, we (1) convened an expert 
panel to identify patient comorbidities, derived from electroni-
cally available claims data, that are perceived as causally related 
to appropriate antibiotic use; (2) evaluated, across a large and 
diverse cohort of US hospitals, whether models that incorporate 
these comorbidities and other patient diagnoses are more accu-
rate than models that only include facility-level variables; and 
(3) quantified the impact of adjustment with patient-variable 
models on hospital antibiotic utilization rankings.

METHODS

Study Population and Collected Data

A description of the study cohort has been published previ-
ously [11]. Briefly, adult admissions and associated data were 
collected from hospitals in the Premier Healthcare Database 
(“Premier Database”), an all-payer repository of claims and 
clinical data from more than 870 million inpatient and out-
patient US hospital admissions [12]. Although not explicitly 
nationally representative, Premier Database hospitals cover 
highly geographically diverse areas across the United States 
(see Supplementary Materials for further database detail). All 
admissions with discharge dates on or between 1 January 2016 
and 31 December 2017 at hospitals that continuously submitted 

data during the study were included. This study did not include 
personally identifiable information and was exempt from insti-
tutional review board review.

For each admission, we extracted (a) facility characteristics; 
(b) payer and sociodemographic data; (c) location by service-
day; (d) daily antibiotic charge data; (e) the Medicare Severity-
Diagnosis Related Group (MS-DRG) code, which guides CMS 
reimbursement; and (f) all ICD-10-CM diagnosis codes, in-
cluding whether diagnoses were present on admission (POA).

Using publicly available Agency for Healthcare Research and 
Quality (AHRQ) software, we mapped ICD-10-CM diagnosis 
codes to 3 clinical constructs: (1) 29 Elixhauser comorbidities 
[13]; (2) approximately 287 Clinical Classifications Software 
(CCS) disease categories [14]; and (3) 2 “bacterial infection” in-
dicators based upon (a) any or (b) POA-only bacterial infection-
related ICD-10-CM codes [15] (see Supplementary Figure 1).

Antibiotic Utilization Outcomes

We selected study outcomes to match current CDC NHSN anti-
microbial use surveillance practice. We used inpatient days of 
therapy (DOT) as the primary study metric [3, 9, 16, 17]. If a 
patient received 2 different antibiotics on the same service day, 
these events qualified as 2 DOTs [2, 11, 12]. For each admission, 
we summed a patient’s DOTs for 4 antibiotic outcomes, mapped 
to existing CDC groupings: (1) all antibiotics, (2) broad-spec-
trum antibiotics predominantly used for hospital-onset infec-
tions, (3) broad-spectrum antibiotics predominantly used for 
community-acquired infections, and (4) antibiotics predom-
inantly used for resistant gram-positive infections (antibiotic 
appendix available in reference [3]).

Expert Panel Evaluation of Elixhauser Comorbidities Associated With 
Appropriate Antibiotic Use

We used Delphi methodology [18, 19], a consensus-building 
technique that has been applied to other infectious disease 
outcomes [20], to determine which Elixhauser comorbid con-
ditions are causally associated with appropriate antibiotic use 
as judged by an expert panel. In this context, “associated with 
appropriate antibiotic use” could mean that the comorbidity in-
cludes condition(s) for which antibiotic initiation is generally 
justified (eg, patients with metastatic cancer are likely to be re-
ceiving chemotherapy, and earlier and broader-spectrum anti-
biotic therapy for suspected infection may be appropriate), or 
that presence of the comorbidity is on average associated with 
appropriately greater days of antibiotic therapy compared to an 
equivalent patient without the comorbidity.

We administered an iterative, 2-round survey with confer-
ence call to 8 infectious disease and antimicrobial steward-
ship experts in the United States (see Supplementary Table 1). 
Experts were instructed to independently rate each Elixhauser 
comorbid condition on a Likert scale from 1 (not at all related) 
to 5 (strongly related), based on its perceived relatedness to 
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appropriate antibiotic use. At the conclusion of the Delphi pro-
cess, each comorbidity was assigned as “causally related,” “in-
determinately related,” or “not causally related” to appropriate 
antibiotic use; criteria for determining causal relatedness have 
been described in detail elsewhere [21], and we deployed the 
same criteria here. Elixhauser comorbid conditions that quali-
fied as causally related or indeterminately related to appropriate 
antibiotic use were included as predictors in our Expert Panel 
Consensus-Driven model.

