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Abstract

The present text exposes a theory of the role of disturbances in the assem-

blage and evolution of species within ecosystems, based principally, but not

exclusively, on terrestrial ecosystems. Two groups of organisms, doted of con-

trasted strategies when faced with environmental disturbances, are presented,

based on the classical r-K dichotomy, but enriched with more modern con-

cepts from community and evolutionary ecology. Both groups participate in

the assembly of known animal, plant, and microbial communities, but with

different requirements about environmental fluctuations. The so-called “civi-

lized” organisms are doted with efficient anticipatory mechanisms, allowing

them to optimize from an energetic point of view their performances in a

predictable environment (stable or fluctuating cyclically at the scale of life

expectancy), and they developed advanced specializations in the course of

evolutionary time. On the opposite side, the so-called “barbarians” are weakly

efficient in a stable environment because they waste energy for foraging,

growth, and reproduction, but they are well adapted to unpredictably chang-

ing conditions, in particular during major ecological crises. Both groups of

organisms succeed or alternate each other in the course of spontaneous or

geared successional processes, as well as in the course of evolution. The bal-

ance of “barbarians” against “civilized” strategies within communities is

predicted to shift in favor of the first type under present-day anthropic pressure,

exemplified among others by climate warming, land use change, pollution, and

biological invasions.

Introduction

Many studies showed that some species traits were better

adapted than others to land use change, pollution,

climate warming, or biological invasions (Fisker et al.

2011; Makkonen et al. 2011; Malmstr€om 2012; Shine

2012). Such knowledge could be used to predict which

species will survive, become extinct or will have to adapt

during the present-day mass extinction (May 2010).

Much research effort needs to be conducted in order to

have a clear view of the future of plant, animal, and

microbial communities face to increasing anthropic pres-

sure (Berg et al. 2010). However, some testable predic-

tions can be made, which is the scope of the present

review, based on previous theoretical work already carried

out by McArthur and Wilson (1963), Odum (1969) and

Pianka (1970), enriched by more modern concepts and

adapted to present-day threats to biodiversity in the

context of global change. In a first step, anticipation will

be considered as a key advantage or disadvantage accord-

ing to predictability or unpredictability of the environ-

ment, respectively. In a second step, species traits, which

contribute, or not, to anticipate disturbances will be

examined in the light of evolutionary processes. At last,

strategies by which organisms and communities can

resist, or not, environmental hazards, will be discussed in

the frame of global change.

In the present paper, “species” or “traits” are consid-

ered indifferently under the generic term of “organ-

isms.” Clearly, traits and species do not evolve at the

same rate (Janecka et al. 2012), are not selected or

filtered in the same manner (Keddy 1992), and trait

representation changes in the course of individual devel-

opment (Coleman et al. 1994) and within metapopula-

tions and species distribution ranges (Sun and Cheptou

2012).
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Anticipation: a key property of organisms
and ecosystems in stable environments

Anticipation is the manner in which an organism or a

community behaves in advance of a predictable event,

whether favorable or unfavorable. Such a mechanism is

advantageous, in terms of energetic cost and resource

allocation (Gonz�alez-G�omez et al. 2011) in an environ-

ment dominated by cyclic processes. Biological clocks

(Wang and Wang 2011) participate in this property, as

well as all sensory, behavioral, and signaling systems

allowing a being or a group of beings to live in harmony

with the context (Soler et al. 2011). In this frame, any

forwarded event cannot be considered as a disturbance, as

the organism or the community reacts in adapted man-

ner. Such adapted reaction norms have been selected and

fixed in the genome (Roulin et al. 2011), or are epigeneti-

cally induced by the environment (Gorelick 2005). They

can also stem from behavioral training, through the

memorization of past experiences (Gonz�alez-G�omez et al.

2011), mimicry (Darst 2006), teaching or transmission of

knowledge within a familial or social group (Fogarty et al.

2011), or even through clonal reproduction (Trewavas

2005).

Anticipation is progressively established in the course

of ontogenesis, more especially when complex locomotory

or sensory organs and coordinated nervous and hormonal

systems are required (Capell�an and Nicieza 2010).

