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Metabolomics in rheumatoid
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China, 2Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of
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Rheumatoid arthritis (RA) is an autoimmune disease accompanied bymetabolic

alterations. The metabolic profiles of patients with RA can be determined using

targeted and non-targeted metabolomics technology. Metabolic changes in

glucose, lipid, and amino acid levels are involved in glycolysis, the tricarboxylic

acid cycle, the pentose phosphate pathway, the arachidonic acid metabolic

pathway, and amino acid metabolism. These alterations in metabolic pathways

and metabolites can fulfill bio-energetic requirements, promote cell

proliferation, drive inflammatory mediator secretion, mediate leukocyte

infiltration, induce joint destruction and muscle atrophy, and regulate cell

proliferation, which may reflect the etiologies of RA. Differential metabolites

can be used as biomarkers for the diagnosis, prognosis, and risk prediction,

improving the specificity and accuracy of diagnostics and prognosis prediction.

Additionally, metabolic changes associated with therapeutic responses can

improve the understanding of drug mechanism. Metabolic homeostasis and

regulation are new therapeutic strategies for RA. In this review, we provide a

comprehensive overview of advances in metabolomics for RA.
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Abbreviations: RA, rheumatoid arthritis; ACPA, anti-citrullinated protein antibody; RF, rheumatoid

factor; NMR, nuclear magnetic resonance; LC-MS, liquid chromatography-mass spectrometry; TCA,

tricarboxylic acid; PPP, pentose phosphate pathway; AA, arachidonic acid; HIF-1a, hypoxia inducible

factor-1a; IL, interleukin; MMP9, matrix metalloproteinase 9; 5-HETE, 5-hydroxyeicosatetraenoic acid;

CIA, collagen-induced arthritis; FLS, fibroblast-like synoviocyte; OGPC, 1-oleoyl-sn-glycero-3-

phosphocholine; HC, healthy controls; CCL, C-C chemokine ligand; SF, synovial fluid; TNF-a, tumor

necrosis factor-a; PsA, psoriatic arthritis; DMARDs, disease-modifying antirheumatic drugs; L1, lipid

methyls; AUC, area under the curve; ILD, Interstitial lung disease; DAS28-CRP, disease activity score that

considers 28 joints with C-reactive protein; MTX, methotrexate; TNFi, TNF-a inhibitor; NLRP3,

nucleotide binding domain and leucine-rich repeat pyrin 3 domain.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by progressive synovial inflammation. The

development of RA is associated with susceptibility genes,

epigenetic modification, and the environment (1). Immune

cells, synovial cells, and cytokines are involved in joint

inflammation (2). Abnormal cellular and humoral immune

responses lead to the development of autoantibodies. However,

the key biological pathways driving the initial autoimmunity

remain unclear (3). Patients with RA can be classified according

to the presence or absence of antibodies. Although seronegative

RA may be associated with T cell disorders, the pathogenesis is

not well-understood (4). RA is diagnosed based on clinical

symptoms and laboratory indicators, such as the major

markers anti-citrullinated protein antibody (ACPA) and

rheumatoid factor (RF) (5). However, RF and ACPA have also

been detected in other autoimmune diseases, such as systemic

lupus erythematosus and systemic sclerosis (6, 7). Furthermore,

seronegative RA patients have a high rate of misdiagnosis. The

accurate diagnosis, prognosis, and risk prediction of RA remain

difficult because of the limited number of powerful biomarkers.

The pathological changes of RA synovial membrane are the

formation of synovial pannus and infiltration of immune cells.

High demands on energy requirements and biosynthetic

precursors, suggesting that metabolic changes are a

fundamental disease mechanism. In recent decades, studies

have focused on the pathogenesis and discovery of new

biomarkers using novel and high-precision techniques,

particularly metabolomics (8, 9).

Metabolomics is an evolving science that has followed the

development of genomics, transcriptomics, and proteomics.

Metabolites, by contrast, are the end result of interactions

among genes, RNA and proteins that better reflect the current

state of an individual, showing the potential as biomarkers.

