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Simple Summary: DNA methylation age estimation is one of the hottest topics in forensic field
nowadays. Age estimation can be improved under a multidisciplinary approach, the role of a forensic
anthropologist and forensic epigeneticist being crucial in the establishment of new basis for age
estimation. The development of epigenetic models for bones and tooth samples is crucial in this
way. Moreover, developing models for age estimation using several samples can be a useful tool
in forensics. In this study, we built two multi-tissue models for age estimation, combining blood,
bones and tooth samples and using two different methodologies. Through the Sanger sequencing
methodology, we built a model with seven age-correlated markers and a mean absolute deviation
between predicted and chronological ages of 6.06 years. Using the SNaPshot assay, a model with
three markers has been developed revealing a mean absolute deviation between predicted and
chronological ages of 6.49 years. Our results showed the usefulness of DNA methylation age
estimation in forensic contexts and brought new insights into the development of multi-tissue models
applied to blood, bones and teeth. In the future, we expected that these procedures can be applied to
the Medico-Legal facilities to use DNA methylation in routine practice for age estimation.

Abstract: The development of age prediction models (APMs) focusing on DNA methylation (DNAm)
levels has revolutionized the forensic age estimation field. Meanwhile, the predictive ability of
multi-tissue models with similar high accuracy needs to be explored. This study aimed to build
multi-tissue APMs combining blood, bones and tooth samples, herein named blood–bone–tooth-
APM (BBT-APM), using two different methodologies. A total of 185 and 168 bisulfite-converted DNA
samples previously addressed by Sanger sequencing and SNaPshot methodologies, respectively,
were considered for this study. The relationship between DNAm and age was assessed using simple
and multiple linear regression models. Through the Sanger sequencing methodology, we built a
BBT-APM with seven CpGs in genes ELOVL2, EDARADD, PDE4C, FHL2 and C1orf132, allowing us
to obtain a Mean Absolute Deviation (MAD) between chronological and predicted ages of 6.06 years,
explaining 87.8% of the variation in age. Using the SNaPshot assay, we developed a BBT-APM with
three CpGs at ELOVL2, KLF14 and C1orf132 genes with a MAD of 6.49 years, explaining 84.7% of the
variation in age. Our results showed the usefulness of DNAm age in forensic contexts and brought
new insights into the development of multi-tissue APMs applied to blood, bone and teeth.

Keywords: DNA methylation (DNAm); epigenetic age estimation; multi-tissue age prediction models
(APMs); Sanger sequencing; SNaPshot

1. Introduction

Age estimation is one of the most important issues in forensic contexts. Among
the parameters of the biological profile, the estimate of adult’s age at death has always
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been problematic in forensic anthropology since skeletal aging continues to be largely
unknown, and all the available methods continue to fail in the approximation to the real
age. In other words, there is a discrepancy between biological and chronological ages; the
older, the worse. Despite significant research that has been conducted to face problems
of adults’ age at death, there is not a model of age prediction that can be considered very
satisfactory. In particular, aging the elderly is lacking age indicators that can discriminate
among individuals of seventy, eighty and ninety. Apart from that, the methods that can be
applied always depend both on the state of completeness and preservation of the human
remains. In forensic anthropology practice, there are many situations where the targeted
age indicators are missing and where alternatives are needed. That is the case of some
burned remains, dismembered bodies and incomplete bodies, among others. On the other
hand, in the case of a fresh body of an unidentified victim, where physiognomic traits are
no longer available and with no suspicion of identity, age is always a needed parameter.
In those situations, an alternative is also required. Although imaging methods could be a
good alternative, we here argue that the genetic approach by means of DNA methylation
(DNAm) is also a good choice.

DNAm analysis for age estimation has emerged in the forensic field in recent years.
Several age-related markers have been investigated in different tissues, including blood,
saliva, buccal swabs, sperm, teeth and bones, allowing the development of tissue-specific
age prediction models (APMs) with high accuracy [1]. The development of multi-tissue
APMs brought many advantages in forensics, since they can be applied to several contexts
with different types of samples. However, the discovery of universal biomarkers of age
applied simultaneously to many tissue types can be a challenge, since it has been observed
that only a few markers can work well as multi-tissue age predictive markers [2].