If anticipation is well known in the physiology of

organisms (Vitalini et al. 2007), this property has never

been cited at the ecosystem or community level, although

many processes ensuring the stability of late-successional

ecosystems involve anticipation. Bernier and Ponge

(1994) showed that the regeneration of mountain conifer-

ous forests is ensured by the recovery of a complete

earthworm community under mature trees, following col-

lapse during the pole stage. The reconstitution of the

earthworm community occurs well in advance of light

arrival, associated with senescence and death of trees, the

event previously thought to start regeneration. The com-

plete earthworm community allows spruce recruitment,

by creating soil conditions favorable to the establishment

of a new generation of spruce (Ponge et al. 1998). Such

mechanisms involve feedbacks between soil organisms

and plants (Ponge 2013), in particular between the two

dominant ecosystem engineers (trees and earthworms).

There are serious reasons to believe that such interaction

networks, ensuring the long-term stability of habitats,

have been selected at the ecosystem level in the course of

evolution (Williams and Lenton 2007).

Are all organisms equally efficient in terms of anticipa-

tion? The buildup of sensorimotor systems, associated with

neuronal and/or chemical mechanisms, is a prerequisite,

and needs time. Saving time is possible to a great extent for

those organisms taking care of their offspring and/or of

members of their group, thereby privileging teaching and

mimicry over genetically wired information. Information,

in the form of treatment and management of signals, is a

key component of anticipation (Patten et al. 1997), but it

can work efficiently and durably only in a predictable envi-

ronment, i.e. in the absence of disturbance.

In the presence of a disturbance (in the restricted sense

given to it here, i.e. an unpredictable event), some organ-

isms, less efficient in terms of anticipation, may be

favored if they are able to grow, reproduce, and interact

with other members of the community in the absence of

any refined knowledge of the environment or of the

group to which they pertain. Organisms with a short life-

span, able to disperse and reproduce at a high rate, with-

out any need of care and training of juveniles, as well as

juveniles of anticipating organisms, will be favored by

unpredictable events (Odum 1969; Pianka 1970). General-

ists, too, i.e. organisms not specialized on a given envi-

ronment or a given resource, are also favored by

disturbances, when compared with specialists (Devictor

et al. 2010; Poisot et al. 2011). At the ecosystem level,

pioneer (early-successional) communities are ephemeral,

of variable composition, and generally are replaced by

more durable communities when and if the environment

remains or becomes stable (Isermann 2011).

Stability of the environment may itself result from the

development of communities, as in the case of old-growth

forests and coral reefs: these ecosystems generate the con-

ditions of their own stability, according to dynamic equi-

libria (Connell 1978). Ecosystem engineers (trees,

earthworms, corals, among many others) play a decisive

role in such dynamic equilibria (Bythell and Wild 2011).

In the presence of a major disturbance falling out of the

range of their tolerance range, durable ecosystems are

replaced by ephemeral communities with a high capacity

of colonization (Dudgeon et al. 2010).

Can we predict the existence of strategies
according to the disturbance regime?

Many species traits have been classified on the base of

strategies performed by organisms to ensure their success

within communities or in the course of evolution (both

concepts are tightly related, see Metz et al. 2008). Table 1

sketches most well-known strategies of plant, animal, and

microbial organisms, which all refer to some extent to the

r-K continuum. Contrary to most of them, which are

dual, The CSR triangle devised by Grime (1977) for

plants distinguishes three strategies according to growth

rate, site fertility, and competitive ability, thus mixing

plant traits and environmental features in a common

1114 ª 2013 The Authors. Published by Blackwell Publishing Ltd.

Disturbances, Organisms and Ecosystems J.-F. Ponge



T
a
b
le

1
.
M
ai
n
st
ra
te
g
ie
s
o
f
‘b
ar
b
ar
ia
n
”
an

d
“
ci
vi
liz
ed

”
o
rg
an

is
m
s.

