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Abstract: The perceptual quality of digital images is often deteriorated during storage, compression,
and transmission. The most reliable way of assessing image quality is to ask people to provide
their opinions on a number of test images. However, this is an expensive and time-consuming
process which cannot be applied in real-time systems. In this study, a novel no-reference image
quality assessment method is proposed. The introduced method uses a set of novel quality-aware
features which globally characterizes the statistics of a given test image, such as extended local fractal
dimension distribution feature, extended first digit distribution features using different domains,
Bilaplacian features, image moments, and a wide variety of perceptual features. Experimental results
are demonstrated on five publicly available benchmark image quality assessment databases: CSIQ,
MDID, KADID-10k, LIVE In the Wild, and KonIQ-10k.

Keywords: no-reference image quality assessment; Benford’s law; quality-aware features; im-
age statistics

1. Introduction

As digital media takes a more central part in our daily lives and work, research on
image and video quality assessment becomes more and more important. In many cases,
the visual quality has to be optimized for content, like movies and sport games. In these
cases, automatic assessment methods should take the actual image or video content into
account to give the viewer the best experience. In medical imaging, a poor image quality
may mean a misdiagnosis.

There are two ways of measuring image quality [1]. The obvious way is to ask
people to give their opinions on a number of test images which is called subjective quality
assessment. However, such a procedure can be very time-consuming and expensive to set
up the experimental environment. That is why, objective image quality assessment has
become a hot research topic because it deals with mathematical models and algorithms
that are able to assess perceptual quality of digital images automatically. In the literature,
objective image quality assessment algorithms are grouped according to the availability of
the reference, pristine image. Specifically, full-reference image quality assessment (FR-IQA)
algorithms possess full information for both the distorted image and the reference image,
while no-reference image quality assessment (NR-IQA) methods predict perceptual quality
exclusively based on the distorted image. Reduced-reference image quality assessment
(RR-IQA) represents a middle course because it possess partial information about the
reference image and full information about the distorted image.

1.1. Related Work

NR-IQA has gained a lot of attention in the recent decades. Although, the reference
image is not available for NR-IQA algorithms, they can make assumptions about the
distortions present in a given input image. Hence, they can be divided into distortion-
specific and general-purpose groups. As the name indicates, distortion-specific methods
assume the presence of certain distortions, such as JPEG [2] or JPEG2000 [3] compression
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noise. In contrast, general-purpose algorithms do not restrict themselves to specific distor-
tions. General-purpose methods can be further divided into opinion-unaware [4,5] and
opinion-aware [6] classes. Opinion-unaware ones do not require subjective quality scores
in the training process, while opinion-aware algorithms usually rely on different regression
frameworks trained on subjective scores.

Models based on natural scene statistics (NSS) have been very popular in opinion-
aware NR-IQA. The main idea is that pristine (distortion-free) images obey certain statistical
regularities and distorted images’ statistics deviate significantly from these regularities.
As a consequence, these models contain three distinct stages: (1) feature extraction, (2) NSS
modeling, and (3) regression. Hence, the main differences between NSS-based algorithms
are connected to the above-mentioned three steps. For instance, blind image quality index
(BIQI) [7] extracts features in the wavelet domain over three scales and three orientations.
Moreover, generalized Gaussian distribution is fitted to the sub-band coefficients and the
fitting parameters are utilized as quality-aware features. Finally, a trained support vector
regressor (SVR) is applied to map features onto perceptual quality scores. In contrast,
blind image integrity notator using DCT statistics (BLIINDS) [8] utilizes the statistics of
local DCT coefficients. On the other hand, the mapping from features to quality scores is
carried out by probabilistic prediction algorithms. In contrast, Liu et al. [9] utilized the
orientation information from curvelet transform to determine correlation between scale
and orientation energy distributions. Similarly to [7], an SVR is used to map the feature
vectors onto quality scores. Gu et al. [10] combined NSS-based features with the free
energy principle. He et al. [11] integrated NSS-based features and sparse representation.
Mittal et al. [6] extracted NSS-based features from the spatial domain. Namely, mean
subtracted contrast normalized (MSCN) coefficients were first determined from the raw
pixel data. Subsequently, a generalized Gaussian distribution was fitted to MSCN coef-
ficients. Moreover, an asymmetric generalized Gaussian distribution was also fitted to
the products of neighboring MSCN coefficients. Similarly to BIQI [7], the fitting parame-
ters were considered as quality-aware features and mapped to perceptual quality scores
with a SVR. In [12], NSS features from multiple domains were combined. In contrast,
Jenadeleh and Moghaddam [13] estimated the parameters of NSS features by a Wakeby
distribution model.