To our knowledge, only three reports addressed multi-tissue DNAm age prediction in
human individuals. Horvath [3] assessed methylation information of 353 CpGs, developing
a highly accurate multi-tissue age predictive model showing a strong correlation between
predicted and chronological ages (R = 0.97), and revealing a median absolute difference
between chronological and predicted ages of 2.9 years (training set) and 3.6 years (test set).
The high accuracy can be explained by the larger number of CpGs included in the model.
However, a high number of age markers can also bring a challenge for forensic casework
application. Moreover, in the Horvath model a larger error (around 10 years) was observed
in several tissues suggesting that the best markers for one tissue may not be the best for
another. Using published databases, Alsaleh et al. [4] identified a small set of 10 CpG
sites and built a multi-tissue model for blood, semen, saliva, menstrual blood and vaginal
secretions with a Mean Absolute Deviation (MAD) from chronological age of 3.8 years.
Jung et al. [2] developed a multi-tissue APM applied to blood, buccal swabs and saliva
with DNAm captured by a SNaPshot assay using five CpGs located at ELOVL2, FHL2,
C1orf132, KLF14 and TRIM59 genes. The multi-tissue model showed high accuracy with a
MAD from chronological age of 3.553 years. This MAD value was similar to that reported
in the same study when developing tissue-specific APMs (MAD = 3.17 years in blood;
MAD = 3.82 years in buccal swabs; MAD = 3.29 years in saliva). In addition, Jung and
colleagues [2] have observed that the FHL2 gene is more tissue-specific, revealing strong
positive age correlation values in saliva and blood, and a weak age correlation in buccal
swabs. They observed also that ELOVL2 and TRIM59 seem to work as better multi-tissue
markers than FHL2, C1orf132 or KLF14.

Our group previously assessed the methylation information of age-correlated CpG
sites in genes ELOVL2, FHL2, EDARADD, PDE4C, C1orf132, TRIM59 and KLF14, cap-
tured by Sanger sequencing and SNaPshot methodologies [5–8]. Several tissue-specific
APMs were developed, including for blood [5–7], teeth [8] and bones [8]. Considering
the scarcity of multi-tissue APMs developed until now, the present study aimed to re-
examine the obtained DNAm levels for these highly age-correlated genes combining the
previously addressed tissues to test for a multi-tissue blood–bone–tooth age prediction
model (BBT-APM).
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2. Materials and Methods
2.1. Population Sample

A total of 185 samples (76 females, 109 males; aged 1–94 years old) from living and
deceased individuals from blood, bones and teeth previously addressed for DNAm levels
by Sanger sequencing in genes ELOVL2 (9 CpGs), EDARADD (4 CpGs), FHL2 (12 CpGs),
PDE4C (12 CpGs) and C1orf132 (6 CpGs) [5,6,8], and 168 samples (67 females, 101 males;
1–94 aged years old) from living and deceased individuals previously analyzed using a
SNaPshot assay for 5 specific CpG sites in genes ELOVL2, FHL2, KLF14, C1orf132 and
TRIM59 [7,8], were considered for this study. The same samples were addressed in both
methodologies; however, some samples failed PCR amplification and were excluded from
further analysis, which explains the difference in number between the two methods. The
age distribution of each training set was shown in Table S1.

Peripheral blood samples from healthy living individuals of Portuguese ancestry were
collected from users of Biobanco—Hospital Pediátrico de Coimbra and other hospitals;
blood samples from deceased individuals were collected during routine autopsies, after
consulting RENNDA (Registo Nacional de Não Dadores) in Serviço de Patologia Forense
da Delegação do Centro do Instituto Nacional de Medicina Legal e Ciências Forenses
(INMLCF) and from Bodies Donated to Science (BDS), before the embalming method in
Departamento de Anatomia da Faculdade de Medicina da Universidade do Porto (FMUP).
Fresh bone samples (rib) were collected, after consulting RENNDA, during autopsy in
Serviço de Patologia Forense das Delegações do Centro e Sul do INMLCF. Tooth samples
(molars) from living individuals were collected in dentist offices, after written informed
consent, and tooth samples from deceased individuals (molars) were collected from BDS in
Departamento de Anatomia da FMUP. We excluded individuals with known diseases or
other clinical conditions that could influence DNAm levels. All blood and bone samples
from dead bodies were collected within five days after death.

The herein developed multi-tissue APM using Sanger sequencing includes: 65 blood
samples from healthy individuals (42 females, 23 males; aged 1–94 years old), 68 blood
samples from deceased individuals (15 females, 53 males; aged 24–91 years old), 23 tooth
samples (15 females, 8 males; aged 26–88 years old) and 29 bone samples (4 females,
25 males; aged 26–81 years old). For the multi-tissue APM developed by SNaPshot,
55 blood samples from healthy individuals (34 females, 21 males; aged 1–94 years old),
59 blood samples from deceased individuals (13 females, 46 males; aged 24–91 years old),
23 tooth samples (15 females, 8 males; aged 26–88 years old) and 31 bone samples (5 females,
26 males; aged 26–81 years old) were considered.

The study protocol was approved by the ethical Committee of Faculdade de Medicina
da Universidade de Coimbra (n◦ 038-CE-2017). For living individuals, written informed
consent was previously obtained from adult participants and from children’s parents under
the age of 18 years.