B
ar
b
ar
ia
n
s

C
iv
ili
ze
d

R
ef
er
en

ce
s

r-
se
le
ct
ed

:
n
u
m
er
o
u
s
o
ff
sp
ri
n
g
,

ea
rl
y
re
p
ro
d
u
ct
io
n
,

h
ig
h
m
o
rt
al
it
y
ra
te

K
-s
el
ec
te
d
:
re
d
u
ce
d
o
ff
sp
ri
n
g
,
la
te

re
p
ro
d
u
ct
io
n
,
w
ea
k
m
o
rt
al
it
y
ra
te

Pi
an

ka
1
9
7
0
;
Fi
er
er

et
al
.
2
0
0
7
;

G
en

er
al
is
ts
:
ab

le
to

re
p
ro
d
u
ce

in
a
w
id
e
ar
ra
y
o
f
en

vi
ro
n
m
en

ts

Sp
ec
ia
lis
ts
:
ab

le
to

re
p
ro
d
u
ce

in
a
re
st
ri
ct
ed

ar
ra
y
o
f
en

vi
ro
n
m
en

ts
Le
vi
n
s
1
9
6
8
;
Eg

as
et

al
.
2
0
0
4

Pi
o
n
ee
rs
:
co
lo
n
iz
in
g
n
ew

en
vi
ro
n
m
en

ts

C
lim

ax
sp
ec
ie
s:

as
so
ci
at
ed

to
te
rm

in
al

st
ag

es
o
f
an

ec
o
lo
g
ic
al

su
cc
es
si
o
n

O
d
u
m

1
9
6
9
;
W
eh

en
ke
l
et

al
.
2
0
0
6
;

C
o
lo
n
iz
er
s:

sh
o
rt

g
en

er
at
io
n
ti
m
e,

ab
u
n
d
an

t
o
ff
sp
ri
n
g
,
h
ig
h
m
et
ab

o
lic

ac
ti
vi
ty
,
re
si
st
an

t
to

p
o
llu
ti
o
n

Pe
rs
is
te
rs
:
lo
n
g
g
en

er
at
io
n
ti
m
e,

re
d
u
ce
d
o
ff
sp
ri
n
g
,
lo
w

m
et
ab

o
lic

ac
ti
vi
ty
,
se
n
si
ti
ve

to
p
o
llu
ti
o
n

Et
te
m
a
an

d
B
o
n
g
er
s
1
9
9
3
;
Li

et
al
.
2
0
0
5
;

Se
ar
ch

st
ra
te
g
y
b
y
ra
n
d
o
m

m
o
ve
m
en

ts
:

u
si
n
g
co
o
rd
in
at
ed

,
b
u
t
n
ev
er

ta
rg
et
te
d
m
o
ve
m
en

ts

Se
ar
ch

st
ra
te
g
y
b
y
d
ir
ec
ti
o
n
al

m
o
ve
m
en

ts
:
u
si
n
g
co
o
rd
in
at
ed

an
d
ta
rg
et
te
d

C
ai
n
1
9
8
5
;
A
rm

sw
o
rt
h
an

d
R
o
u
g
h
g
ar
d
en

2
0
0
5
;

M
ig
ra
n
ts
:
w
it
h
o
u
t
an

y
d
efi

n
ed

te
rr
it
o
ry

R
es
id
en

ts
:
liv
in
g
in

a
d
efi

n
ed

te
rr
it
o
ry

(m
ay
b
e
ch
an

g
in
g
se
as
o
n
al
ly

o
r
an

n
u
al
ly
:
ca
se

o
f
m
ig
ra
to
ry

b
ir
d
s
an

d
b
u
tt
er
fl
ie
s)

A
u
st
in

1
9
7
0
;
H
o
lt
et

al
.
2
0
1
1
;

Ju
ve
n
ile
s
an

d
n
eo

te
n
ic

ad
u
lt
s

A
d
u
lt
s

St
ea
rn
s
1
9
7
6
;
Jo
h
an

ss
o
n
et

al
.
2
0
1
0
;