Evaluated Models

For each outcome, we selected 7 models a priori to predict a 
patient’s antibiotic DOTs during an admission (Table  1). Our 
guiding objective was to build sequentially on a base model to 
evaluate the incremental performance gains, if any, achieved 
by adding additional variables. This process progressed from a 
model with no predictors to a model with only facility char-
acteristics (approximating the existing CDC NHSN model), 
and then to models that added the Expert Panel-selected 
Elixhauser comorbid conditions and other claims data-derived 
patient variables that represented different clinical constructs. 
All models and their included variables, apart from a data-
driven model, were selected a priori based upon hypothesized 

relationships with antibiotic use. In addition, we recreated and 
externally validated, as closely as our data permitted, a previ-
ously published model by Yu et al, the “Simplified ASP” model 
[4]. Following our primary analyses, we also evaluated a combi-
nation model that combined the Yu et al model with our best-
performing model. Supplementary Table 2 provides variable 
operationalization details for all evaluated models.

Statistical Methods, SAAR Calculations, and Evaluating Impact on 
Hospital Rankings

Descriptive statistics for patient and hospital characteristics 
were calculated using mean (standard deviation [SD]), me-
dian (range or interquartile range [IQR]), or frequency count 
(percentage). For model evaluation, we randomly divided the 
dataset into 50/50 training and testing sets. All models used 
negative binomial regression to predict the DOTs for an ad-
mission, for each of the 4 antibiotic outcomes; the model offset 
equaled the natural log of the admission’s service-days.

For each model, we (1) fit the model on the training set and 
stored model parameters; (2) applied the parameterized model 
to the held-out testing set to predict each admission’s DOTs; (3) 
calculated the absolute error for each admission by comparing 
predicted to observed DOTs; and (4) for the entire testing set, 

Figure 1. Results for the 7 evaluated models on the testing set (n = 5 850 663 admissions), with (A) model accuracy captured by MAEs. MAEs reflect the average days of 
antibiotic therapy mis-predicted per admission. Calibration plots in (B) and (C) reflect the concordance between observed and predicted DOTs by decile for the CDC Parallel-
Facility model and the Expert Panel Consensus-Driven + Bacterial Infection model, respectively, for predicting total antibiotic use. Abbreviations: CDC, Centers for Disease 
Control and Prevention; DOT, day of therapy; MAE, mean absolute error.
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calculated the mean absolute error (MAE) by averaging all ad-
mission errors. We used the MAE from the testing set to eval-
uate model accuracy [22] and compared models using raw 
MAEs and percentage reductions in MAEs between candidate 

and reference models [
Ä

MAERef −MAECandidate

MAERef

ä
× 100]. We evaluated 

model calibration by dividing predicted DOTs into deciles. For 
each decile, we calculated the mean observed and predicted 
DOTs and created calibration plots for visual inspection.

We calculated each hospital’s SAARs by summing its admis-
sions’ observed and predicted DOTs, similar to current NHSN 

methodology but adapted to predict at the hospital, rather than 
unit, level (see Equation 1 in the Supplementary Materials). A 
SAAR >1 indicates the hospital reported higher antibiotic use 
than predicted, whereas a SAAR <1 indicates lower use than 
predicted.

We used model-specific SAARs to quantify effects of adjust-
ment on hospital rankings of antibiotic use. Given the large 
number of evaluated hospitals, we used quartile rankings. 
We ranked hospitals by quartile based upon their unadjusted 
(observed) rates of antibiotic DOTs per 1000 patient-days. 
We then reranked hospitals by their SAARs, and unadjusted 
and SAAR rankings were compared. To assess the practical 
impact of adding patient-level variables to risk-adjustment 
models, we evaluated the number of hospitals that changed 
in the bottom and top quartiles of use when adjusting with 
models that included patient-level variables versus when 
adjusting with a model that only included facility-level vari-
ables. Analyses were performed using SAS version 9.4 (SAS 
Institute Inc.).