2.2. Sanger Sequencing of C1orf132 in Blood Samples from Living Individuals

As the C1orf132 gene was not previously addressed in blood samples from living indi-
viduals using the Sanger sequencing methodology, the genomic DNA extracted from blood
samples of living individuals using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
was bisulfite converted using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine,
CA, USA), and submitted to polymerase chain reaction (PCR) amplification using the
Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) for a selected region of C1orf132, as
previously described [5]. Sequencing was performed in the ABI 3130 sequencer (Applied
Biosystems, Foster City) with Big-Dye Terminator v1.1 Cycle Sequencing kit (Applied
Biosystems), using primers and conditions previously described [5].

2.3. Statistical Analyses

Statistical analyses were performed using IBM SPSS statistics software for Windows,
version 24.0 (IBM Corporation, Armonk, NY, USA). Linear regression models were used
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to analyze the relationships between DNAm levels at CpG sites and chronological age.
The simple linear regression coefficients from the highest age-correlated CpGs from each
gene for Sanger sequencing data, and from each age-correlated CpG site addressed by
SNaPshot, were used to predict the age of individuals in the combined set of blood, bone
and tooth samples. For both methodologies, all the statistically significant age-correlated
CpG sites were combined for analysis using the stepwise regression approach for selection
of the relevant variables to be included in a multi-locus BBT-APM. We calculated the
Spearman correlation value, the mean absolute deviation (MAD) and the root mean square
error (RMSE) between chronological and predicted ages for the combined training set of
samples in both methodologies. For both the training sets, each obtained MAD value was
interpreted as either correct or incorrect using a cutoff value according to the standard
error (SE) of the estimate calculated for each APM.

In addition, the MAD values were calculated for subsets of four distinct age categories
(<30 years, 31–55 years, 56–79 years, >80 years) for each training set used in Sanger
sequencing and SNaPshot methodologies.

Validation of the BBT-APMs was performed by 3-fold cross-validation that consists of
randomly removing a set of samples from the training set and to develop three independent
multiple linear regressions on the remaining samples. Subsequently, each model is used
to predict the age of the removed samples assigned as validation sets. An additional
validation was performed by splitting the complete data set into two subsets (training
and validation sets) and independent regression was calculated for the training set and
applied to the validation set. All the independent linear regression equations developed for
validation purposes included the same CpG sites that have been selected for development
of the final multi-tissue APM for each methodology.

3. Results
3.1. Multi-Tissue BBT-APM using Sanger Sequencing

DNAm levels of 43 CpGs located at ELOVL2 (9 CpGs), EDARADD (4 CpGs), FHL2
(12 CpGs), PDE4C (12 CpGs) and C1orf132 (6 CpGs) were assessed in a combined train-
ing set of 185 samples, including blood, teeth and bones from Portuguese individuals
(76 females, 109 males; aged 1–94 years) using the bisulfite PCR sequencing methodology.
The simple linear regression analysis showed that the strongest age-correlated site in each
gene was: ELOVL2 CpG6 (R = 0.759, p-value = 6.87 × 10−36), explaining 57.3% of the
variation in age; FHL2 CpG1 (R = 0.692, p-value = 1.11 × 10−27), explaining 47.6% of the
variation in age; EDARADD CpG3 (R = −0.682, p-value = 1.21 × 10−26), explaining 46.2% of
the variation in age; C1orf132 CpG1 (R = −0.654, p-value = 5.67 × 10−24), explaining 42.5%
of the variation in age and PDE4C CpG2 (R = 0.613, p-value = 1.79 × 10−20), explaining
37.2% of the variation in age (Table 1 and Supplementary Table S2). A clear positive age
correlation was observed for ELOVL2 CpG6, PDE4C CpG2 and FHL2 CpG1 markers, and
a clear negative age correlation was observed for EDARADD CpG3 and C1orf132 CpG1
markers (Supplementary Figure S1). The predicted age of individuals was calculated using
the simple linear regression coefficients for the individual strongest age-associated markers
allowing us to obtain MAD values of 12.01 years for ELOVL2 CpG6, 13.23 years for C1orf132
CpG1, 13.52 years for EDARADD CpG3, 13.16 years for FHL2 CpG1 and 13.58 years for
PDE4C CpG2 (Table 1).