N
at
u
ra
l-
se
le
ct
ed

:
sm

al
l-
si
ze
d
o
rg
an

is
m
s,

w
it
h
o
u
t
se
xu
al

d
im

o
rp
h
is
m
,
w
it
h
h
ig
h

p
h
en

o
ty
p
ic

p
la
st
ic
it
y

Se
xu
al
-s
el
ec
te
d
:
b
ig
-s
iz
ed

o
rg
an

is
m
s,

w
it
h
se
xu
al

d
im

o
rp
h
is
m
,
w
it
h
p
o
o
r

p
h
en

o
ty
p
ic

p
la
st
ic
it
y

M
cL
ai
n
1
9
9
3
;
Pr
in
zi
n
g
et

al
.
2
0
0
2
a

D
en

si
ty
-i
n
d
ep

en
d
en

ce
D
en

si
ty
-d
ep

en
d
en

ce
N
ic
h
o
ls
o
n
1
9
3
3
;
B�
ar
d
se
n
an

d
Tv
er
aa

2
0
1
2
;

R
u
d
er
aI
s:

fa
st
-g
ro
w
in
g
sp
ec
ie
s
in
h
ab

it
in
g

h
ig
h
-f
er
ti
lit
y,

h
ig
h
-d
is
tu
rb
an

ce
si
te
s

C
o
m
p
et
it
o
rs
:
fa
st
-g
ro
w
in
g
sp
ec
ie
s

in
h
ab

it
in
g
h
ig
h
-f
er
ti
lit
y,

lo
w
-d
is
tu
rb
an

ce
si
te
s

St
re
ss
-t
o
le
ra
to
rs
:
sl
o
w
-g
ro
w
in
g
sp
ec
ie

in
h
ab

it
in
g
lo
w
-f
er
ti
lit
y,

lo
w
-d
is
tu
rb
an

ce
si
te
s

G
ri
m
e
1
9
7
7
;
W
ils
o
n
an

d
Le
e
2
0
0
0

ª 2013 The Authors. Published by Blackwell Publishing Ltd. 1115

J.-F. Ponge Disturbances, Organisms and Ecosystems



classificatory endeavor (Craine 2005). Similar continuum

triangles of life-history strategies have also been proposed

for animals (Winemiller 1992; Vila-Gispert et al. 2002).

All these strategies consider stability of the environment

as the driving force of their selection, as this was clearly

explicit in the seminal work of Levins (1962), but rather

implicit in most other studies listed in Table 1. By privi-

leging this aspect and by assembling all traits which are

related directly or indirectly to the stability of the envi-

ronment, two categories of traits/organisms can be sug-

gested. They are called “civilized” and “barbarians,”

gathering features related to life history, ecological ampli-

tude and evolution covered by previous classifications

(Table 1). Traits classified as “civilized” are those, which

allow anticipation of short-term variations in the environ-

ment (but not ecological crises), while “barbarian” traits

allow life in unpredictable environments and survival of

ecological crises. Vicarious categories listed in Table 1 are

relative to particular aspects of life history, dispersal, and

ecological specialization, which share many properties

between them.

Such a dichotomy between “barbarians” and “civilized”

does not confer any superiority to one or the other cate-

gory, according to the tenet by de Montaigne (1595) that

barbarism and civilization are two facets of the same

endeavor of mankind for surviving in the course of past

and future history. The term “barbarians” might seem at

first sight reminiscent of “Gengis Khan” species, an

expression used by Pimm (1991) to designate struggling

invaders. Here, the term of “barbarians” is used in a

much broader sense, without focusing on potential

species interactions and above all without any negative

overtone.

Although widely employed in ecology, the term “strat-

egy” implies a dichotomy between more or less exclusive

combinations of life-history and behavioral traits, which

can be thought at first sight incompatible with the origi-

nal r-K continuum (Pianka 1970; Jones 1976). Surpris-

ingly, few workers questioned the existence of a

continuum, until Flegr (1997) simulated the impact of

environmental fluctuations on mixed populations. He

showed that simulated ecosystems switched in the course

of time toward either one or the other strategy according

to stochastic effects of stability or instability of the envi-

ronment, r- and K-selection being mutually exclusive in

the long-term. Similar conclusions were reached by Arditi

et al. (2005) at community level.