Meanwhile, more and more metabolites involved in the

pathogenesis of diseases have been discovered. Glutamate can

stimulate tumor growth, survival, and proliferation by activating

phosphoinositide 3-kinase/Akt pathways (10). Sphingosine-1-

phosphate is important molecular players in metabolic diseases

(11). Lactate is not only the end product of glycolysis but also

acting as signalling molecule both in chronically inflamed tissues

and in cancerous tissues (12). These studies emphasize the

intrinsic physiological activity of metabolites and provide new

significance for the value of metabolomics. Small-molecule

metabolites in the tissues or body fluids (blood, urine, synovial

fluid) were identified by using nuclear magnetic resonance

(NMR) spectroscopy, l iquid chromatography-mass

spectrometry (LC-MS), and gas chromatography-mass

spectrometry metabolomics (13). They help to identify

differential metabolites between patients with RA and other

individuals, study the pathogenesis of RA, and screen for new
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diagnost ic and prognost ic markers . We provide a

comprehensive overview of recent progress in metabolomics

research of RA.
Metabolomics reveals the
pathogenesis of RA

RA is a complex disease caused by dysfunction in multiple

metabolic pathways. Glycolysis, the tricarboxylic acid (TCA)

cycle, the pentose phosphate pathway (PPP), the arachidonic

acid (AA) metabolic pathway, and amino acid metabolism have

been widely studied for their roles in RA (14, 15). The levels of

intermediate metabolites in these metabolic pathways were

shown to be increased or decreased compared with those in

healthy controls (HC) (16–18). Metabolites changes in RA

(Table 1) promote inflammation and the immune response

directly or indirectly in the pathogenesis (Figure 1).

A critical pathological feature of RA is the hypoxic

microenvironment of the synovial tissues (35). In the absence of

sufficient oxygen, prolyl-4-hydroxylases enzymes fail to hydroxylate

the proline residues in the oxygen-dependent degradation domain

of hypoxia inducible factor-1a (HIF-1a), thus preventing it’s

ubiquitination or proteasomal degradation by von-Hippel-Lindau

protein, resulting in stabilization of HIF-1a (36). HIF-1a is

transcription factor, which plays a crucial role in glucose

metabolism. It can increase the expression of the downstream

genes, like glucose transporter 1, and enzymes involved in

glycolysis, such as hexokinase 2, phosphofructokinase-1, and

pyruvate kinase M2, to promote glucose transport into cells and

glycolysis (37–40). The inflammatory response stimulates an

increase in the energy demand. Glucose metabolism via glycolysis

enables cells to produce ATPwhen oxygen levels are low to generate

the energy required by RA cells (41). Remarkably, glycolysis-derived

metabolites were recently found to be critical for immune cell

infiltration and inflammatory pathway activation (42). Pyruvate, the

final product of glycolysis, shows higher levels in the muscle in

patients with RA compared to that in HC, suggesting that glycolysis

is enhanced in RA (19). Pyruvate shows a strong angiogenic activity

by increasing the expression of vascular endothelial growth factor

and fibroblast growth factor receptor-2 (43).

Pyruvate dehydrogenase complex and pyruvate carboxylase

decarboxylate pyruvate to form acetyl-coenzyme A and

oxaloacetate, respectively, which enter the TCA cycle in the

mitochondria. The mitochondrial ultrastructure was damaged

under hypoxia conditions, indicating the breakdown of cellular

bioenergetics, which affected the metabolism in TCA cycle (44).

Intermediates of the TCA cycle such as a-ketoglutaric acid and

citrate typically show decreased levels, whereas succinate is

upregulated in RA (20–22). a-Ketoglutaric acid regulates the

balance between M1 and M2 macrophage polarization, induces

the secretion of interleukin (IL)-10 from T cells, and alleviates
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TABLE 1 Metabolites changes in rheumatoid arthritis.

The first
author

Cases Species Sample
type

Platform Up-regulated
metabolites

Down-regulated metabolites Ref.

Yang, X.Y. RA(n=25)
vs HC
(n=10)

human SF GC-MS lactic acid glucose 9

Srivastava,
N.K.

CIA rat
(n=5) vs
Ctrl rat
(n=5)

rat joint 1H-NMR lactate, alanine, branched-
chain amino acids, creatinine

choline, glycerophosphocholine 14

Anderson,
J.R.