Simultaneously testing the 35 significant age-associated CpGs from ELOVL2 (nine CpGs),
EDARADD (three CpGs), FHL2 (nine CpGs), PDE4C (eight CpGs) and C1orf132 (six CpGs)
using stepwise regression analysis allowed us to select a multi-locus APM combining
seven CpGs (EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2 CpG5, PDE4C CpG5,
PDE4C CpG9, C1orf132 CpG3). The multiple regression analysis combining these CpGs
enabled an age correlation (R) value of 0.940 (p-value = 7.36 × 10−79), explaining 87.8%
of the variation in age (corrected R2 = 0.878) (Table 1). The formula to predict age of
individuals built with the multiple linear regression coefficients (Supplementary Table
S3) was as follows: 26.852 − 24.767 × DNAm level EDARADD CpG3 + 68.537 × DNAm
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level FHL2 CpG5 − 51.319 × DNAm level FHL2 CpG11 + 57.461 × DNAm level ELOVL2
CpG5 + 41.449 × DNAm level PDE4C CpG5 − 66.397 × DNAm level PDE4C
CpG9 − 27.418 × DNAm level C1orf132 CpG3. The correlation between predicted and
chronological ages was 0.915 (Spearman correlation coefficient) with a MAD from chrono-
logical age of 6.06 years (RMSE = 7.60) (Figure 1). Correct predictions were 73%, assuming
that chronological and predicted ages match around eight years, according to the standard
error of estimate calculated for the final APM (SE = 7.86).
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Figure 1. Predicted age versus chronological age using the multi-locus multi-tissue APM developed
for ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes including blood samples from living
individuals (1), blood samples from deceased individuals (2), bone samples (3), tooth samples from
living individuals (4) and tooth samples from deceased individuals (5). The corresponding Spearman
correlation coefficients (r) are depicted inside each plot.

The accuracy of the developed BBT-APM was tested through a threefold cross val-
idation in the training set of 185 samples showing a MAD of 6.27 years (RMSE = 6.27)
(mean value obtained for the three test sets). This value was very close to the MAD of
6.06 (RMSE = 7.60) obtained in the whole training set. The validation by splitting the over-
all training set into two sets of 117 and 68 samples (training and validation sets) allowed
us to obtain an independent MAD value for the training set of 6.09 years (RMSE = 7.55);
applying the model on the validation set, a MAD of 6.08 years (RMSE = 7.64) was obtained.
Both independent MAD values were very close to the MAD of 6.06 (RMSE = 7.60) obtained
in the whole training set.

3.2. Multi-Tissue BBT-APM Using SNaPshot Methodology

DNAm levels at five CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59
genes obtained through a SNaPshot assay were simultaneously addressed in a combined
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set of 168 samples, including blood, bones and teeth (67 females, 101 males; 1–94 aged
years old). DNAm levels of ELOVL2, FHL2, KLF14 and TRIM59 genes revealed a posi-
tive correlation with age, and DNAm levels of C1orf132 showed a negative correlation
(Supplementary Figure S2). Testing the individual DNAm association with chronological
age for the five CpG sites, the strongest correlation was observed for ELOVL2 (R = 0.772,
p-value = 1.54 × 10−34), explaining 59.4% of the variation in age, followed by C1orf132
(R = −0.693, p-value = 2.49 × 10−25), explaining 47.7% of the variation in age, FHL2
(R = 0.686, p-value = 1.36 × 10−24), explaining 46.8% of the variation in age, KLF14
(R = 0.677, p-value = 6.57 × 10−24), explaining 45.6% of the variation in age and TRIM59
(R = 0.584, p-value = 1.17 × 10−16), explaining 33.7% of the variation in age (Table 2). The
simple APMs for each CpG site allowed us to obtain MAD values from a chronological age
of 10.95 years for ELOVL2, 12.10 years for C1orf132, 12.63 years for FHL2, 12.74 years for
KLF14 and 13.64 years for TRIM59 (Table 2).

Applying the stepwise regression approach to the five CpG sites, only the CpGs
located at ELOVL2, KLF14 and C1orf132 genes were selected for the development of a final
multi-locus APM. The three selected CpGs revealed in the multiple regression analysis a
very strong correlation with age, R = 0.922 (p-value = 3.14 × 10−67), explaining 84.7% of
the variation in age (corrected R2 = 0.847) (Table 2). Predicted age through the multivariate
regression coefficients was as follows (Supplementary Table S4): 29.220 + 96.850 × DNAm
level ELOVL2 + 208.747 × DNAm level KLF14 − 33.437 × DNAm level C1orf132. This
BBT-APM allowed us to obtain a MAD from chronological age of 6.49 years (RMSE = 8.42)
(Table 2). Correct predictions were 73.8% considering the cutoff of 9 years, according to the
standard error of estimate calculated for the final APM (SE = 8.53). The obtained Spearman
correlation value between predicted and chronological ages was 0.893 (Figure 2).
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Figure 2. Predicted age versus chronological age using the multi-tissue APM developed for ELOVL2,
C1orf132 and KLF14 genes including blood samples from living individuals (1), blood samples from
deceased individuals (2), bone samples (3), tooth samples from living individuals (4) and tooth
samples from deceased individuals (5). The corresponding Spearman correlation coefficients (r) are
depicted inside each plot.
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Table 1. Simple and multiple linear regression statistics of the age predictors in ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes to test for association between the DNAm levels
and chronological age using Sanger sequencing methodology.

