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Abstract

The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean.

Through direct and indirect mechanisms, this herbivore can exert significant control on the

structure and functional dynamics of seagrass beds and macroalgae. Past research has

suggested nutritional quality of their diet influences S. salpa herbivory, with the fish feeding

more intensively and exerting greater top down control on macrophytes with higher internal

nutrient contents. However recent findings have questioned this notion and shown that her-

bivores do not preferentially feed on macrophytes with higher nutrient contents, but rather

feed on a wide variety of them with no apparent selectivity. To contribute to this debate, we

conducted a field fertilization experiment where we enriched leaves of the seagrass Posido-

nia oceanica, a staple diet for S. salpa, and examined the response by the herbivore. These

responses included quantification of leaf consumption in fertilized and non-fertilized/control

plots within the bed, and food choice assays where fertilized and non-fertilized/control

leaves were simultaneously offered to the herbivore. Despite the duration of leaf exposure

to herbivores (30 days) and abundant schools of S. salpa observed around the plots, leaf

consumption was generally low in the plots examined. Consumption was not higher on fertil-

ized than on non-fertilized leaves. Food choice experiments did not show strong evidence

for selectivity of enriched leaves. These results add to a recent body of work reporting a

broad generalist feeding behavior by S. salpa with no clear selectivity for seagrass with

higher nutrient content. In concert, this and other studies suggest S. salpa is often generalist

consumers not only dictated by diet nutrient content but by complex interactions between

other traits of nutritional quality, habitat heterogeneity within their ample foraging area, and

responses to predation risk.
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Introduction

In the Western Mediterranean, seagrass meadows are dominated by Posidonia oceanica (L.)

Delile [1,2] where the fish Sarpa salpa (L.) and the sea urchin Paracentrotus lividus (Lam.) are

the two main macroherbivores [3]. Herbivory rates on this seagrass species are extremely vari-

able, ranging from 2–57% of P. oceanica leaf productivity, according to the available literature

[4,5]. This variability in estimated herbivory has been suggested to be partly a consequence of

the different methods employed for quantification [6]. Through direct methods, S. salpa has

been shown to be an important herbivore accounting for 70% of the total leaf consumption of

P. oceanica [5], although it is also known to ingest large quantities of other macrophytes spe-

cies [7,8] and to display high spatial and temporal variability in its herbivory pressure [5,9,10].

Some of the factors involved in S. salpa herbivory include; macrophyte availability and accessi-

bility, habitat heterogeneity, nutritional quality, human pressure on herbivore populations,

herbivore recruitment, predation and patterns of movement [11,12,13].

In seagrass ecosystems, the evidence indicates that herbivore distribution is highly influ-

enced by fishing pressure [14]. In this context, marine protected areas (MPA) can alleviate

anthropogenic impacts (e.g. overfishing), and enhance local fish recruitment [15]. Indeed, it

has been shown that populations of fish, including the herbivore S. salpa, benefit from fishing

protection and tend to concentrate in MPAs, resulting in enhanced grazing pressure [12].

Plant nutritional quality (often expressed as leaf nitrogen content) has also been shown to

play a central role in determining herbivore feeding patterns in seagrass systems, suggesting a

preference and higher feeding on diets with high nitrogen content [16,17]. Previous studies

have suggested that differences in the nutritional quality among seagrass species could result

in different levels of herbivory [9,18]. As epiphytes and macroalgae have typically lower C:N

ratios than seagrasses [19,20] they are proposed to sustain a comparatively higher herbivory

pressure [21] which may be enhanced by nutrient availability. Through experimental studies,

it has been shown that nutrient addition can change nutritional properties of seagrass leaves

and their epiphytes by increasing nutrient ratios [9], modifying plant defenses [22] or chang-

ing the composition of epiphyte assemblages [11]. Indeed, in [9] it was showed that nutrient

addition induced changes in both seagrass (enhanced plant N content and leaf growth) and

epiphytes (enhanced N content, biomass load and altered species composition) which con-

curred within higher herbivory pressure by S. salpa. In a more recent experimental study using

moderate, ambient and large scale enrichment plots conducted in Cymodocea nodosa (Ucria)

beds Ascherson, results also confirmed that increases in nutrient levels can lead to increased

grazing bites [23]. This has also been shown in other ecosystems (e.g. salt marshes), through-

out experimental approaches, finding that grazers preferentially congregate and graze in areas

of marsh with nutrient rich leaves [24].