RA(n=14)
vs OA
(n=10)

human SF 1H-NMR acetate, acetylated-
saccharides, glycine,
isoleucine, leucine,
methionine, sarcosine,
threonine

3-hydroxybutyrate, 2-hydroxybutyrate, 3-
hydroxyisovaleratecitrate, acetylcholine, adenosine, alanine,
asparagine, citrate, creatinine, glucose, glutamine, glycerol,
guanidoacetate, histidine, mannose, mobile-lipid, myoinositol, n-
acetylamino acid, proline, pyruvate, sn-glycero-3-
phosphocholine, taurine, tyrosine, valine

15

Zhou, J. RA(n=33)
vs HC
(n=32)

human serum GC-MS pyruvate branched-chain amino acids, leucine, isoleucine, valine,
threonine, alanine, methionine

17

Huffman,
K.M.

RA(n=51)
vs HC
(n=51)

human muscle LC-MS pyruvate 19

Alonso, A. IMID
(n=1210)
vs HC
(n=100)

human urine 1H-NMR citrate 20

He, Z. RA(n=15)
vs HC
(n=15)

human plasma GC-MS thymidine, uridine glycine, proline, 2-ketoglutaric acid, chenodeoxycholic acid,
ursodeoxycholic acid

21

Kim, S. RA (n=13)
vs non-RA
[AS (n=7),
BD (n=5),
gout
(n=13)]

human SF GC-MS succinate, octadecanol,
asparagine, terephthalate,
salicylaldehyde, glutamine,
citrulline, tyrosine, uracil,
lysine, ribitol, tryptophan,
xylose, ribose

isopalmitic acid, glycerol, myristic acid, palmitoleic acid,
hydroxylamine, ethanolamine

22

Ahn, J.K. RA FLS vs
OA FLS

patient-
derived
cell

FLS GC-MS fructose-6-phosphate,
glucose-6-phosphate

galactose, glucose, glutamine, methionine sulfoxide, oxoproline,
threonine, leucine, isoleucine, phenylalanine, tryptophan,
tyrosine

23

Kim, J. RA FLS vs
OA FLS

patient-
derived
cell

FLS LC-MS adenine glutamic acid, proline 24

RA iPSCs
vs OA
iPSCs

patient-
derived
iPSCs

iPSCs LC-MS nicotinamide, 4-
methoxychalcone, lysoPCs

Jiang, M. RA(n=27)
vs HC
(n=60)

human serum GC-MS,
LC-MS

lactic acid, dihydroxyfumaric
acid, aspartic acid,
glyceraldehyde, homoserine

4,8-Dimethylnonanoyl carnitine 25

Ding, X. CIA rat
(n=6) vs
Ctrl rat
(n=6)

rat serum LC-MS TXB2, 12(S)-HHTrE, PGE2,
12(S)-HETE, 12(S)-HEPE

Lyso-PE(18:2), Lyso-PE(20:4), Lyso-PC(22:5) 26

Wang, N CIA rat
(n=8) vs
Ctrl rat
(n=9)

rat joint LC-MS PGE2, PGD2, LTB4, LTE4,
15-HETE, 12-HETE, 5-
HETE, arachidonic acid

TXA2 27

Jónasdóttir,
H.S.

RA(n=24)
vs OA
(n=10)

human SF LC-MS 15-HETE, 6-trans-LTB4, 20-
OH-LTB4, 17-HDoTE

28

He, M. CIA mouse
(n=10) vs

mouse plasma LC-MS 12-HEPE, 13-HDoHE, 14-
HDoHE, 8-HETE, 12-HETE,

methionine, homocysteine, threonine, proline, alanine,valine,
cystathionin, lysine, glycylglycine, serine, asparagine, cysteine,

29

(Continued)
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inflammation (45, 46). Succinate can activate immune cells and

sustain IL-1b production (47). Citrate is negatively correlated

with C-reactive protein (CRP) (48). The significance of altered

TCA pathways in RA is currently being investigated, but a

previous study showed that disruption of redox is associated

with immunity and inflammation (49).

Glucose 6-phosphate from glycolysis enters the PPP to

produce ribose 5-phosphate and nicotinamide adenine

dinucleotide phosphate, which drive anabolic metabolism and

biomass production (50). Enhanced PPP and activated

glycolysis-related metabolic pathways in RA contribute to

rapid cell proliferation in the RA synovium (23, 24).

Pyruvate can be converted into lactate, which is significantly

elevated in RA (9, 14, 25). Accumulated lactate can mediate the

inhibition of CD4+ T cell viability in RA, promote M2

polarization, and induce IL-17 expression by activating

transducer and activator of transcription 3 in CD4+T cells

(51, 52).