Locus CpG Site Location Multi-Tissue: Type of
Samples Included N R R2 Corrected R2 SE p-Value MAD

Simple linear regression

ELOVL2 CpG6 Chr6:11044644 Blood * + Bones + Teeth 185 0.759 0.576 0.573 14.70 6.87 × 10−36 12.01

FHL2 CpG1 Chr2:105399282 Blood * + Bones + Teeth 185 0.692 0.479 0.476 16.29 1.11 × 10−27 13.16

EDARADD CpG3 Chr1:236394382 Blood * + Bones + Teeth 185 −0.682 0.465 0.462 16.51 1.21 × 10−26 13.52

C1orf132 CpG1 Chr1:207823681 Blood * + Bones + Teeth 185 −0.654 0.428 0.425 17.07 5.67 × 10−24 13.23

PDE4C CpG2 Chr19:18233133 Blood * + Bones + Teeth 185 0.613 0.376 0.372 17.83 1.79 × 10−20 13.58

Multiple linear regression

APM (EDARADD CpG3, FHL2 CpG5, FHL2 CpG11,
ELOVL2 CpG5, PDE4C CpG5, PDE4C CpG9, C1orf132 CpG3) Blood * + Bones + Teeth 185 0.940 0.883 0.878 7.86 7.36 × 10−79 6.06

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological and predicted ages. Genomic positions were based on the
GRCh38/hg38 assembly. * Blood samples from living and deceased individuals.

Table 2. Simple and multiple linear regression statistics at the five CpGs of the ELOVL2, FHL2, KLF14, TRIM59 and C1orf132 genes to test for association between the DNAm levels and
chronological age using SNaPshot assay.

Locus Location Multi-Tissue: Type of
Samples Included N R R2 Corrected R2 SE p-Value MAD

Simple linear regression

ELOVL2 Chr6:11044628 Blood * + Bones + Teeth 168 0.772 0.597 0.594 13.896 1.54 × 10−34 10.95

FHL2 Chr2:105399282 Blood * + Bones + Teeth 168 0.686 0.471 0.468 15.885 1.36 × 10−24 12.63

KLF14 Chr7:130734355 Blood * + Bones + Teeth 168 0.677 0.459 0.456 16.091 6.57 × 10−24 12.74

C1orf132 Chr1:207823681 Blood * + Bones + Teeth 168 −0.693 0.480 0.477 15.779 2.49 × 10−25 12.10

TRIM59 Chr3:160450189 Blood * + Bones + Teeth 168 0.584 0.341 0.337 17.780 1.17 × 10−16 13.64

Multiple linear regression

APM (ELOVL2, KLF14 and C1orf132) Blood * + Bones + Teeth 168 0.922 0.850 0.847 8.53 3.14 × 10−67 6.49

Abbreviations: N, number of samples; R, correlation coefficient; SE, standard error; MAD, mean absolute deviation (years) between chronological and predicted ages. Genomic positions were based on the
GRCh38/hg38 assembly. * Blood samples from living and deceased individuals.
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The model accuracy of the final APM with DNAm levels of ELOVL2, KLF14 and
C1orf132 markers was evaluated through a threefold cross validation in the training set of
168 samples, producing a MAD (mean value obtained for the three test sets) of 6.73 years
(RMSE = 6.75). This value was very close to the MAD of 6.49 (RMSE = 8.42) obtained in
the whole training set. The validation by splitting the overall training set into two sets
of 113 and 55 samples (training and validation sets) allowed us to obtain an independent
MAD value for the training set of 6.06 years (RMSE = 7.81). Applying the model on the
validation set, a MAD of 7.45 years (RMSE = 9.60) was obtained.

3.3. Differences between Predicted and Chronological Ages with an Increase in Age

Evaluating the model performance obtained with the two developed multi-tissue
BBT-APMs according to different age ranges (Table 3), we observed an increase in the MAD
values between predicted and chronological ages with the increase in age of individuals.
For both Sanger sequencing and SNaPshot methodologies, the value of MAD was the
largest for the age group >80 years and the smallest for age group <30 years (Table 3).

Table 3. Evaluation of mean absolute deviation (MAD) between chronological and predicted ages
according to four age-range groups in the training set of blood, bone and tooth samples using
both methodologies.