Phylogenetic trees based on present species are the net

result of macroevolutionary speciation and extinction

processes (Morrow et al. 2003) and can be reconstructed

using parsimonious methods such as cladistics (Hennig

1975). Species not far from the root of a phylogenetic tree

share a majority of basal characters (undifferentiated),

contrary to species located far from the root. We may

consider that basal characters are present (today) in

ancient species or species groups having crossed unpre-

dictable ecological crises, i.e. “barbarians,” and derived

characters in more recent species or species groups which

did not experience such crises, i.e. “civilized.” According

to these definitions, most “civilized” traits are prone to

extinction, while most “barbarian” traits would survive a

long time across lineages, or would reappear in variable

environments (Colles et al. 2009). The idea that mass

extinction acts under selective rules different from back-

ground extinction has been stressed by Jablonski (2008),

pointing to the existence of a fruitful area at the interface

of ecology and macroevolution, which still needs to be

prospected before clear predictions could be made. Paleo-

ecological studies associating species traits with extinction

avoidance or sensitivity are scarce, because life history,

physiology, and behavior of fossils are unknown, only

ecological specialization and endemism being accessible to

paleoecologists. It has been shown that most specialized

organisms and endemic species or groups, here classified

as “civilized” (Table 1), suffered more from mass extinc-

tion than poorly specialized, cosmopolitan species, here

classified as “barbarian,” in the course of past ecological

crises. This was the case, among many others, for forami-

nifers at the Cretaceous-Tertiary boundary (Keller et al.

2002) and brachiopods during the End-Permian mass

extinction (Rodland and Bottjer 2001). Similar examples

can be found in present-day temperature-driven extinc-

tion scenarios (Schippers et al. 2011).

We showed that “barbarians” privilege production by

wasting energy for growth and reproduction and “civi-

lized” privilege information by channeling energy on fine

tuning. Then a trade-off is possible between two facets of

adaptive cost, called “evolutionary cost” (dominant in

“civilized”) and “energetic cost” (dominant in “barbari-

Energetic cost

Ev
ol

ut
io

na
ry

 c
os

t

Civilized

Barbarians

Disturbance

instability

Figure 1. Evolutionary and energetic costs favor differently

“barbarians” and “civilized” organisms, disturbances and

environmental instability increase energy availability and decrease time

to adapt.
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ans”). Evolutionary cost is here defined as the number of

evolutionary steps (favorable mutations and/or epigenetic

events) needed to develop and perform an organizational

model in a given environment. Energetic cost is here

defined as the amount of energy necessary for survival

and reproduction (foraging, avoidance, dispersal, mating,

etc.…), which is constrained by food supply and tempera-

ture in a given environment. Demonstration of such a

trade-off between long-term (evolutionary) and short-

term (energetic) costs is difficult to achieve, but a recent

study by Bekaert et al. (2012) showed that energetic limi-

tations contributed to fitness costs of glucosinolates, a

phylogenetically sensitive class of compounds produced

by Brassicales, used here as a proxy of the evolution of

herbivory resistance in Arabidopsis thaliana.

Each neuronal and/or hormonal network, needed to

reduce the energetic cost of an organism, has an evolu-

tionary cost (Niven and Laughlin 2008). Thereby,

long-term stability of the environment is a prerequisite

for the evolution of complex functional networks within

a community (Vermeij 2012), pointing to (evolutionary)

time as a constraint. The complication of organizational

templates along lineages is often accompanied by an

increase in size, as a result of species interactions (Vermeij

2012). This evolutionary arms race stems in deadlocks,

often linked to gigantism and extreme specialization

(Myers 1996). Evolutionary stasis is followed by abrupt

changes, modifying the “groundplan” to create new lin-

eages starting from “young”, little specialized (dedifferen-

tiated, often neotenic) organisms (Futuyma and Moreno

1988). These newly created lineages are very dynamic

from an evolutionary point of view, because of short life

cycles and a high ability to colonize new environments

(Salzburger et al. 2005). Evolutionary cycles of stability

(coordinated stasis) alternating with intense radiation

(DiMichele et al. 2004) are similar to successions

observed at ecosystem level (Odum 1969). They suppose

the existence of a major constraint imposing a correlation

between physiology, shape, demography, and dispersal

(Reed et al. 2010). Such a correlated response in the evo-

lution of phenotypic plasticity (Scheiner 2002) implies a

very limited number of possible (viable) cases, i.e. strate-

gies, which have been detected by simulating virtual com-

munities (Goudard and Loreau 2008). This was

experimentally proven to occur in microbial communities

(Williams and Lenton 2007).