However, other studies have also found that higher nutrient content did not always lead to

increased consumption rates (for a review see [25,26]) as macrophyte-herbivore interactions

are dependent on the associated herbivore and macrophytes species. Recent studies have

found that not only seagrasses but also other macrophytes species such as Caulerpa sp. [7,8,27]

may have an important contribution to S. salpa diet and that final consumption rates and die-

tary differences may not only be determined by nutritional content but by other macrophytes

features [28,29]. The quality or “palatability” of the food is also determined by secondary

metabolites, toughness [30], energy contents [31], varying levels of structural carbohydrates

(cellulose) affecting food digestibility, and absorption (e.g. [32]). These factors can vary greatly

between species and mediate important macrophyte-herbivore interactions [33]. Overall, stud-

ies suggest that different herbivore species may be distinctively affected by nutrient conditions,

therefore low nutritive value by itself may not always be an effective defense against grazing
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[34]. Since high nutrient levels and grazing pressure can ultimately depress leaf production, it

is important to expand upon the knowledge of what role nutrients serve in driving herbivore

feeding preferences. This would help us to better understand the variability of herbivory and

how it may affect the distribution of seagrass species.

In the present study, we conducted a field fertilization experiment using the Mediterranean

seagrass P. oceanica to test the effect of nutrient enrichment on seagrass and its potential influ-

ence on S. salpa consumption rates and feeding choices. In order to evaluate whether an

increased fish population due to fishing protection can lead to higher herbivory pressure,

experiments were carried out in a MPA (Tabarca) and a non-protected area (CIMAR). We

hypothesized that fertilization would increase leaf growth rates and decrease C:N ratios, and

that S. salpa will respond by selecting fertilized shoots over controls; displaying higher pressure

over these nutritional enriched shoots and recording higher consumption rates in the MPA

due to fishing protection.

Materials and Methods

Study area

The study was carried out in two locations in the northwest Mediterranean Sea; (1) an MPA in

the surrounding waters of Tabarca Island located east of Santa Pola, Alicante, Spain (38˚

09’52”N, 0˚27’46”W) and; (2) a location just offshore of the Centro de Investigación Marina de

Santa Pola (CIMAR) in Santa Pola, Alicante, Spain (38˚12’27”N, 0˚30’17”W). The MPA covers

14.63 km2 and was first designated in April of 1986. Within each location, three sites were

selected in Posidonia beds (4–5 m deep) approximately 50 m apart making a total of six sam-

pling sites with similar bottom characteristics. At each site there were three fertilized plots (512

cm2 each) and three non-fertilized (control) plots for a total of nine fertilized and nine control

plots in each of the two study locations. Fertilization was conducted for six weeks prior to the

start of this study by using slow release nitrogen fertilization rods (Compo) three times in 15–

25 day increments. Here we provide some information regarding the composition, the dose

recommended for terrestrial plants and the dose we added to plots:

Composition (per rod): NPK 13+6+10+ magnesium + micronutrients, 13% total N.

Dose recommended: 2 units in 314 cm2 (0.0064 units/cm2); 1.8 g of rod with 0.5234 g of N in

314 cm2; 0.000745 g N/cm2. This dose guarantees the nutrients required by the plant during

30 days avoiding detriment to the plant by overdose.

Dose applied in the experiment: 20 units/plot in each fertilization time; A total of 60 units/

plot in 45 days; 20 units in 512 cm2 plot.0.039 units/cm2 each time.18 g of rod with 2.34 g of

N in 512 cm2.

Dose per fertilization time: 0.00457 g N/cm2 (6 times higher than the dose recommended).

Total dose during the experiment:0.01371 g N/cm2 (18 times higher than the dose

recommended).