Method

Age Range Sanger Sequencing SNaPshot

N MAD (Years) N MAD (Years)

<30 years 33 4.73 23 5.51

31–55 years 58 6.37 56 6.23

56–79 years 74 5.67 68 6.74

>80 years 20 8.81 21 7.37

4. Discussion

In the past decade, several specific epigenetic clocks with high accuracy have been
developed using many tissue types [9–16]. However, the discovery of DNAm age-related
markers with similarly high accuracy across different types of tissues (universal markers)
remains a challenging task in the forensic field [17]. Evidence from previous studies shows
that each age-correlated marker reveals a specific ability to predict chronological age,
as each tissue type can be affected by different intrinsic or environmental factors. Eipel
et al. [16] reported that using a specific APM with methylation information of age-correlated
markers selected in one tissue-specific type can lead to a decrease in model accuracy in
age prediction if applied to a different tissue. This should be related to the tissue-specific
differences in epigenetic patterns [18–20]. Thus, a careful selection of age-associated CpGs
and the validation of these proposed markers in each tissue type should be the first step
for the development of multi-tissue APMs.

In fact, until now, only a few studies have explored the predictive ability of multi-
tissue APMs [2–4]. In this study, we re-examined DNAm levels of ELOVL2, FHL2, PDE4C,
EDARADD, C1orf132, TRIM59 and KLF14 genes, previously captured in different tissue
types (blood samples from living and deceased individuals; tooth samples from living
and deceased individuals; fresh bone samples collected during autopsies) by Sanger
sequencing and SNaPshot methodologies to build multi-tissue APMs. We developed
simple linear regression APMs for the best-selected CpG sites from each gene, and multi-
locus multi-tissues APMs using the best combination of CpGs selected by the stepwise
regression approach.

DNAm levels captured by bisulfite Sanger sequencing allowed the development of a
final APM with seven CpGs (EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2 CpG5,
PDE4C CpG5, PDE4C CpG9, C1orf132 CpG3), revealing a very strong age correlation value
(R = 0.940), highly significant (p-value = 7.36 × 10−79) and explaining 87.8% of the variation
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in age. The BBT-APM developed with 185 Portuguese individuals (aged 1–94 years old)
allows us to predict age with a moderate accuracy showing a MAD from chronological age
of 6.06 years.

Regarding methylation information captured by the SNaPshot methodology, the final
multi-locus multi-tissue APM combines three CpG sites located at ELOVL2, KLF14 and
C1orf132 genes. This BBT-APM developed in 168 samples revealed a very strong age
correlation value (R = 0.922), with a MAD from chronological age of 6.49 years.

In Table 4, we resume in brief the difference in results obtained with both methodologies.
The multi-tissue APMs developed herein allows prediction of age of the individuals

based on evaluation of DNAm levels captured from several types of samples, including
blood, bone and teeth. The final models revealed an accuracy (MAD value) of about 6 years,
being more accurate than the majority of anthropological approaches applied to adults’
age estimation. When comparing the results with the ones retrieved by anthropological
methods, it becomes clear that our method has clear benefits in relation to methods such as
Suchey–Brooks’, where age ranges are particularly large, mainly for old individuals.

Table 4. Comparison between Sanger sequencing and SNaPshot methodologies.

Method Sanger Sequencing SNaPshot

CpGs and genes included in
the APM

7 CpGs located at 5 genes
(EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2

CpG5, PDE4C CpG5, PDE4C CpG9, C1orf132 CpG3)

3 CpGs located at 3 genes
(ELOVL2, KLF14, C1orf132)

Age correlation value 0.940 0.922

Variance in age explained 87.8% 84.7%

Accuracy (MAD) 6.06 years 6.49 years

Results
Using the Sanger sequencing methodology, more CpGs and genes were included in the APM,

but higher age correlation, higher explained variance in age, and a better
accuracy in age prediction (lower MAD value) were obtained.

Comparing the herein developed multi-tissue APMs with the tissue-specific APMs
previously developed by our group, we can observe that through Sanger sequencing,
the blood-living APM [6] revealed a MAD of 5.35 years, which is a slightly lower value
comparing with the BBT-APM (MAD = 6.06 years). However, for blood samples from
deceased individuals [5], the tissue-specific APM revealed a similar accuracy with a MAD
of 6.08 years. The tissue-specific APMs developed through the SNaPshot assay for blood
samples revealed MAD values of 4.25 and 5.36 years for living and deceased individuals,
respectively [7]. However, although these models have a better accuracy than the herein
developed BBT-APM using the SNaPshot methodology (MAD = 6.49), they can only be
applied to blood samples.

Regarding bones, we have previously obtained through Sanger sequencing and SNaP-
shot methodologies MAD values of 2.56 and 7.18 years, respectively [8]. Thus, we can
observe that for age prediction in bones using Sanger sequencing, it is more advantageous
to apply the tissue-specific model compared with the BBT-APM (MAD = 6.06 years). How-
ever, using the SNaPshot methodology we obtained a similar prediction accuracy for both
the specific bone-APM (MAD = 7.18 years) and the BBT-APM (MAD = 6.49 years). In re-
gards to tooth samples, the tissue-specific models previously developed [8] revealed MAD
values of 11.35 years and 7.07 years using Sanger sequencing and SNaPshot methodologies,
respectively, which is a lower accuracy in comparison with the BBT-APMs developed in
this present study (MAD = 6.06 and 6.49 years, respectively).