Figure 1 explains in a scheme how constraints in

energy and in time generate the existence of two non-

exclusive strategies. Instability of the environment, above

a given threshold making it unpredictable to organisms,

generates a pressure making the “time” constraint domi-

nant above the “energy” constraint. Only pre-adapted

species (Afanasjeva 2010), with a wide tolerance breadth

(here called “barbarians”) will subsist, possibly using

epigenetic modifications induced by the environment

(Angers et al. 2010) in addition to their innate pheno-

typic plasticity (Reed et al. 2010). On the contrary, when

environmental stability recovers for a long period (Mar-

cotte 1999), or when species find stable refuges (Dzik

1999), organisms using their energy for finely tuning with

the environment (“civilized”) will take over, replacing

“barbarians” (Wilson and Yoshimura 1994).

Although focus has been made above on abiotic envi-

ronmental conditions, it must be clear that many biotic

influences affect traits and/or organisms and their capac-

ity to tolerate disturbances. The example of host–parasite
interactions is particularly demonstrative in this respect.

The parasite is a specialized organism, which in its way of

life is associated with its host by many anticipatory mech-

anisms, allowing it to maintain viable populations (Tins-

ley 2004). When the parasite prevents (and thus

anticipates) the death of its host by lowering its infectious

potential below a threshold of tolerance (Duerr et al.

2004), it clearly belongs to the “civilized” category. More

generally, all density-dependent processes, whether nega-

tive or positive (including the “Allee effect”), belong to

the “civilized” category (B�ardsen and Tveraa 2012). The

more an organism will be specialized on a host or a food

resource or on conspecifics, the more it will be sensitive

to any disturbance affecting the organism(s) on which it

depends for its survival and reproduction (Montoya et al.

2009). Density-independent processes escape to such

biotic control and thus rather belong to the “barbarian”

category, associated with unpredictability (Sinclair and

Pech 1996).

“Barbarians” and “civilized” in a changing
world: who will win and why?

In the presence of environmental instability, “civilized”

organisms are at disadvantage compared with “barbarians”,

Disturbance level

N
um

be
r o

f s
pe

ci
es

CivilizedBarbarians Total

Figure 2. The “intermediate disturbance hypothesis” explained by

the balance between “barbarians” and “civilized” species.
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the contrary when conditions become stable again. How-

ever, “barbarians” and “civilized” may cohabit within the

same community and perform complementary functions

(Wilson and Yoshimura 1994) inasmuch as conditions

are not those of a major ecological crisis affecting all bio-

topes present in a given region of the world. Examples of

major ecological crises are great glaciations of the Pleisto-

cene, K-T boundary and Permian-Triassic extinctions

(Raup 1986). Both categories are just in balance according

to the disturbance regime, along a continuum from most

to least stable environments (Fig. 2). At an intermediate

level of disturbance biodiversity is maximized because it

is the ultimate level at which “barbarians” and “civilized”

may cohabit within the limits of regional pools (Lessard

et al. 2012), immigration waves (Esther et al. 2008) and

species interactions (Mason et al. 2008). The fact that

intermediate levels of disturbance (Molino and Sabatier

2001) and intermediate stages of succession (Isermann

2011) are favorable to local biodiversity can thus been

explained by other hypotheses than resource limitation

and competitive exclusion (Connell 1978).

Several aspects of global change have been selected for

the following discussion: climate warming, pollution, land

use change, biological invasions, and the registered

(although still debated) increase in the amplitude and fre-

quency of climatic and geologic catastrophes.

Climate warming, in particular the rapid temperature

increase recorded over the last 40–50 years (Thompson

et al. 2008), often associated with increased climate insta-

bility (Canale and Henry 2010), generates shifts in the

distribution of plants and animals over large areas of the

world (Thomas 2010). Within the same time lapse, many

habitats collapsed (Clarke et al. 2007) or became frag-

mented (Cormont et al. 2012). Species with a high rate of

phenotypic plasticity (Canale et al. 2011) and genetic

diversity (Hoffmann and Willi 2008) are favored by cli-

mate warming. Species able to disperse and grow rapidly

(Makkonen et al. 2011) as well as infectious diseases

(Mouritsen et al. 2005) increase, and plant phenology

changes in favor of earlier reproduction (Post et al.