AA can be released from membrane phospholipids under

hypoxia and inflammatory activation. AA increases matrix

metalloproteinase 9 (MMP9) secretion and expression (53).

MMPs can degrade the extracellular matrix, which causes joint

destruction (54). As metabolites of AA, prostaglandin E2,

thromboxane A2, leukotriene-B4, 5-hydroxyeicosatetraenoic

acid (5-HETE), 8-HETE, 12-HETE, 15-HETE, and 12(S)-

HETE were upregulated in the serum of a collagen-induced

arthritis (CIA) rat model (26, 27). These eicosanoids oxidized by
Frontiers in Immunology 04
AA are lipids that mediate the inflammatory response and

inflammatory cell infiltration (55, 56). Leukotriene-B4 can

initiate and amplify polymorphonuclear neutrophil chemotaxis

and increase the severity of acute inflammation (57).

Prostaglandin E2 plays an important role in immune system

inflammation, synovial hyperplasia, leukocyte infiltration, and

cytokine secretion such as IL-23-dependent IL-17 production

(58). 15-HETE can increase the expression of MMP2 andMMP9

to promote angiogenesis (59). The activities of 5-lipoxygenase

and 15-lipoxygenase, which affect the metabolic pathway of AA,

were higher in RA compared with that in osteoarthritis (28).

Amino acid metabolism disorders often occur in patients

with RA. Proline, tryptophan, cysteine, and glutamine levels are

inconsistent between RA and control group (29, 30). Levels of

aspartic acid, citrulline, and arginine, which are involved in the

urea cycle, are increased in RA (22, 25, 31). Arginine, proline,

and glutamine can be converted to a-ketoglutaric acid to

participate in the TCA cycle. Increased consumption of

glutamine is associated with T cell proliferation (60). The

interaction between citrulline and human leukocyte antigen

has important effects on ACPA expression (61). In addition to

characterizing inflammatory and immune function disorders,

muscle expenditure is associated with metabolic abnormalities in

RA, particularly amino acid metabolism. Compared to the

control group, levels of several amine metabolites (methionine,

homocysteine, threonine, proline, alanine, cystathionine, valine,

and glycylglycine) were significantly reduced in CIA mice, which
TABLE 1 Continued

The first
author

Cases Species Sample
type

Platform Up-regulated
metabolites

Down-regulated metabolites Ref.

Ctrl mouse
(n=10)

10-HDoHE, 13,14-dihydro-
PGF2a

tryptophan, glutamine, glutamine, leucine, gamma-
glutamylalanine, PGE3, 9-hydroxyoctadecadienoic acid, 9,10-
dihydroxy-9Z-octadecenoic acid

He, Z. RA(n=27)
vs HC
(n=27)

human plasma GC-MS cysteine, glutamine, citric acid 30

Liu, Y AIA rat
(n=10) vs
Ctrl rat
(n=10)

rat plasma LC-MS glutamate, arginine,
methionine

proline, valine, tyrosine, phenylalanine, leucine, glycine,
tryptophan, histidine, threonine

31

He, M. CIA mouse
(n=9) vs
Ctrl mouse
(n=10)

mouse plasma LC-MS methylcysteine, o-
phosphoethanolamine

methionine, homocysteine, threonine, proline, alanine,
cystathionine, valine, glycylglycine, lysine, serine, asparagine,
cysteine, tryptophan

32

Takahashi,
S.

RA FLS vs
OA FLS

patient-
derived
cell

FLS GC-MS,
CE-MS

glucose, glutamine, glutamate, lactate 33

Su, J. RA(n=240)
vs HC
(n=69)

human plasma LC-MS 1-oleoyl-sn-glycero-3-phosphocholine,1-stearoyl-2-hydroxy-sn-
glycero-3-phosphocholine, glycerophosphocholine, l-alanine

34
frontiersi
RA, Rheumatoid arthritis; HC, healthy controls; SF, synovial fluid; GC-MS, gas chromatography-mass spectrometry; CIA, collagen-induced arthritis; Ctrl, control; NMR, nuclear magnetic
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may be related to muscle atrophy (29, 32). In contrast, high

concentrations of ornithine, glycine, proline, aspartate, and

arginine in the muscle were related to skeletal muscle

dysfunction (19). Metabolomics analysis also revealed

increased metabolism of the non-essential amino acid

glutamine in RA-fibroblast-like synoviocytes (FLS). Glutamine

deprivation reduced the proliferation of RA-FLS, suggesting that

glutamine plays an important role in regulating the proliferation

of these cells (33).