RESULTS

During the 24-month study period, there were 11 701 326 ad-
missions (64  064  632 patient-days) across 576 US hospitals. 
Hospital and patient characteristics are presented in Table  2. 
Overall, 65% of patients received at least 1 antibiotic during 
their hospitalization. Across all admissions, the DOT distri-
bution for each antibiotic outcome was the following [(mean), 
25th, 50th, 75th, 95th percentiles]: all antibiotics: (3.91), 0, 2, 
5, 15; antibiotics for hospital-onset infections: (0.89), 0, 0, 0, 6; 

Table 2. Description of Patient and Facility Characteristics Among US 
Adult Inpatient Admissions in the Premier Healthcare Database, 2016–2017

Encounters n = 11 701 326

No. of admissions by year  

 2016 5 834 810

 2017 5 866 516

Total patient-days 64 064 632

Patient characteristics n = 11 701 326 (%)

 Age, median (IQR) 62 (42–75)

 Male 4 834 283 (41)

 Race  

  White 8 690 211 (75)

  Black 1 651 263 (14)

  Other 1 135 218 (10)

  Unknown 224 634 (2)

 Payer  

  Medicare 5 829 127 (50)

  Medicaid 1 976 689 (17)

  Private 3 065 584 (26)

  Other 829 926 (7)

 Length of stay in days, median (IQR) 4 (3–6)

 Died 258 668 (2)

Table 1. Description of Evaluated Models

Number Model Name Predictors Notes

1 Null None (offset only)  

2 CDC Parallel- 
Facility 

•Facility characteristics  
•% of patient’s encounter 

days in ICUs  
•% of patient’s encounter 

days in wards  
•% of patient’s encounter 

days in stepdown units  
•% of patient’s encounter 

days in hematology-
oncology units

Variables were 
selected to par-
allel existing CDC 
NHSN SAAR 
risk-adjustment 
models. Supple-
mentary Table 2 
reflects the full 
list of facility 
characteristics.

3 Expert Panel 
Consensus- 
Driven

•[All model #2 variables]  
•Patient age  
•Elixhauser comorbidities 

ranked as causally or inde-
terminately related to appro-
priate antibiotic use by the 
Delphi-consensus process  

•Total Elixhauser score

 

4 Expert Panel 
Consensus- 
Driven + 
Bacterial 
Infection

•[All model #3 variables]  
•Patient has an ICD-10-CM 

code associated with bacte-
rial infection  

 

 

5 POA Variant: 
Expert  
Panel Con-
sensus- 
Driven + 
Bacterial 
Infection

•[All model #2 variables]  
•Elixhauser comorbidities 

ranked as causally or in-
determinately related to 
appropriate antibiotic use 
by the Delphi-consensus 
process that were coded as 
present on admission  

•Total Elixhauser score (POA 
conditions only)  

•Patient has an ICD-10-CM 
code associated with bacte-
rial infection that was coded 
as present on admission

Because hospital- 
onset infections 
are not POA, for 
the broad-spec-
trum antibiotics 
predominantly 
used for hospital-
onset infections 
category, the 
model did not 
restrict bacterial 
infections to POA

6 Consensus- 
Driven/Data- 
Driven Hy-
brid

•[All model #4 variables]  
•Clinical Classifications 

Software (CCS) disease 
category variables retained 
in cross- 
validated lasso regression

Full details of the 
variable selection 
process are 
available in the 
Supplementary 
Materials

7 Yu et al. “ASP 
Simplified” 
Model

•Available in: Yu et al (2018) Additional details 
are provided in 
Supplementary 
Table 2 

Abbreviations: CDC, Centers for Disease Control and Prevention; ICU, intensive care unit; 
NHSN, National Healthcare Safety Network; POA, present on admission; SAAR, standard-
ized antimicrobial administration ratio.
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antibiotics for community-acquired infections: (0.96), 0, 0, 1, 5; 
and antibiotics for resistant gram-positive infections: (0.63), 0, 
0, 0, 4. In other words, taking total antibiotic use as an example, 
50% of all admissions had ≤2 days of therapy, and 95% of ad-
missions had ≤15 DOTs.