Another line of papers extracts directly quality-aware statistical features from images
and maps them to quality scores. Zhang et al. [14] generated quality-aware features from
the joint generalized local binary pattern statistics. In contrast, Li et al. [15] proposed a
gradient weighted histogram of local binary patterns for quality aware features. In [16],
a set of quality aware statistical features (first digit distribution in the gradient magnitude
and wavelet domain, color statistics) were combined with powerful perceptual features
(colorfulness, global contrast factor, entropy, etc.) to train an Gaussian process regression
(GPR) algorithm for quality prediction.

Recently, convolutional neural networks have become a prominent technology in
the field of image processing. The deployment of CNNs in NR-IQA is gaining a lot of
attention due to their representational power. Usually, CNNs consist of four types of
components, such as convolutional, activation, pooling, and fully-connected layers stacked
on each other. On the other hand, features extracted from CNNs trained on huge databases,
such as ImageNet [17], have shown excellent representational power in many image
processing tasks [18–20]. First, Kang et al. [21] proposed a CNN-based solution for NR-IQA.
Specifically, the authors trained a CNN regression framework on 32× 32 non-overlapping
image patches. The perceptual quality of the overall input image was determined by
pooling the patches’ quality scores. Later, the proposed architecture was developed further
by Kang et al. [22] to simultaneously estimate perceptual quality and image distortion types.
Similarly, Kim et al. [23] proposed a regression CNN framework, but FR-IQA behavior was
first imitated by generating a local quality map. Namely, the patches were first regressed
onto quality scores obtained by a traditional FR-IQA metric. In contrast, Bianco et al. [24]
applied fine-tuned AlexNet [25] to extract deep features from 227× 227-sized image patches.
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Zeng et al. [26] developed the approach of [24] further. Namely, they extracted features
with the help of a ResNet [27] architecture and elaborated a probabilistic representation of
distorted images. In [28], an Inception-V3 [29] network was utilized as feature extracted
and it was pointed out that considering the features of multiple layers is able to improve the
performance of perceptual quality prediction. In contrast, Liu et al. [30] trained a Siamese
CNN to rank images in terms of perceptual quality. Subsequently, the trained Siamese
CNN was used to transfer knowledge into a traditional CNN. Lin and Wang [31] proposed
a quality-aware generative network for reference image generation. To this end, a quality-
aware loss function was also proposed. Moreover, the knowledge about the discrepancy
between real and generated reference images was incorporated into a regression CNN
which estimated the perceptual quality of distorted images.

Another line of NR-IQA algorithms focuses on combining the results of existing meth-
ods to improve prediction performance [32,33]. For instance, Ieremeiev et al. [34] trained a
neural network on the results of eleven different NR-IQA algorithms to boost performance.

1.2. Contributions

In this study, an NR-IQA method is presented which relies on a novel feature vector
containing a set of quality-aware features that globally characterizes the statistics of a given
input image to be assessed. Specifically, the proposed feature vector partially improves
further our previous work [16]. A set of shape descriptors is proposed to the local fractal
dimension distribution and first digit distribution feature vectors to capture better image
distortions. Moreover, we point out that besides the wavelet coefficients [16], discrete
cosine transform coefficients and singular values of an image are also suitable to derive first
digit distribution features based on Benford’s law. Motivated by the model of extended
classical receptive field (ECRF), Bilaplacian quality-aware features are also incorporated
into the introduced model. Unlike previous methods, the degradation of image edges are
quantified by image moments. Experimental results and performance comparison to the
state-of-the-art are presented on five publicly available IQA benchmark databases: CSIQ,
MDID, KADID-10k, LIVE In the Wild, and KonIQ-10k.