2008). All these shifts in species traits point to an advan-

tage given to “barbarian” over “civilized” traits. “Barbari-

ans” are thus thought to increase until a new equilibrium

will be reached, which would turn to an advantage given

to “civilized” traits, species or phenotypes.

It has been observed that species with a wide geo-

graphic range are favored by climate warming (Arribas

et al. 2012), as this occurred in the course of past ecologi-

cal crises (Jablonski 2005). Fonty et al. (2009) showed

that all plant life-forms and dispersal modes recorded in

a tropical ecotone were affected by local extinctions, in

inverse proportion to their rate of presence. Thus,

commonness seems to be selected against rarity in the

course of extinction events (Reinhardt et al. 2005),

another clue to an advantage given to species commonly

classified as “generalists” (Remold 2012) and/or with a

high dispersal ability (Tedesco et al. 2012) against “spe-

cialists” and/or with a low dispersal ability, i.e. on “bar-

barians” against “civilized”. However, global climate

warming is often accompanied by severe drought events

which impact dramatically more sensitive environments,

such as tropical rainforests (Wright and Calder�on 2006),

and the more when these forests are disturbed by logging

(Curran et al. 1999). In such cases, the stress component

(drought) may overwhelm the disturbance component of

environmental change (Condit et al. 1995). Selection

shifts then in favor of stress-tolerance traits (Read and

Stokes 2006), belonging to the “civilized” strategy, rather

than of disturbance traits (Jonsson and Esseen 1998),

which belong to the “barbarian” strategy.

The effects of pollution and acidification of soil and

atmosphere have been studied intensively during the last

40 years. Field studies showed severe disruptions in the

composition of communities (Syrek et al. 2006), and irre-

versible collapses in ecosystem functioning, stemming in

organic matter accumulation (Gillet and Ponge 2002).

H�agvar (1990) elaborated an elegant hypothesis, high-

lighting behavioral choice and competition as driving

forces of the response of species to soil acidity. But which

life-history and dispersal traits are favored by pollution?

Sexual reproduction seems to be favored over clonal

reproduction in severely polluted conditions (Niklasson

et al. 2000), and it has been suspected that some (appar-

ently healthy) communities of polluted areas are main-

tained by high immigration rates compensating for high

mortality (Møller et al. 2012). Both features are typical of

unspecialized species privileging phenotypic variety (Po-

isot et al. 2011), with a high rate of nondirectional ran-

dom movements to unfavorable places (Auclerc et al.

2010). Comparisons between polluted and nonpolluted

areas show that species living in polluted environments

are smaller, reproduce earlier and have a shorter lifespan

(Prinzing et al. 2002b). All these characters point to many

advantages given to “barbarian” over “civilized” traits.

However, some studies did not reveal the same trends in

aquatic faunas (Postma et al. 1995). This questions pollu-

tion as a stress or a press disturbance (Arens and West

2008), for which species can develop special mechanisms

for tolerance in a stable environment (Janssens et al.

2009), i.e. of “civilized” type, or as a pulse disturbance,

for which species survival must rely on rapid growth,

reproduction and active dispersal, i.e. “barbarian” type.

Landuse change and fragmentation are known to favor

species displaying a low level of specialization (Barbaro

and Van Halder 2009) and/or moving easily through a

heterogeneous landscape (Malmstr€om 2012). Both groups
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of trait attributes belong clearly to the “barbarian” cate-

gory. Similar shifts in trait representation were observed

following the destruction of coral reefs (Feary 2007). How-

ever, the case of butterflies deserves a special attention, as

some species with a high degree of specialization and

efficient directional movements are able to withstand frag-

mentation, at least up to a certain threshold (Bergerot

et al. 2012). These species, which are tolerant of fragmen-

tation despite of their “civilized” characters, are in fact

adapted to fragmented habitats in a stable landscape

(Schtickzelle et al. 2007). This is also the case of mass

migrations through heterogeneous landscapes observed in

some collembolan species (Gauer 1997). Such heteroge-

neous environments can be considered stable at landscape

scale (although changing in the course of time at local

scale) and thus are predicted to select for “civilized” traits.