Of the 29 Elixhauser comorbidities, 14 were ranked as caus-
ally related to appropriate antibiotic use at the conclusion of 
the Delphi-consensus process, and a further 6 were ranked as 
indeterminately related (Table  3). In total, these 20 variables, 
plus patient age and total Elixhauser comorbidity score, were 
included in our Expert Panel Consensus-Driven model.

Model Performance for Predicting Antibiotic Utilization (DOTs)

Models’ mean absolute errors (average days of antibiotic 
therapy mispredicted per admission), and calibration plots 
for select models, are reflected in Figure  1. Overall, models 
were most accurate at predicting use of antibiotics for resistant 
gram-positive infections and least accurate at predicting total 
antibiotic use.

Building upon a null model with no variables (“Null” model), 
we added facility-level variables that were selected to match 
current CDC NHSN models as closely as possible (our “CDC 
Parallel-Facility” model). The CDC Parallel-Facility model im-
proved predictions over the Null model by 1.3–2.4%. Adding 
Expert Panel-selected Elixhauser comorbidities, patient age, 

Encounters n = 11 701 326

Top 5 MS-DRGsa  

 Vaginal delivery w/o complicating diagnosis 828 478 (7)

 Septicemia or severe sepsis w/o MV >96 hours 
w/ MCC

509 476 (4)

 Major joint replacement or reattachment of 
lower extremity w/o MCC

483 684 (4)

 Cesarean section w/o CC/MCC 284 173 (2)

 Heart failure and shock w/ MCC 258 083 (2)

Top 5 Elixhauser comorbiditiesa,b  

 Hypertension 4 830 425 (41)

 Fluid and electrolyte disorders 3 500 288 (30)

 Chronic pulmonary disease 2 783 243 (24)

 Deficiency anemias 2 330 685 (20)

 Congestive heart failure 2 055 661 (18)

Elixhauser comorbidity score, median (IQR)c 3 (1–5)

Top 5 CCS disease categoriesa,c  

 Essential hypertension 4 334 551 (37)

 Disorders of lipid metabolism 4 191 814 (26)

 Fluid and electrolyte disorders 3 499 631 (30)

 Other nutritional- endocrine- and metabolic 
disorders

3 277 471 (28)

 Coronary atherosclerosis and other heart di-
sease

2 796 670 (24)

Facility characteristics n = 576 (%)

 Urband 432 (75)

 Teaching 170 (30)

 Bed size  

  0–99 126 (22)

  100–199 143 (25)

  200–299 102 (18)

  300–399 82 (14)

  400–499 41 (7)

  500+ 82 (14)

US Census Region and Division  

Northeast 76 (13)

 Mid-Atlantic 63 (11)

 New England 13 (2)

South 260 (45)

 East South Central 37 (6)

 West South Central 62 (11)

 South Atlantic 161 (28)

Midwest 147 (26)

 West North Central 46 (8)

 East North Central 101 (18)

West 93 (16)

 Mountain 25 (4)

 Pacific 68 (12)

Abbreviations: CC, complication or comorbidity; CCS, Clinical Classifications Software 
(maintained by the Agency for Healthcare Research and Quality [AHRQ]); IQR, interquartile 
range; MCC, major complication or comorbidity; MS-DRG, Medicare Severity-Diagnosis 
Related Group; MV, mechanical ventilation; w/ and w/o, with and without.
aEach encounter receives 1, and only 1, MS-DRG assignment. Patients can have multiple 
Elixhauser comorbidities and CCS diseases per encounter.
bElixhauser comorbidity classifications modified to also include primary diagnoses. 
Patient Elixhauser scores represent unweighted Elixhauser comorbidity sums (1 point per 
comorbidity).
c Two most common CCS categories excluded from this listing because they do not repre-
sent disease categories: “Residual codes—unclassified” (54%) and “Other aftercare” (38%).
dDesignation provided by Premier, based upon American Hospital Association Annual 
Survey response.