Despite we know that there must be an effect of dilution on the amount we added to the

plots, we think that it may help to have an idea of the total amount we used. The quantity over

exceed 6 times the dose recommended for a first fertilization treatment and 18 times the dose

recommended to be added in a month. Also, when we came back every fertilization time, we

noticed that part of the rods from the previous treatment remained in the plots, so we consider

the dilution was low as well as nutrients release and therefore the fertilization treatment was
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successful. We deliberately applied a high fertilization dose to mimic large, realistic inputs

such as from sewage pipes.

Permits

All necessary permits were obtained for the described field studies. The sampling carried out

in the MPA of Tabarca was permitted by the authorities of the Ministry of Agriculture, Food

and Environment (Spain). The sampling carried out in the CIMAR was out of the preserved

area and did not require any specific permission. We confirm that that the field studies did not

damaged any endangered or protected species.

Growth rates

For the herbivory experiment, growth rates of P. oceanica leaves were measured using a

method from [35] which was modified from [36]. Within each control/fertilized plot 20–25

shoots were marked by punching two parallel holes in all leaves just above the ligula of the out-

ermost leaf with a hypodermic needle. On day 30 after marking, shoots marked were recovered

from each plot (ten shoots per plot, for a total of 90 fertilized and 90 control shoots per loca-

tion) and elongation and total length of each leaf were measured to the nearest millimeter, as

well as any new leaves that did not have a mark scar (new growth). Growth was summed for all

leaves within a shoot and estimated in control and fertilized shoots (cm2 shoot-1 day-1).

Nutrient content (C:N) in leaves and epiphytes

The effect of fertilization on the P. oceanica shoots was measured in terms of the C:N ratio.

Within each of the fertilized and control plots, we haphazardly collected three shoots (a total of

27 fertilized and 27 control shoots per location). First, epiphytes were removed from the leaves

and then both leaf material and epiphytes were dried to a constant weight at 60˚C and then

ground into a powder using a mortar and pestle. The C:N ratios of both the leaves and epi-

phytes were analyzed using a NA1500 C/N/S analyzer™ (Carlo Erba).

Consumption rates

To determine herbivory, two Posidonia shoots were collected from each plot (a total of 18 fer-

tilized and 18 control shoots per location). In the lab leaves were cut to remove prior herbivory

marks, their area was measured, and tissues were hole-punched at the base of the leaf to allow

estimates of any further growth during the experiment [5]. The shoots were attached to clothes

pins using cable ties and were then placed in the plots they were collected from for 30 days.

After this period, shoots were re-collected and all leaves were photographed. Leaf area was

then measured using Sigma-Scan Pro image software and leaf loss by S. salpa herbivory was

estimated as the difference between initial and final photosynthetic area after growth correc-

tions (cm2 shoot-1 day-1).

Food choice experiments

Paired food choice experiments were conducted to test S. salpa preferences for control vs. fer-

tilized leaves. For this purpose P. oceanica shoots were collected from experimental plots to

form tethers [37]. All bite marks were removed with scissors and leaves were hole-punched to

control for any growth that might occur during the experimental period [5]. After all the repli-

cates were photographed on a grid to estimate initial surface area by image analyses, they were

attached to a sisal line using clips to form tethers. In each location we deployed a tether line

with paired replicates (n = 9, control and fertilized shoots tied together), each with three leaves.
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The tethers were deployed for 30 days and then recollected and photographed to estimate final

surface area with Sigma-Scan Pro image software. Leaf loss by S. salpa herbivory, whose bite

marks were easily distinguishable (e.g. [38]), was estimated as the difference between initial

and final areas after growth corrections (cm2 leaf-1 day-1).