Biological invasions are still imperfectly understood

from the point of view of threats to biodiversity and com-

munity change. In particular, changes in trait distribution

of affected communities are poorly documented (Westley

2011). In the plant kingdom, invasive species are charac-

terized by a high production rate (McAlpine et al. 2008),

often associated with high phenotypic plasticity and effi-

cient dispersal mechanisms (Thi�ebaut 2007). Most

recorded effects of biological invasions are negative effects,

such as habitat loss (Lichstein et al. 2004) and increased

nutrient availability (Vitousek et al. 1987). However, high

litter input and the ease with which invasive plants exploit

soil nutrient resources may also help create new habitats

(Maurel et al. 2010). In the animal kingdom, invasive spe-

cies displace equilibria within communities either by pre-

dation or by competing with indigenous species, at least in

initial phases of invasion (Morrison 2002), and they bene-

fit from disturbances caused by human activities (Chauvel

et al. 1999). They may also change profoundly existing

habitats, as in the case of ecosystem engineers such as

earthworms (Eisenhauer et al. 2009). In all these cases,

indigenous specialists (Almeida-Neto et al. 2010), or spe-

cies unable to find rapidly safe refuges (Urban and Titus

2010) are at disadvantage, pointing in turn to a selection

in favor of “barbarians.” Invasive species themselves can be

classified as “barbarians,” given their high investment in

growth and reproduction, and more generally their versa-

tility (Prinzing et al. 2002a).

That unprecedented recurrent catastrophes can be

attributed to global change, in particular climate warm-

ing, is often advocated although still debated (Changnon

2009). If true, this gives strength to several predictions of

the Gaia model (Kleidon 2010). Although poorly docu-

mented from an adaptive point of view, present-day cata-

strophic events such as earthquakes, tsunamis or storms

destroy habitats to the same extent and with the same

rapidity as fires, pollution, deforestation, mining activities,

etc. As a consequence, traits associated with catastrophic

“natural” disturbances do not differ from those associated

with environmental hazards directly caused by human

activities: “barbarian” traits (see Table 1) are advanta-

geous, mostly because they do not rely on anticipation

for ensuring survival and reproduction of species. Paleon-

tological studies showed that “barbarian” traits were asso-

ciated with organisms benefiting from mass extinctions

which occurred at Permian-Triassic and Cretaceous-

Paleogene (K-T) boundaries (Fawcett et al. 2009).

Conclusions

The importance of anticipatory processes occurring in the

adaptation of organisms to stable or unstable environ-

ments has been stressed. Two categories of traits or of

organisms can be identified, called “civilized” and “bar-

barians,” according to advantage or disadvantage of antic-

ipating disturbing events, respectively. This corresponds

to the classical r-K dichotomy (Pianka 1970), here

enlarged to several other commonly used classifications,

such as “generalists” and “specialists” (see Table 1 for fur-

ther details). It allows predicting which series of traits are

or will be favored by present-day global change and asso-

ciated disturbances. From a practical point of view, traits

can be classified into “barbarians” and “civilized” on the

base of properties which define them (absence or presence

of anticipatory mechanisms, respectively) or proxies of

these properties listed in Table 1. Changes in trait repre-

sentation are expected to occur first, as a given species

can shift rapidly from a strategy to another, as this has

been shown to occur in bird species once classified as

“specialists” (Barnagaud et al. 2011; see also review by

Colles et al. 2009). The place taken by “barbarian” traits

within communities, whether due to species replacement

or to adaptation (selection or phenotypic plasticity), is

thought to increase dramatically, at least until a new equi-

librium state, if any, will be reached in a more or less

near future (Jump and Pe~nuelas 2005). This increase does

not necessarily cope with a corresponding decrease in

“civilized” traits or species except when a threshold of tol-

erance is attained in the “civilized” category (see Fig. 2).

Present-day collapses in global biodiversity (Laurance

et al. 2012) seem to indicate that this threshold has been

reached (Barnosky et al. 2012).
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