Table 3. Relationship Between Elixhauser Comorbidities and Appropriate 
Antibiotic Use, as Rated by an Expert Panela Using Delphi Consensus 
Methodology

Causally Related, n = 14
Indeterminately Related, 
n = 6

Not Causally  
Related, n = 9

Valvular disease Congestive heart failure Hypertension

Peripheral vascular disease Pulmonary circulation 
disorders

Hypothyroidism

Paralysis Other neurological  
disorders

Coagulation 
deficiencies

Chronic pulmonary disease Diabetes without chronic 
complications

Solid tumor without 
metastasis

Diabetes with chronic 
complications

Metastatic cancer Fluid and electro-
lyte disorders

Renal failure Weight loss Blood loss anemia

Liver disease  Deficiency 
anemias

Chronic peptic ulcer disease  Psychoses

HIV and AIDS  Depression

Lymphoma   

Rheumatoid arthritis/ col-
lagen vascular diseases

  

Obesity   

Alcohol abuse   

Drug abuse   

Abbreviation: HIV, human immunodeficiency virus.
aConsisting of 8 infectious disease and antimicrobial stewardship experts in the United 
States; details available in the Supplementary Materials.

Table 2. Continued
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Figure 2. Changes in number of hospitals ranked in the top or bottom quartiles of use, compared to rankings by unadjusted usage rates (DOTs/1000 patient-days), after risk-
adjustment with: the CDC Parallel-Facility model, the Expert Panel Consensus-Driven + Bacterial Infection model, and the POA) variant of the Expert Panel Consensus-Driven 
+ Bacterial Infection model. Abbreviations: CDC, Centers for Disease Control and Prevention; DOT, day of therapy; POA, present on admission.

and total Elixhauser score to the CDC Parallel-Facility model 
(together with our “Expert Panel Consensus-Driven” model) 
improved predictions over the CDC Parallel-Facility model by 
a further 0.6–2.9% (Figure 1). However, adding an additional 
variable for bacterial infection, as derived from ICD-10-CM 
codes, achieved the most significant prediction improvements. 
For predicting total antibiotic use, a model incorporating 
these facility- and patient-level variables (our “Expert Panel 
Consensus-Driven + Bacterial Infection” model) was 24% 
more accurate than the CDC Parallel-Facility model, equating 
to a reduction in average antibiotic DOTs mis-predicted per 
admission from 3.107 DOTs to 2.348 DOTs. This model was 
also very well calibrated for all patients except those with the 
highest 90th percentile of antibiotic use (Figure 1). Our present 
on admission-variant of the “Expert Panel Consensus-Driven + 
Bacterial Infection” model restricted to Expert Panel-selected 
Elixhauser comorbidities and bacterial infections that were 
coded as present on admission, in order to reduce the risk of 
adjusting for conditions that were a consequence, rather than 
a cause, of antibiotic initiation. This model performed simi-
larly to the main Expert Panel Consensus-Driven + Bacterial 
Infection model (see Supplementary Figure 1 and Figure 2).

Yu et  al’s “Simplified ASP” model was substantially similar 
to our Expert Panel Consensus-Driven + Bacterial Infection 

model for predicting total antibiotic use (<1.5-percentage point 
difference) but was somewhat more accurate for the other an-
tibiotic outcomes (6–7 percentage points). We also combined 
the Yu et al model with our best-performing model, the Expert 
Panel Consensus-Driven + Bacterial Infection model, which 
marginally improved predictions for total antibiotic use and 
antibiotics for community-acquired infections but did not im-
prove performance for the remaining two antibiotic outcomes 
(see Supplementary Table 3).

Impact of Risk-adjustment Using Patient-level Variables on Hospital 
Rankings

Figure  2 describes the impact of adjustment using the CDC 
Parallel-Facility model and select patient-variable models on 
hospitals’ rankings of use by quartile. We ranked hospitals 
from highest to lowest crude rates of antibiotic use for each 
of the 4 outcomes, split these rankings into quartiles of 144 
hospitals each, and then reranked hospitals by their SAARs. 
The bottom or “worst” quartile corresponded to hospitals with 
the highest crude usage rates or, after adjustment, the highest 
SAARs; the converse applied to hospitals in the top or “best” 
quartile [23, 24].