Other metabolites may also mediate the secretion of

inflammatory cytokines and are involved in the inflammatory

pathway of RA. 1-Oleoyl-sn-glycero-3-phosphocholine (OGPC)

levels were lower in patients with RA compared with that in HC

based on non-target metabolomics analysis. OGPC can

downregulate the level of IL-6 in the plasma and further affect

the downstream Janus kinase signaling pathway (34). C-C

chemokine ligand (CCL)-20 was found to be increased

significantly in the RA synovial fluid (SF) under hypoxia

conditions, which was mainly mediated by carnitine (62).
Frontiers in Immunology 05
Formate, propylene glycol, glutamine, lysine alanine, glucose,

and serine dimethylamine in the serum were negatively

correlated with synovial tumor necrosis factor-a (TNF-a) (63).
Although metabolomics has improved the understanding of

the pathogenesis of RA, some studies have reported inconsistent

results (64–66). For instance, 1D-NMR was used to determine

the concentrations of glucose and lactate in the supernatants and

cell extracts, which showed similar results between the RA and

uninflamed control group (67). However, the concentrations of

glucose were decreased when in RA when the control group are

HC or OA (9, 15). Branched-chain amino acids were

upregulated in the joint tissues of CIA rats but downregulated

in the SF of patients with RA (14, 17).The metobolic in tissue or

cells may represents metabolic characteristics of specific

position, which may cause different trends in studies.

Additionally, the concentrations of metabolites between the

blood and urine in CIA rats differ (18). In addition to the

above reasons, the other underlying reason for inconsistent

changes in metabolites in different studies requires further study.
FIGURE 1

Alternations of metabolic pathways participate in the pathogenesis of rheumatoid arthritis. In the hypoxia microenvironment, HIF-1a promotes the
expression of glucose transporter 1 and activation of hexokinase 2, phosphofructokinase-1, and pyruvate kinase M2 in glycolysis. Glucose
transported across the cell membranes by glucose transporter 1 then converted to pyruvate and generates two molecules of ATP. Glucose 6-
phosphate from glycolysis enters the PPP to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate. Pyruvate is
transformed into acetyl-coenzyme A and oxaloacetate and enters the TCA cycle in the mitochondria. AA can be derived from membrane
phospholipids in hypoxia and inflammatory environments. AA oxidized to thromboxanes and prostaglandins such as prostaglandin E2 by
cyclooxygenase, or leukotrienes and HETEs by lipoxygenase promotes leukocyte infiltration. Arginine, proline, and glutamine can be converted into
a-ketoglutaric acid and participate in the TCA cycle. Metabolite changes in RA can promote cytokine secretion, increasing the expression of
vascular endothelial growth factor, fibroblast growth factor receptor-2, MMP9, MMP2, and activated signal transducer and activator of transcription
phosphorylation along with leukocyte infiltration. Red (up) arrow indicates up-regulated metabolites and green (down) arrow indicates down-
regulated metabolites. The figure was drawn by using Figdraw. AA, Arachidonic acid; a-KG, a- Ketoglutarate; ATP, Adenosine Triphosphate; FGFR-2,
Fibroblast Growth Factor Receptor 2; G6P, Glucose 6 Phosphatase; GLUT, Glucose Transporters; HIF-1, Hypoxia Inducible Factor-1; HK2,
Hexokinase 2; IL-1b, Interleukin-1b; IL-10, Interleukin-10; IL-17, Interleukin-17; LDHl, Lactate Dehydrogenase; LOX, lipoxygenase; LTs, Leukotrienes;
MMP2, Matrix Metalloproteinases2; MMP9, Matrix Metalloproteinases9; NADPH, Nicotinamide Adenine Dinucleotide Phosphate; PC, pyruvate
carboxylase; PDC, pyruvate dehydrogenase complex; PEG2, Prostaglandin E2; PFK1, Phosphofructokinase-1; PKM2, Pyruvate Kinase M2; PPP,
Pentose Phosphate Pathway; R5P, ribulose 5-phosphate; STAT3, Signal Transducer and Activator of Transcription 3; TCA, Tricarboxylic Acid; TXs,
Thromboxane; VEGF, Vascular Endothelial Growth Factor.
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Despite these discrepant results, metabolomics can further