Previous reports using DNAm levels for the development of multi-tissues APMs [2–4]
showed higher prediction accuracy in age estimation (MAD values of 2.9, 3.55 and 3.8 years).
In our study, the obtained higher MAD values (6.06 years in Sanger sequencing and
6.49 years in SNaPshot) can be explained by sample size, population variability or the
laboratory methodologies for DNAm assessment. Of note, both developed BBT-APMs
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included CpGs from the ELOVL2 gene revealing the powerful of this age-associated gene
for the development of multi-tissue APMs in forensic contexts. It has been shown that
ELOVL2 is a stable epigenetic marker, revealing a high performance as a multi-tissue
predictor [2,13,14,21]. This locus has been used as a powerful age-correlated marker in
many tissue-specific APMs developed for blood, tooth, bones and buccal swabs, revealing
similar patterns of high accuracy in all APMs [2,10–15,22–30]. Moreover, it has been
shown that CpGs from the other genes addressed in the present study also revealed higher
age correlation values in blood samples [2,5–7,10–12,23,24,26,28–30], bones [8,13,14] and
tooth samples [8,15,23,27], being promising markers to be selected for development of
universal APMs.

Several aspects should be highlighted for future potential applicability of the herein-
developed multi-tissues APMs.

In this study, both BBT-APMs revealed a general decrease in model accuracy (increase
in MAD value) with the increase in age, in accordance with previous studies [3,11,12,26,30],
revealing that age estimation based on DNAm levels can have a better performance in
younger age ranges. Indeed, younger individuals show lower values of MAD reflecting a
high accuracy in the APMs, comparing to older ages. This reflects larger differences between
biological and chronological ages with the increase in age, related to the accumulation of
specific alterations in DNAm patterns of each individual with aging due the stochastic or
environmental factors, being accepted as the epigenetic drift contribution [31–33].

The possibility that postmortem changes can alter the methylation status among
specific loci should also be hypothesized, and this issue needs future clarification. As
reported in previous studies from our group, comparing blood samples from living and
deceased individuals [6,7], it is important for forensic casework application to know the
healthy status of the sample donor. This is a paramount issue because the most developed
APMs until now have been built using samples of living individuals. It has been observed
that ancient DNA (aDNA) can suffer postmortem miscoding lesions, as deamination [34,35].
Postmortem deamination is a spontaneously chemical process that occurs due to the
hydrolytic deamination of cytosine (C) residues into uracils (U) [34]. If DNA damage
in the form of deamination occurs, the expected residues in PCR amplification could be
different after bisulfite conversion. Bisulfite conversion is a chemical modification, which
mediates the deamination of unmethylated C to U, appearing after PCR amplification as
thymine (T), but leaves methylated C (5mC) intact. Therefore, if postmortem cytosine
deamination occurs, both unmethylated C and 5mC appear as T after PCR amplification of
bisulfite-converted samples, which could disturb the measurement of DNAm levels. As
hydroxymethylcytosine (5hmC) is an oxidative product of demethylation of 5mC [36,37],
in case of postmortem deamination, the 5hmC concentration can also be affected. Despite
this, the stability of 5mC patterns in aDNA has been reported, when preserved aDNA
samples were analyzed [38,39]. Moreover, Pedersen et al. [40] assessed to DNAm levels of
permafrost hair samples collected from a Paleo-Eskimo with 4000 years old, and predicted
age at death. This reveals the reliability on the assessment of DNAm levels to predict age
in ancient samples.

An additional important issue for forensic practice is the effect of postmortem interval
(PMI) on DNAm levels captured from aged forensic samples of different tissues. Data
obtained from such forensic samples should be interpreted with caution due to the very
low amount and degradation of the obtained DNA. A previous study developed by Zbieć-
Piekarska et al. [24] showed the stability of prediction accuracy using bloodstains that
differed in time of storage. The authors evaluated DNA concentrations from bloodstains
that had been deposited previously on tissue paper and kept at room temperature during
5, 10 and 15 years, observing a significant decrease in DNA concentration, a decrease
in number of positive PCR amplifications and an increase in average degradation index.
However, they did not observe an effect on the rate of corrected predictions, reporting
that “the prediction success rate seemed not to correlate inversely with increasing time of
storage” [24]. Hence, it seems that DNA degradation affects DNA concentration and, con-
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sequently, the rate of positive PCR amplifications; however, the accuracy of age prediction
is not affected in positive PCR amplification samples.