1.3. Structure

The rest of this study is organized as follows. Section 2 describes our proposed
method for NR-IQA. Next, Section 3 shows experimental results and analysis including the
description of the applied IQA benchmark databases and evaluation protocol, a parameter
study, and a comparison to other state-of-the-art algorithms. Finally, a conclusion is drawn
in Section 4.

2. Proposed Method

The general overview of the proposed NR-IQA method is shown in Figure 1. As the
workflow indicates, a set of feature vectors is extracted from the training images to train a
machine learning model which is applied in the testing phase for mapping feature vectors
into perceptual quality scores. In Section 3, a detailed parameter study is presented to find
the most suitable regression using five IQA benchmark databases.

As pointed out by Ghadiyaram and Bovik [35], a various set of features is necessary
to accurately predict artificially and authentically distorted digital images’ perceptual
quality. In this study, a novel set of quality-aware features is proposed that characterizes
an image by taking into account its global statistics. The introduced method relies on a
132-dimensional feature vector including extended local fractal dimension distribution
feature vector, extended first digit distribution (FDD) feature vectors, Bilaplacian features,
image moments, histogram variances of relative gradient orientation (RO), gradient magni-
tude (RM), relative gradient magnitude (GM) maps, and perceptual features (colorfulness,
sharpness, dark channel feature, contrast). The used features are summarized in Table 1
where quality-aware features proposed by this study are typed in bold.
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Table 1. Summary of features applied in the introduced no-reference image quality assessment (NR-IQA) algorithm.
Quality-aware features proposed in this study are typed in bold.

Feature Number Input Feature Length of Feature

f1–f16 Local fractal dimension map
normalized histogram, skewness,

kurtosis, entropy, median,
spread, std

16

f17–f32 Horizontal wavelet coefficients
normalized FDD, symmetric KL,

skewness, kurtosis, entropy,
median, spread, std

16

f33–f48 Vertical wavelet coefficients
normalized FDD, symmetric KL,

skewness, kurtosis, entropy,
median, spread, std

16

f49–f64 Diagonal wavelet coefficients
normalized FDD, symmetric KL,

skewness, kurtosis, entropy,
median, spread, std

16

f65–f80 DCT coefficients
normalized FDD, symmetric KL,

skewness, kurtosis, entropy,
median, spread, std

16

f81–f96 Singular values
normalized FDD, symmetric KL,

skewness, kurtosis, entropy,
median, spread, std

16

f97–f103 Bilaplacian maps
of Y channel histogram variance 7

f104–f110 Bilaplacian maps
of Cb channel histogram variance 7

f111–f117 Bilaplacian maps
of Cr channel histogram variance 7

f118–f125 Sobel edge map image moments 8

f126 RO map [36] histogram variance 1

f127 RM map [36] histogram variance 1

f128 GM map [36] histogram variance 1

f129 RGB image colorfulness [37] 1

f130 Grayscale image sharpness [38] 1

f131 RGB image dark channel feature [39] 1

f132 RGB image contrast [40] 1
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Figure 1. Block diagram of the proposed method.

2.1. Extended Local Fractal Dimension Distribution Feature Vector

In [41], Pentland demonstrated that natural scenes, such as mountains, trees, clouds,
etc., can be described by fractal surfaces because fractals look like as natural surfaces.
Various image distortions often change the local regularities of digital images’ texture.
Thus, distortions change the local fractal dimension distribution of a given test image.
Consequently, the histogram of local fractal dimension distributions are quality-aware
features [16]. As in our previous study [16], the local fractal dimension map of an image is
created by considering each pixel in the original image as a center of a 7-by-7 rectangular
neighborhood and the fractal dimension is calculated from this neighborhood. The box-
counting method is applied to determine the fractal dimension of an image patch because
it is able to represent complexity and easy to implement [42,43]. Similarly to our previous
work [16], a 10-bin normalized histogram was calculated considering the values between
−2 and 3 from the local fractal dimension map. Figure 2 depicts the local fractal dimension
maps of a reference-distorted image pair. It can be observed that distortions in texture
appear very strongly in the local fractal dimension.