Statistical analyses

A three-way ANOVA was used to analyze differences in growth rates, in nutrient content

(C:N ratio) of leaves and epiphytes and in leaf loss by consumption due to “Location” (fixed

and orthogonal factor with 2 levels), “Site” (random and nested in “location” with 3 levels) and

“Treatment” (fixed and orthogonal factor with 2 levels) considering “plot” as a replicate (aver-

age value; n = 3 fertilized/control plots per site; 9 fertilized/control plots per location). The

model for these analyses was:

X ¼ Mean þ Loc þ Sit ðLocÞþ Tr þ Loc X Tr þ Tr X Sit ðLocÞþ Residual

ANOVA assumptions of normality and homogeneity of variance were assessed with the

Kolmogorov-Smirnov and Cochran’s C- tests, respectively. When necessary, an appropriate

transformation was performed before further analysis. When assumptions were not met, the

level of significance was set at 0.01 to reduce the possibility of Type I error [39]. Student-New-

man-Keuls post-hoc tests were used to single out significant groupings. The statistical tests

were done using PASW Statistics 18 and GMAV 5 software (University of Sydney, Australia).

In order to analyze wether our three-way ANOVA design could guarantee a power analysis

is high enough to avoid Type II error (retaining null hypothesis when it is false), we performed

a “post-hoc power analysis” [40] with G power software [41].

Results from food choice experiments were tested separately for each location with a Wil-

coxon signed-ranks paired test due to lack of normality and homoscedasticity of the data

(n = 9 paired replicates).

Results

Growth rates

Significant differences were found for “Site (Loc)” and the interaction “Treatment x Site (Loc)”

(three way ANOVA; p< 0.001 and p< 0.01 respectively; Fig 1; Table 1a). At CIMAR, values

for the fertilized treatment at site three was significantly lower than in control treatment. At

the other sites, values did not differ significantly between treatments (see SNK in Table 1a). At

Tabarca, values at site four were significantly higher in control than in fertilized plots, but val-

ues did not differ significantly between treatments at the remaining sites (see SNK in Table 1a;

S1 Data). The average growth rate recorded at CIMAR for the control treatment was

0.540 ± 0.059 cm2 shoot-1day-1 and for the fertilized treatment 0.454 ± 0.062 cm2 shoot-1 day-1.

At Tabarca, the average growth rate recorded for control treatment was 0.514 ± 0.052 cm2

shoot-1 day-1 and for fertilized treatment was 0.419 ± 0.051 cm2 shoot-1 day-1.

Nutrient content (C:N) of leaves and epiphytes

Nutrient content in leaves measured as C:N ratio showed significant differences due to “Site

(Loc)” and “Treatment” factors (three way ANOVA; p< 0.01 and p< 0.05 respectively; Fig

2a; Table 1b). Analyses recorded higher values in controls vs. fertilized treatment (see Fig 2a;

Table 1b). The average C:N value recorded in the CIMAR control treatment was 48.87 ± 2.18

and for fertilized treatment 40.59 ± 4.55. In Tabarca, the average C:N value recorded for con-

trol treatment was 50.09 ± 5.97 and for fertilized treatment was 37.58 ± 2.68 (S2 Data).
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In epiphytes, C:N ratio showed significant differences for the “Site (Loc)” factor (three way

ANOVA; p< 0.001; Fig 2b; Table 1c). In the CIMAR, significant differences were not found

between sites nor between treatments. In Tabarca, values recorded at site five and site six for

both treatments were higher than values recorded at site four for both treatments (S3 Data).

Consumption rates

No significant differences were found in consumption rates for any of the factors investigated

(three-way ANOVA; Fig 3; Table 1d). Despite the schools of S. salpa that frequented areas sur-

rounding our plots at both study locations (Marco-Mendez pers. obs.), values of consumption

were low showing a high variability among the different sites. At CIMAR, no consumption

was recorded in the control treatments for any site; in the fertilized treatments, average con-

sumption rate recorded was 0.001 ± 0.001 cm2 shoot-1 day-1. At Tabarca, average consumption

rates recorded in control treatments was 0.089 ± 0.086 cm2 shoot-1 day-1 and for fertilized

treatments 0.143 ± 0.143 cm2 shoot-1 day -1 (S4 Data).