expand our understanding of RA. Activation of glycolysis, the

PPP pathway, and AAmetabolism and perturbations in the TCA

cycle and amino acid metabolism can meet the energy supply in

the pathological environment of RA and provide materials for

immune cell and synovial cell proliferation. The diversity in

metabolites explains the mechanisms of inflammatory cell

infiltration, cytokines accumulation, angiogenesis, bone

destruction, and muscle atrophy. In addition to targeted and

untargeted metabolomics in RA, integrating proteomics,

transcriptomics, and genomics can help reveal the specific

disease pathogenesis (68). Using metabolomics approaches,

changes in metabolites can be evaluated to identify the

molecular characteristics of RA and detailed the pathogenesis

(20, 69).
Identifying biomarkers of RA
using metabolomics

According to current classification criteria, the diagnosis of RA

includes the type and number of affected joints, concentrations of

RF and ACPA in serology analysis, acute-phase reactants, and

duration of symptoms (70). It is particularly challenging to

differentiate seronegative RA and other diseases with overlapping

symptoms, such as osteoarthritis and psoriatic arthritis (PsA). New

biomarkers for differentiating RA, especially seronegative RA, and

other inflammatory arthritis are urgently needed. Patients would

also benefit from the identification of biomarkers for diagnosing

different complications.

RA is treated using trial-and-error approach, in which

disease-modifying antirheumatic drugs (DMARDs) are key

therapeutic drugs. According to treatment guidelines, when

DMARDs fail, biological agents are recommended (71).

Patients are more likely to suffer adverse effects when the

effects of a treatment are uncertain, supporting the need for

prognostic biomarkers.

The metabolic processes of RA differ between healthy

individuals and those with other inflammatory or rheumatic

diseases, even when their clinical features are similar (72–74).

Serum metabolite and lipid concentrations were calculated using
1H single-pulse NMR of samples from patients with seronegative

RA and PsA. Age, sex, lipid polyunsaturated allylic methylenes/

lipid methyls (L1), lipid a-methylenes/L1, lipid aliphatic chain/

L1, alanine, succinate, and creatine phosphate are found to be

predictors in diagnostic models with an area under the curve

(AUC) of 0.845 (8). The concentrations of lactic acid and glucose

were detected in the SF from patients with inactive RA, patients

with active RA, and normal subjects. The lactic acid

concentration in SF was elevated whereas that of glucose was

decreased in RA. The lactic acid and glucose levels show

potential as biomarkers for active RA. Lactic acid showed 96%
Frontiers in Immunology 06
sensitivity and 85% specificity. Glucose showed 84% sensitivity

and 95% specificity (9). In another study, blood metabolites were

analyzed among HC, RA, and PsA subjects. Fifty-two differential

metabolites, evaluated in a subsequent validation test to

distinguish patients with RA from HC, showed a sensitivity of

81% and specificity of 67% (75). The levels of plasma nucleotides

(UTP, ATP, GDP, and ADP) in patients with RA were elevated.

However, the levels of plasma nucleotides in systemic lupus

erythematosus and PsA did not significantly differ, compared

with those of controls in association tests. These results indicate

the disease specificity of plasma nucleotides in RA, revealing

their potential as clinical biomarkers for RA, particularly for

seronegative RA (76). Serum samples from patients with RA,

primary Sjögren’s syndrome, and HC were analyzed using ultra-

high-performance liquid chromatography coupled with high-

resolution mass spectrometry. 4-Methoxyphenylacetic acid, L-

phenylalanine, and L-leucine were screened as specific

biomarkers to distinguish patients with RA from those with

PsA and HC (77). Differential metabolites between RA and HC

have been detected in several studies, but their use as diagnostic

markers requires validation in large cohorts (78–81).

Additionally, there have been exciting advances in the use of

diagnostic markers for patients with RA-related complications.

Compared to those in interstitial lung disease (ILD) (-) RA, the

serum concentrations of decanoic acid and morpholine were

lower, whereas the concentration of glycerol was higher in ILD

(+) RA. These three metabolites with an AUC of 0.919 can be

used as markers to distinguish ILD in RA (82). Metabolomics

methods were applied to identify biomarkers of renal damage in

RA. Five specific markers (stachydrine, 2-phenylethanol

glucuronide, lysoPC (18:2) b, lysoPC (16:0) a, lysoPC (18:3) b)

were identified as potential biomarkers for renal damage (83).