Although the normalized histogram of local fractal dimension distribution is able
to describe the irregularities of natural scene, the following statics are attached to the
normalized histogram to construct an effective feature vector: skewness, kurtosis, entropy,
median, spread, and standard deviation. The skewness is determined as

s(v) =
(v− v)3

std(v)
, (1)

where v stands for the mean of v and std(v) is the standard deviation of v. The kurtosis is
obtained as

k(v) =
(v− v)4

std(v)4 − 3. (2)

The entropy is obtained as

e(v) = −∑
i

pi(v) log2 pi(v), (3)

where pi(v) stands for the histogram count of v.
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(a) Reference image. (b) Distorted image.

(c) Local fractal dimension map of the refer-
ence image.

(d) Local fractal dimension map of the dis-
torted image.

Figure 2. Illustration of local fractal dimension maps.

2.2. Extended First Digit Distribution Feature Vectors

Benford’s distribution concerns the leading digit (the first non-zero digit, range: 1–9)
of values in a data set. Frank Benford published an article entitled “The law of anomalous
numbers” in 1938 [44] where he analyzed the leading digit values from diverse sources,
such as populations of counties, length of rivers, or death rates. Benford conjectured that
the distribution of the leading digit x = 1, 2, . . . , 9 has probability mass function

f (x) = log10(1 +
1
x
). (4)

Those data sets, that follows the particular pattern defined by Equation (4) for their leading
digits, are said to satisfy Benford’s law. It was pointed out by Pérez-González et al. [45] that the
luminance values of digital images do not satisfy Benford’s law. However, the discrete co-
sine transform (DCT) coefficients of a digital image produces a good match with Benford’s
law [45].

In our previous work [16], we utilized the wavelet domain to obtain first digit distri-
bution (FDD) feature vectors, since we pointed out that the FDD in the wavelet transform
domain matches very well with the Benford’s law prediction in case of distortion-free,
pristine images. On the other hand, various image distortions result in a significant de-
viation from the prediction of the Benford’s law in FDD. However, the discrete cosine
transform (DCT) coefficients’ and singular values’ FDD shows similar properties to those
of wavelet domain. In this study, normalized FDD feature vectors are extracted from
the DCT coefficients [45] and the singular values, besides the wavelet transform domain.
Moreover, the FDD distribution feature vectors are augmented by statistics as in the previ-
ous subsection, such as symmetric Kullback–Leibler divergence between the actual FDD
and Benford’s law prediction, skewness, kurtosis, entropy, median, spread, and standard
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deviation. As already mentioned, symmetric Kullback–Leibler (sKL) divergence is deter-
mined between the actual FDD (denoted by P(x), x = 1, 2, . . . , 9) and Benford’s distribution
(denoted by B(x), x = 1, 2, . . . , 9):

sKL(P(x), B(x)) =
1
2

KL(P(x), B(x)) +
1
2

KL(B(x), P(x)), (5)

where the Kullback–Leibler (KL) divergence is given as:

KL(P(x), B(x)) =
9

∑
x=1

P(x) log2
P(x)
B(x)

. (6)

In addition to sKL, skewness, kurtosis, entropy, median, spread, and standard devia-
tion were also attached to the normalized FDD to obtain the extended FDD feature vector.
As a result, an extended FDD feature vector has a length of 17. Moreover, extended FDD
feature vectors are extracted from the horizontal, vertical, and diagonal wavelet coefficients,
DCT coefficients, and singular values.

Table 2 illustrates the average FDD of singular values in the KADID-10k [46] database
with respect to the five different distortion levels found in this database. It can be observed
that the sKL between the actual FDD and the Benford’s distribution is roughly proportional
with the level of distortion. Furthermore, the relative frequency of ones and twos are
also roughly proportional with the level of image distortion. That is why, the FDDs in
different domains were chosen as quality-aware descriptors and were extended with sKL
and histogram shape descriptors, such as skewness, kurtosis, entropy, median, spread,
and standard deviation.