To assure that we are not committing a Type II error (retaining null hypothesis when it is

false) we decided to do a “pooling”, a technique applied to models with random factors to

improve their power to detect treatment effect by increasing the denominator degrees of free-

dom. A common rule is to control Type II error rate by pooling only if p> 0.25 [39] so we

pooled the random and nested factor “Site (Loc)” (p = 0.4391). We found no significant differ-

ence due to “Location” (p = 0.5743), “Treatment” (p = 0.3563) or the interaction “Location x

Fig 1. Growth rates recorded in leaves of P. oceanica at CIMAR and Tabarca in the different sites for control vs.

fertilized treatments. Mean ± SE. **p < 0.01.

doi:10.1371/journal.pone.0168398.g001
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Treatment” (p = 0.4434.). For this ANOVA design, we performed a “post-hoc power analysis”

[40] to test the statistical power. Power analyses for factors, “Location”, “Treatment” and the

interaction “Location x Treatment” set for a medium size effect (0.25) and α = 0.05, found a

power (1- β error probability) = 0.3019. For a medium or moderate size effect (0.35), the

power (1- β error probability) = 0.522. This last value is at least suggestive of a correct decision

when accepting our null hypothesis, which in our study is that herbivory by S. salpa was not

higher in the fertilized plots compared to the non-fertilized plots.

Food choice

Analyses of the consumption recorded by food choice experiment did not detect any signifi-

cant preference for fertilized vs. control shoots neither at CIMAR (Z = -0.730; p = 0.465; Fig 4)

nor at Tabarca (Z = -1.153; p = 0.249; Fig 4). As found in the plots, overall values of consump-

tion detected by tethers were low. Despite the fact that no significant differences were detected,

average consumption was higher on fertilized shoots (CIMAR: 0.088 ± 0.059 cm2 leaf-1 day-1;

Tabarca: 0.029 ± 0.028 cm2 leaf-1 day-1) than on control shoots (CIMAR: 0.018 ± 0.018 cm2

leaf-1 day-1; Tabarca: 0.001 ± 0.001 cm2 leaf-1 day-1) (S5 Data).

Discussion

This study suggests that Sarpa salpa herbivory did not directly correspond with increased

nutritional value of leaves and displayed high spatial variability of consumption in Posidonia

Table 1. Three way ANOVA results for: (a) growth rates; (b) nutrient content (C:N ratio) in leaves; (c) in epiphytes; and (d) consumption rates

showing differences due to investigated factors “Location” (fixed and orthogonal factor with 2 level), “Site” (random and nested in “location” with

3 levels) and “Treatment” (fixed and orthogonal factor with 2 levels) considering “plot” as a replicate. (n = 3 fertilized/control plots per site; 9 fertilized/

control plots per location).

Source of variation a. Growth

(cm2.shoot-1.day-1)

b. C:N in leaves c. C:N in epiphytes d. Consumption

(cm2.shoot-1.day-1)

df MS F p df MS F p df MS F p df MS F p

Location (Loc) 1 0.015 0.09 NS 1 7.177 0.02 NS 1 138.322 1.47 NS 1 0.108 0.33 NS

Site Sit (Loc) 4 0.168 14.04 *** 4 313.513 4.86 ** 4 94.238 14.01 *** 4 0.326 0.98 NS

Treatment (Tr) 1 0.081 1.05 NS 1 972.388 20.32 * 1 1.240 0.51 NS 1 0.368 1.09 NS

Loc X Tr 1 0.001 0.01 NS 1 40.016 0.84 NS 1 3.696 1.51 NS 1 0.245 0.72 NS

Tr X Sit (Loc) 4 0.078 6.49 ** 4 47.858 0.74 NS 4 2.455 0.36 NS 4 0.339 1.01 NS

Residual 24 0.012 24 64.528 24 6.727 24 0.334

Total 35 35 35 35

SNK CimS1C = CimS1F;

CimS2C = CimS2F;

CimS3C>CimS3F

TabS4C>TabS4F;

TabS5C = TabS5F;

TabS6C = TabS6F

Transformation None None None None

Significant differences are indicated:

* p < 0.05,

** p < 0.01,

*** p < 0.001,

NS: not significant.