Higher plasma asymmetric dimethyl-l-arginine concentrations

were inversely correlated with the log-transformed reactive

hyperemia index and significantly associated with endothelial

dysfunction (84),which may be associated with RA-related

cardiovascular disease.

CRP, erythrocyte sedimentation (ESR), disease activity score

using CRP (DAS28-CRP), and DAS28-ESR are commonly used

to evaluate inflammation and disease activity in RA (85). One

limitation of assessing disease activity using DAS28 is the

subjectivity of the analysis of painful of joint counts (86, 87).

CRP secretion is largely induced by IL-6 and IL-1, which were

interrupt by IL-6 or IL-1 inhibitor (88). The used of biological

agent like tocilizumab may lead to a decrease in CRP, which does

not necessarily imply a decrease in disease activity (89). In recent

years, a lot of researches have been devoted to discover the

metabolites to reflect and predict disease activity and

inflammation. Fifty-one metabolites were significantly

associated with the disease activity score, which were

significantly associated with DAS28-CRP (90). The

concentration of the tryptophan metabolite, kynurenine in

RA-SF was significantly lower than that in osteoarthritis.
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Kynurenine was negatively correlated with the CRP

concentration, which is a dependable biomarker for RA (91).

Twelve metabolites (glycocyamine, indol-3-lactate, b-alanine,
asparagine, citrate, cyano-L-alanine, leucine, nicotinamide,

citrulline, methionine, oxoproline, and salicylaldehyde) were

significantly correlated with DAS28-ESR (92). Elevated levels

of lactate, acetylated glycoprotein, cholesterol, and unsaturated

lipids and a decreased level of high-density lipoprotein show

potential as biomarkers of disease severity (93). The current

high-throughput metabolomics studies were limited in still rely

on CRP, ESR and DAS28 to define RA inflammation and disease

activity. Nevertheless, these metabolites show potential for

disease activity and inflammation monitoring.

A large proportion of patients show a poor response to

DMARDs or biological agents (94, 95). Drug treatment can alter

serum metabolite levels in RA (96–99). Additionally, the

metabolic profiles differ between patients who respond and do

not respond to treatment (100). Identifying biomarkers of the

drug response before administration would greatly reduce

treatment costs. Metabolite profiles were examined prior to

treatment initiation with methotrexate (MTX) in 82 patients

with early RA, which revealed homocysteine, glycerol-3-

phosphate, and 1,3-/2,3-DPG as models for predicting the

response to MTX with an AUC of 0.81 (95% CI: 0.72–0.91)

(101). The plasma level of N-methylisoleucine in MTX-

responsive mice was significantly lower than that in

nonresponsive mice, indicating its potential as a therapeutic

biomarker (102). Baseline urine metabolism profiles were

discriminated to differentiate responders from non-responders

to TNF-a inhibitor (TNFi) (infliximab and etanercept) therapy

with a sensitivity of 88.9% and specificity of 85.7% (103). A

multivariate diagnostic model (adjusted for age, ACPA

positivity, and interleukins), 3-hydroxybutyrate, and

phenylalanine correctly predicted non-responders and

responders in 77.1% of cases (104). Orthogonal projections to

latent structures discriminant analysis showed good

discrimination of responders and moderate responders to

etanercept when the plasma metabolic profile of patients with

RA was analyzed after 6 months of etanercept treatment (105).

The S-plot and variable importance in projection scores

calculated using the same method revealed metabolites that

contributed to the differences in responders. Five metabolites

(glycerol 3-phosphate, betonicine, N-acetylalanine, hexanoic

acid, and taurine) are potential predictors of TNFi

respondents. Three metabolites (3-aminobutyric acid, citric

acid, and quinic acid) show potential as predictors of the

response to abatacept (106). After 6 months of TNFi therapy,

two different metabolic profiles separated good responders from

non-responders, and carbohydrate derivates (D-glucose, D-

fructose, sucrose, and maltose) emerged as determinants of the

therapeutic response. However, the prediction model based only

on the most significant metabolites lacks sufficient

discrimination (107). Combining metabolites and clinical
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models can improve the accuracy of identifying non-

responsive patients. Serum samples from patients with RA

were measured using targeted LC-MS platforms, which

showed that combining metabolites with clinical parameters

exhibited reasonable predictive abilities for differentiating

TNFi responders and non-responders (108). Twenty-four

metabolites may respond to the biological DMARDs analyzed

using NMR spectroscopy. Compared with levels in those who

did not respond, N-acetylglucosamine, N-acetylgalactosamine,

and N-acetylneuraminic acid levels were responders before and

after three months of biological DMARD treatment (109). A

combined model containing 16 clinical baseline parameters and

4 metabolites was built to predict the response to TNFi therapy.