Table 2. Average first digit distribution (FDD) of singular values in the KADID-10k [46] database with respect to the
five different distortion levels of KADID-10k. Level 1 stands for the lowest level of distortion, while Level 5 denotes the
highest distortion. The column sKL indicates the symmetric Kullback–Leibler divergence between the actual FDD and the
prediction of Benford’s law.

1 2 3 4 5 6 7 8 9 sKL

Level 1 0.307 0.184 0.126 0.095 0.076 0.064 0.055 0.049 0.044 8.52× 10−4

Level 2 0.306 0.181 0.124 0.095 0.077 0.065 0.057 0.050 0.045 3.08× 10−4

Level 3 0.312 0.182 0.123 0.092 0.075 0.064 0.056 0.050 0.046 8.59× 10−4

Level 4 0.317 0.185 0.124 0.090 0.072 0.062 0.055 0.049 0.045 0.002
Level 5 0.315 0.192 0.128 0.092 0.071 0.060 0.053 0.048 0.044 0.004

Benford distribution 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

2.3. Bilaplacian Features

Gerhard et al. [47] pointed out that the human visual system (HVS) is adapted to
the statistical regularities in images. Moreover, Marr [48] emphasized the importance of
studying zero-crossings at multiple scales to interpret the intensity changes found in the
image. At the same time, the extended classical receptive field (ECRF) of retinal ganglion
cells can be modeled as a combination of three zero-mean Gaussians at three different
scales [49]. These are equivalent to a Bilaplacian of the Gaussian filter [49,50]. On the
other hand, Gaussian filtering introduces an undesirable distortion in IQA. In our method,
YCbCr color space is applied, since it is suggested by ITU-R BT.601 for video broadcasting
to obtain Bilaplacian features. The direct conversion from RGB color space to YCbCr is the
following:  Y

Cb
Cr

 =

 0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4392
0.4392 −0.3678 −0.0714

R
G
B

, (7)

where R, G, and B denote the red, green, and blue color channels, respectively.
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Generally, the Laplacian filters are approximated by convolution kernels whose sum
are zero [51]. In this paper, the following popular kernels are utilized:

L1 =

0 1 0
1 −4 1
0 1 0

, L2 =

 1 −2 1
−2 4 −2
1 −2 1

, L3 =

1 0 1
0 −4 0
1 0 1

, L4 =

−2 1 −2
1 4 1
−2 1 −2

, (8)

L5 =

−1 −1 −1
−1 8 −1
−1 −1 −1

. (9)

An image can be converted to the Bilaplacian domain by convolving it with two
Laplacian kernels, formally can be written as:

L2
ij ∗ I = Li ∗ Lj ∗ I, (10)

where ∗ stands for the operation of convolution. In our study, L2
11, L2

22, L2
33, L2

44, L2
55, L2

13,
and L2

24 masks are considered. As already mentioned, the channels of YCbCr color space
are used to obtain the Bilaplacian features. This means that Y, Cb, and Cr channels are
convolved with the Bilaplacian masks independently from each other. As a consequence,
seven Bilaplacian maps can be obtained for each color channel. Subsequently, the histogram
variance of each channels is taken. The histogram variance is defined as

hvar(v) = ∑
v
(h(v)− v)2, (11)

where h(v) stands for v’s normalized histogram to unit sum.
Figure 3 illustrates a reference, distortion-free image and its artificially distorted

counterpart from the KADID-10k [46] database. It can be seen that even a moderate
amount of noise can significantly distort the normalized histogram of Bilaplacian feature
maps. That is why the histogram variances of the Bilaplacian feature maps were applied as
quality-aware features.

(a) Reference image. (b) Distorted image.

(c) Reference image convolved by L55. (d) Distorted image convolved by L55.
Figure 3. Cont.
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(e) Normalized histogram of reference im-
age’s L55 feature map.

(f) Normalized histogram of distorted im-
age’s L55 feature map.