In SNK, significant differences between investigated groups are indicated. Code to read the SNK results: Cim = CIMAR, Tab = Tabarca, S1 = site 1,

S2 = site 2, S3 = site 3, S4 = site 4, S5 = site 5, S6 = site 6, C = control/non-fertilized, F = fertilized.

doi:10.1371/journal.pone.0168398.t001
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Fig 2. C:N ratio recorded in leaves (a) and epiphytes (b) of P. oceanica at CIMAR and Tabarca in the different

sites for control vs. fertilized treatments. Mean ± SE.

doi:10.1371/journal.pone.0168398.g002
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oceanica meadows. The fertilization experiment did increase the nutritional content of leaves,

but this was not an apparent influence neither on S. salpa herbivory nor leaf growth rates,

which contradicts previous findings [9]. Despite schools of S. salpa frequently observed around

the plots (Marco-Méndez pers. obs.) consumption rates were low and the highly variable

among sites sampled agrees with the previously reported spatial variability in S. salpa herbivory

[5,6]. This variability made it difficult to detect any significant differences among treatments

in consumption rates and food choice experiments. Despite the fact that fish abundances are

expected to be higher in MPAs, such as Tabarca, it did not lead to enhanced grazing pressure

on seagrass meadows [12]. Consumption rates did not reflect any differences between the two

locations. These results suggest that nutritional content on its own may not be the only factor

driving consumption rates in P. oceanica meadows. Sarpa salpa mobility and broad diet (not

only based on seagrasses but other macrophytes, see [7,8,27] could likely explain the variable

foraging pattern observed. This may be reflecting an ensemble of complex feeding decisions

influenced by chemical and structural macrophytes features, home-range mobility, as well as

Fig 3. Consumption by S. salpa recorded at CIMAR and Tabarca in the different sites for control vs. fertilized treatments (cm2�shoot-1�d-1).

Mean ± SE.

doi:10.1371/journal.pone.0168398.g003
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by temporal and spatial differences in the availability of food resources [11,13,28,42,43], that

aimed at optimizing the intake of energy and essential dietary elements within the habitats.

C:N ratios in leaves showed differences between sites and treatments. Overall, in the two

localities results suggest that despite the high variability between sites, fertilization did increase

nutritional content in leaves, since C:N values in some of the sites were lower in fertilized treat-

ment. In the CIMAR, the average C:N ratios values found in control leaves were 1.20 times

higher than in fertilized leaves while in Tabarca there were 1.35 times higher than in fertilized

leaves. This prove that fertilization treatment was successful in terms of N content and there-

fore C:N ratios. By contrast, for epiphytes, fertilization did not appear to increase its nutri-

tional content. Values at CIMAR were similar between sites and treatments and at Tabarca

values were only significantly higher in sites five and six but without any apparent difference

between treatments. Nevertheless, lower C:N ratios detected in epiphytes compared to leaves

confirm their higher nutritional content, as it has been previously reported [7,19,20]. We think

that the lack of differences between control and fertilized plots could be probably explained by

the fact that fertilization rods were added to the sediment, not directly to the leaves, so

Fig 4. Consumption by S. salpa of control vs. fertilized leaves of P. oceanica during paired food preference experiments (cm2�leaf-1�d-1)

deployed at Tabarca and CIMAR. Mean ± SE.

doi:10.1371/journal.pone.0168398.g004
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nutrients could have been diluted substantially when effluxing the sediment, and before getting

to the epiphytes. There is also plausible that other grazers may have influenced on the epiphytic

load during the experiment, by removing some epiphytes and therefore making difficult to

detect fertilization effects on them.

Growth rates were not different between locations or treatments, but showed high variabil-

ity between sites. At CIMAR, values recorded were similar between sites and treatments,

except for site three which had the lowest recorded value in the fertilized treatment. At

Tabarca, site four had higher values than the other sites, being significantly higher in control

vs. fertilized treatment. Although fertilization did increase nutritional content in the leaves at

some of sites, growth rates seemed to respond to natural variability within the meadow rather

than to the fertilization treatment as it was expected [11]. We think that the lack of differences

in growth rates between fertilized and control plots may be explained by two possibilities.