For total antibiotic use, when risk-adjusting using the 
CDC Parallel-Facility model, 46 (32%) and 42 (29%) of the 

https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1127#supplementary-data
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144 hospitals in the bottom and top quartiles, respectively, 
changed after adjustment (Figure 2). By comparison, when risk-
adjusting using the Expert Panel Consensus-Driven + Bacterial 
Infection model, 61 (42%) and 55 (38%) hospitals changed in 
these respective quartiles, representing 31–33% more hospital 
movement compared to CDC Parallel-Facility model adjust-
ment. Hospital movement was even more substantial under the 
present-on-admission variant of our Expert Panel Consensus-
Driven + Bacterial Infection model (Figure 2). Relative to ad-
justment with the CDC Parallel-Facility model, large quartile 
movements were also observed for antibiotics for hospital-onset 
infections and for resistant gram-positive infections when risk-
adjusting with patient-variable models (29–53% more move-
ment into bottom or top quartiles of use when adjusting with 
patient-variable models); antibiotics for community-acquired 
infections yielded the smallest differences between adjustment 
with the CDC Parallel-Facility model and adjustment with 
patient-variable models (12–18%, Figure 2).

DISCUSSION

Across a large and diverse cohort of US hospitals, and nearly 
12 million admissions, this study found that adding patient-
level data to existing, facility-variable risk-adjustment models 
consistently improved predictions for inpatient antibiotic uti-
lization. More accurate predictions produce more accurate 
observed-to-predicted use ratios (eg, SAARs), the current 
bedrock of antibiotic utilization comparison used by hospitals 
and the CDC and the primary method for identifying outlier 
prescribing. Importantly, these accuracy improvements were 
achieved using variables (1) derived from patient ICD-10-CM 
diagnosis codes, which are readily electronically available and 
mandated for all patients discharged from HIPAA-compliant 
US hospitals [25]; and (2) Elixhauser comorbidities expert-
rated as associated with appropriate antibiotic use. If SAARs 
are eventually deployed for quality assessment or reimburse-
ment purposes, these attributes lend practical and policy value. 
Including these patient data also yielded large downstream ef-
fects on hospital rankings. For example, for ranking total anti-
biotic use, approximately 30% more hospitals moved into the 
bottom or top quartiles after adjusting with a model that in-
cluded patient variables, compared to adjusting with a model 
that only included facility characteristics.

For all antibiotic outcomes, the “Expert Panel Consensus-
Driven + Bacterial Infection” was our best-performing model. 
The Expert Panel-selected Elixhauser comorbidities included in 
this model are a distinguishing feature of this study and helped 
to focus predictions more squarely on appropriate antibiotic use. 
Predicting appropriate antibiotic use is a goal shared by CDC, 
antibiotic stewardship programs, and other researchers [1, 10, 
26]. To be clear, however, we do not intend to suggest (and 
indeed, would not expect) that antibiotic use in patients with 

these comorbid conditions is always appropriate. We further 
recognize that bacterial infections, the other principal variable 
in this model, may be misdiagnosed or treated with antibiotics 
inappropriately. But on average across facilities, models that in-
clude these expert-selected Elixhauser conditions should yield 
fairer, more accurate SAARS that protect hospitals that treat 
more patients with these comorbidities from being penalized 
for resultantly higher rates of antibiotic use.

The prior work that most closely relates to our current study 
is a 2018 paper by Yu et al, which also compared patient-variable 
models to a facility-variable model for predicting antibiotic uti-
lization [4]. We recreated and externally validated their primary 
model (“Simplified ASP”) and found that its accuracy was sim-
ilar to, and in some cases a few percentage points better than, 
our best-performing model. This information is new, because 
although the Yu et  al study established high concordance be-
tween their Simplified ASP model and a “Complex” model that 
they also derived, their study did not quantify model accuracy 
outright. Interestingly, both the Yu et  al model and our best-
performing model were most accurate at predicting use of anti-
biotics for resistant gram-positive infections. We attribute this 
finding not to a stronger relationship between predictors and 
outcome per se but rather to low use: with 75% of admissions 
having 0 DOTs for these antibiotics, even our null negative bi-
nomial model with no predictors fit the data relatively well. 
Conversely, outcomes with higher DOTs, such as total anti-
biotics, demonstrated higher absolute errors across all tested 
models but also proportionally greater error reductions as 
patient-level variables were added.