The model accurately discriminated good- and non-

responders (108).
Metabolomics reveals the drug
mechanism of action

The biochemical basis of the role of DMARDs in RA

remains controversial (110). As previously described,

metabolic changes in patients with RA are involved in the

disease pathogenesis. Metabolite analysis can further improve

the understanding of the efficacy and potential biochemical

mechanisms of drug therapy.

Plasma metabolites were identified in HC and MTX-treated

patients with RA at baseline and after 16 weeks of treatment.

MTX partially corrected the levels of triglycerides and fatty acids

and normalized plasma metabolism in patients with RA (111).

Exposure of the K562 human erythroblastoid cell line to MTX

increased levels of 76 and decreased levels of 68 metabolites. The

key metabolic pathways associated with the pharmacological

activity of MTX include folate-related metabolites, nucleotides,

amino acids, and carbohydrates. However, mechanistic studies

are needed to define how MTX affects these pathways (112).

MTX can downregulate the activation of nuclear factor kappa-

light-chain-enhancer of activated B cells, nucleotide-binding

domain, and leucine-rich repeat pyrin 3 domain/caspase-1

inflammatory pathways; reduce the levels of cytokines; and

regulate inflammation-related metabolic networks (arachidonic

acid, linoleic acid, and sphingolipid metabolism). The direct or

indirect role of the MTX-mediated metabolome and

inflammatory pathways requires further validation (113). 1H

NMR-based lipid/metabolomics was used to investigate changes

in lipid metabolites in the serum from patients with RA treated

with Janus kinase inhibitors. The levels of omega-3

polyunsaturated fatty acids and docosahexaenoic acid (DHA)

were elevated. A decrease in pain was significantly associated

with the elevate of DHA levels (114). The results have invited

our speculation, whether intake of exogenous DHA also relieves

pain in RA? Chronic prednisolone therapy is associated with a
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lower asymmetric dimethyl-l-arginine concentration, suggesting

that long-term glucocorticoid administration can restore

endothelial function (115). Traditional Chinese medicine is

also widely used to treat RA, but its mechanism of action

requires further investigation. Metabolomics is a powerful

approach for understanding the mechanism of traditional

Chinese medicine formulations (116–119).
Limitations and outlook

The heterogeneity of patients with RA is an important factor

affecting the accuracy of the results of studies with small sample

sizes (120). The RA metabolome results require further

validation using large sample, multicenter cohort data. The

inconsistent medication regimen in participants, accompanied

by metabolic disorders (diabetes, fatty liver, adiposis), body mass

index, and whether samples were collected before or after meals,

are important factors influencing metabolic disturbances (121–

123). Thus, the patients recruited for these studies should be

carefully considered and meet stringent criteria. Because of the

complexity of metabolites, sample processing is necessary (124,

125). Additionally, ongoing effort is required to improve the

coverage of extremely low-abundance metabolites.

Overall, biomarker screening using metabolomics can improve

the accuracy of diagnosis and prognosis, without the need for

subjective experience. Metabolomics studies of seronegative RA are

important for examining the disease pathogenesis and screening for

biomarkers. Additionally, further studies of other rheumatoid

immune diseases are needed to demonstrate the effectiveness of

the diagnosis biomarkers. Metabolic changes that participate in the

pathogenesis of RA can provide a mechanism and rationale for

treatment administration, such as glucose deprivation or glycolytic

inhibitors (126, 127). Novel sensitive therapeutics can be developed

to target key enzymes in metabolic pathways. With the progression

of multi-omics technology, integrative analysis of metabolomics

with proteomics, transcriptome, genomics, and 16S rRNA gene

sequencing can provide insight into RA (128, 129) and lead to

precision medicine.
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