First, that the experiment may not have been long enough to detect differences on growth

rates (some of the past fertilization/growth experiments with Posidonia have run for at least a

year, see [11]). Second, that the fertilizer level applied was high enough to cause detrimental

effects on Posidonia growth. In fact, several studies have related seagrass decline to the effects

of nutrient excess on plant physiology [44], and with nutrient-induced interactions between

plants and other components of the seagrass community, such as macroalgae, epiphytes and

herbivores [44,45, 46,47,48,49]. As we reported before in material and methods section, we

deliberately applied a high fertilization dose to mimic large, realistic inputs such as from sew-

age pipes, and we know that the dose we used exceed 18 times the dose recommended, so this

theory seems quite plausible. This was also evident during measurements, as we noticed that

fertilized shoots were more damaged/degraded than control shoots.

Despite schools of S. salpa being frequently observed around the plots (Marco-Méndez

pers.obs.) and the duration of the experiment (30 days), consumption was low or not detected

at some of the sites. Indeed, patterns of herbivory did not follow the expected tendency for

higher consumption on fertilized plots but showed a high variability which made it difficult to

detect differences between locations, sites, or treatments. However, after performing statistical

power analyses, results were at least suggestive of a correct decision when accepting our null

hypothesis that herbivory by S. salpa was not higher in the fertilized plots compared to the

non-fertilized plots. The high variability found in our study, concurs with the high spatial vari-

ability previously reported for S. salpa herbivory on P. oceanica [5,6] which has been attributed

to changes in fish abundances and distribution as a result of the interaction among recruit-

ment rates [50], predation effects [51] or overfishing [52]. However, despite fish abundances

are expected to be higher in fishing protected areas such as Tabarca, and consequently

expected to lead on enhanced grazing pressure over the seagrass meadow [12], consumption

rates did not reflected any difference between the two locations. Among other possible factors,

studies also suggest that fish schools’ movements across a mosaic of underwater habitats can

account for different concentrations in seagrass patches. Indeed, S. salpa’s home range is of the

order of 4 ha [42,43], and mobility across different habitats has been previously documented

[3]. In mobile species with comparable home range areas, density area relationships have been

associated with either random searching patterns [53] or the use of visual or olfactory cues to

find the resources [54]. Sarpa salpa juveniles and adults are mid-water visual foragers moving

widely within their summer home range, which includes seagrass meadows, rocky substrates

and sandy areas. Although large schools of adult S. salpa are common browsers in P. oceanica,

as we observed in our study, they also feed on a wide range of ‘macroalgae’ and seagrasses

[7,8,55,56] and may aim at maintaining a diverse diet to achieve the required nutrients [57]

which would lead to highly variable feeding patterns.
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S. salpa feeding choices have been suggested to be mainly driven by nutritional contents in

macrophytes [7,28]. However, our findings suggest that nutritional content by itself may not

be the only factor driving final consumption rates and that this herbivore may have a wider

diet in which other macrophytes features could be also involved [28,29]. Furthermore, herbi-

vores choices can be critically mediated by different levels of secondary metabolites, toughness

[30], energy contents [31] or structural carbohydrates (cellulose) affecting food digestibility,

and absorption (e.g. [32]) which can vary greatly between different macrophytes species.

Indeed, the apparent tolerance of this fish for caulerpenyne [27,58], a secondary metabolite

synthesized by species of the genus Caulerpa to deter grazing, allow them to feed largely on

these species [7,8,27]. Besides structural defenses, the limited literature suggests that dominant

species with relatively slow growth rates, such as P. oceanica [59], are chemically defended

whereas other ephemeral pioneer species with faster growth rates [60], show no deterrence

[61]. According to this idea, C. nodosa and other fast-growing species could be less chemically

defended and thus more highly grazed on by herbivores than slower growing species like

P. oceanica [7,8].

In this study, the low consumption rates of P. oceanica leaves detected, even after fertiliza-

tion, indicates that S. salpa pressure over P. oceanica may not be as prominent as it has been

reported in other studies [5,6]. This and other studies suggest S. salpa is often generalist con-

sumers not only dictated by diet nutrient content but by complex interactions between other

traits of nutritional quality, habitat heterogeneity within their ample foraging area, and

responses to predation risk.
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