The major drawback of our study was the limited number of samples, mainly in bones
and teeth. We recognize that larger sample sets have greater statistical power and may be
more representative of DNAm changes related to different age groups and different types
of tissues, leading to the development of more accurate APMs. Another relevant factor
that should be considered is the existence of some diseases or clinical conditions or even
some life routines such as smoking or drinking, which may interfere with methylation
data. For samples of deceased individuals, despite having access to medical reports of
each case, information related to possible clinical conditions was unknown in many cases.
Lastly, the use of different methodologies for evaluation of DNAm levels across studies
can influence the accuracy of APMs. In particular, bisulfite sequencing or SNaPshot
methodologies are semi-quantitative methods and thus may not be the optimal tool for
precise DNAm analysis.

DNAm analysis is considered a promising method for age estimation in the future.
If we question how easy it is to use it and how long it takes to apply it, we argue that in
those laboratories supported by genetic facilities provided with the needed equipment,
the results can be retrieved in two or three days. In comparison with the more traditional
approaches, it takes longer, but in terms of the delivery of the final report, it does not imply
any delay. Furthermore, it should be noted that any method that involves DNA analysis
turns out to be more expensive, but it also tends to be more reliable. However, it should
be emphasized that the development of universal APMs based on DNAm levels is at the
beginning of age estimation research and, therefore, the herein proposed BBT-APMs can be
a starting point for future research.

5. Conclusions

In conclusion, in this study we re-examined DNAm levels of ELOVL2, FHL2, PDE4C,
EDARADD, C1orf132, TRIM59 and KLF14 genes previously captured by Sanger sequencing
and SNaPshot methodologies across several tissues. Two multi-tissue BBT-APMs were
developed using blood, tooth and bone samples from Portuguese individuals. To the best of
our knowledge, the two BBT-APMs developed herein for the Portuguese population are the
first multi-tissue APMs using bones and teeth. Moreover, despite being very often found in
forensic contexts, the development of tissue-specific APMs using bones or teeth is scarce in
forensic research. By Sanger sequencing, a moderate accuracy of 6.06 years was obtained
in the BBT-APM using seven CpGs from genes ELOVL2, FHL2, PDE4C, EDARADD and
C1orf132. Using the SNaPshot assay, the BBT-APM developed with methylation data from
C1orf132, ELOVL2 and KLF14 genes revealed a MAD from chronological age of 6.49 years.
Both methodologies revealed similar accuracy for use in multi-tissue APMs being both
simple, rapid, cost-effective and easily available in forensic laboratories. Therefore, both
BBT-APMs developed herein can be a promising tool for age estimation in forensic contexts.

This article, a priori, could appear too technical and a little far away from the forensic
anthropology reality. However, we argue that a bridge between forensic genetics and
forensic anthropology can be achieved, once the needed complicities between the experts
involved are well established. In practical terms, what we here advise is an integrated
evaluation of the case by the forensic anthropologist, along with the pathologist in charge
of the case. If, for instance, the case is a fresh body without any physiognomic traits and
where identification is unknown, blood is the best option for DNAm age estimation. If,
on the other hand, blood is no longer available due to the state of decomposition of the
body, a decision can be made to recover both bone and teeth to perform DNAm studies.
What does that imply in practical terms? It means that the result will take 2 or 3 days to be
known, that the needed equipment is necessary as well as the adequate kits. While those
ones are more expensive than the blood ones, it is a good option in particular when the
most adequate skeletal age indicators are damaged or no longer available. Having said
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that, we argue that we should strive to implement the procedures here described in the
Medico–Legal facilities in order to turn DNAm a routine practice for age estimation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biology10121312/s1: Figure S1: Correlations between DNAm levels and chronological age in
185 samples including blood samples from living and deceased individuals, bone samples collected
from autopsies and teeth from living and deceased individuals, obtained through Sanger sequencing
methodology. Figure S2: Correlations between DNAm levels and chronological age in 168 samples,
including blood samples from living and deceased individuals, bone samples collected from autopsies
and teeth from living and deceased individuals, obtained through SNaPshot methodology. Table S1:
Age distribution of the sample sets analyzed by Sanger sequencing and SNaPshot methodologies.,
Table S2: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, EDARADD,
PDE4C and C1orf132 loci in 185 samples including blood from living and deceased individuals, teeth
from living and deceased individuals and bone collected during autopsies. Table S3: Statistical
parameters obtained in a multiple regression model with the seven CpGs in genes ELOVL2, FHL2,
EDARADD, PDE4C and C1orf132 selected by stepwise regression approach, in blood, bone and tooth
samples. Table S4: Statistical parameters obtained in a multiple regression model with the three
CpGs in genes ELOVL2, C1orf132 and KLF14, selected by stepwise regression approach, in blood,
bone and tooth samples.
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