More broadly, our findings and our external validation of the 
Yu et al model reinforce the benefits of adding patient data to 
risk-adjustment models and suggest that the accuracy improve-
ments achieved by our and the Yu et al models are likely real 
and reproducible. Of note, the Yu et al model’s most important 
predictor was an admission’s MS-DRG, which is a CMS reim-
bursement code assigned at discharge based upon the principal 
diagnosis, as well as certain secondary diagnoses and proced-
ures [27]. Although we had MS-DRG code data available for 
all admissions because Premier calculates them, we intention-
ally did not evaluate this variable as a predictor because some 
commercial insurers do not use them, and CMS has specifically 
urged caution when applying MS-DRGs to non-Medicare popu-
lations [28]. Importantly, by incorporating clinical constructs 
generated exclusively from ICD-10-CM diagnosis codes, our 
models should be executable regardless of payer and without 
requiring additional extraction of procedure data.

Our study has several limitations. First, it did not include pe-
diatric patients. NHSN has developed pediatric care location-
specific SAARs [6] and validating our models against existing 
NHSN facility-variable models in pediatric patients would 
be an important area of future study. Second, we derived 
our clinical constructs from patient claims data, specifically 
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ICD-10-CM diagnosis codes. Although ICD-10-CM codes 
have imperfect sensitivity and specificity and will not fully 
capture preadmission healthcare information, from a prac-
tical perspective, claims data-based constructs are a significant 
study strength, because they are available across all US hos-
pitals and payers. However, because ICD-10-CM codes are as-
signed at discharge, ascertaining whether diagnoses preceded 
or followed antibiotic initiation is challenging. To address this 
uncertainty, we evaluated a model variant that restricted to bac-
terial infections and comorbidities coded as present on admis-
sion; this model performed similarly to the main model. As a 
matter of policy, however, national variability in POA coding 
and the potential for POA code misuse [29, 30] would re-
quire further consideration, standardization and study. Third, 
we calculated antibiotic DOTs using charge data. Many large 
studies have used claims data to measure antibiotic utilization 
[11, 16, 17], and research has demonstrated strong agreement 
between pharmacy charge and administration records for anti-
biotics [31], but some residual discordance between these data 
sources remains possible. Fourth, we predicted antibiotic use 
at the admission level because, beyond increasing study power, 
it accounted for patients who move among units during their 
admission. Consequently, we could closely, but not exactly, re-
create unit-level prediction models (eg, CDC NHSN models, 
the Yu et  al model), and we therefore caution against direct 
comparisons across studies.

Overall, our study found that compared to only adjusting for 
facility characteristics and patient care location, adding patient 
comorbidities and bacterial infection diagnoses consistently 
improved models for predicting inpatient antibiotic utilization. 
As such, this study in a large, diverse cohort of 576 US hospitals 
adds to a growing body of evidence from prior, smaller studies: 
accounting for patient-mix is necessary to optimize antibiotic 
use comparisons. Importantly, our model variables were easily 
derived from standard claims data and were selected to cor-
relate more closely with appropriate antibiotic use. Moreover, 
the improvements they yielded were material—a nearly 25% 
reduction in the average error rate for predicting total anti-
biotic use and substantial movement in hospitals’ utilization 
rankings. Whether, and when, SAARs are ready for reimburse-
ment or public reporting purposes is a subjective policy ques-
tion for CDC, CMS, and professional organizations; we hope 
that this study provides informative evidence to guide these 
deliberations. We encourage continued investigation of other, 
electronically available patient data that may further improve 
antibiotic utilization comparisons.
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