Figure 3. Illustration of Bilaplacian features. The first row contains a reference-distorted image pair. The second row consists of the
Bilaplacian feature maps obtained by the L55 filter. The third row contains the normalized histograms of the Bilaplacian feature maps.

2.4. Image Moments

A number of IQA metrics have utilized that the structural distortions of digital images
correlate well with the degradation of edges [52,53]. In this paper, we propose to use
the global, binary Sobel edge map of a digital image and determine the eight central
moments ((0, 2), (0, 3), (1, 1), (2, 1), (1, 2), (2, 0), (2, 1), (3, 0)) which are used as quality-
aware features.

First, the Sobel operator computes an approximation of the gradient of an image. If I
is considered as the source image, Gx and Gy are determined as:

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

 ∗ I, (12)

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ I, (13)

where ∗ stands for the convolution operator, Gx and Gy are the horizontal and vertical
derivative approximations, respectively. The gradient magnitude approximations can
be obtained:

G =
√

G2
x + G2

y. (14)

The binary Sobel edge map is determined by thresholding G using the quadruple of
G’s mean as cutoff threshold. Finally, edge thinning is applied to remove spurious points
from the edge map [54]. The central moments of the digital image I(x, y) are defined as

µpq = ∑
x

∑
y
(x− x̄)p(y− ȳ)q I(x, y), (15)

where x̄ and ȳ are the coordinates of the binary image’s centroid. By definition, the centroid
of a binary image is the arithmetic mean of all (x, y) coordinates. It can be shown that
central moments are translational invariant [55] (Figure 4).
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(a) Reference image. (b) Distorted image.

(c) Binary Sobel edge map of the reference image. (d) Binary Sobel edge map of the distorted image.

Figure 4. Structural distortions correlate well with the degradation. Central moments are applied as quality-aware features
to quantify edge degradation.

2.5. Gradient Features

Image gradient magnitude and orientation features have become very popular both
in FR-IQA and NR-IQA since they are strong predictive factors of perceptual image qual-
ity [36]. In this study, the histogram variances of gradient magnitude (GM), relative
gradient orientation (RO), and relative gradient magnitude (RM) are incorporated into our
model to quantify the changes in gradient [36].

2.6. Perceptual Features

The following perceptual features are adopted in our model, since they are coherent
with the HVS’s quality perception. Specifically, colorfulness [37], sharpness [38], dark
channel feature [39], and contrast [40] were applied in our study.

Yendrikhovskij et al. [56] demonstrated that colorfulness plays an important role
in human perceptual quality judgments, since humans like better more colorful images.
In this study, the metric of Hasler and Suesstrunk [37] was adopted:

CF =
√

σ2
rg + σ2

yb +
3
10

√
µ2

rg + µ2
yb, (16)

where rg = R− G and yb = 1
2 (R + G)− B. Furthermore, R, G, and B stand for the red,

green, and blue channels, respectively. Variables σ and µ denote the standard deviation
and mean of the matrices given in the subscripts, respectively.

Image sharpness determines the amount of detail that is realized in the image. Sharp-
ness can be observed most clearly on image edges and for that reason it is widely considered
as an image quality factor. In this study, the metric of Bahrami and Kot [38]—maximum
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local variation (MLV)—was adopted to characterize the sharpness of an image because its
low computational costs.

First, Tang et al. [57] proposed dark channel features for photo quality assessment.
Dark channel features were designed originally for single image haze removal [39]. An im-
age’s (I) dark channel (Idark) is defined as:

Idark(i) = min
c∈{R,G,B}

( min
i′∈Ω(i)

Ic(i′)), (17)

where Ic is a color channel of I (c ∈ {R, G, B}) and Ω(i) is a neighborhood of pixel i. In our
implementation, Ω(i) is a rectangular 15× 15-sized patch. The dark channel feature of
image I is defined as:

DCF =
1
||S|| ∑i∈S

Idark(i)
∑c∈{R,G,B} Ic(i)

, (18)

where S denotes the area of the input image.
There are many definitions of image contrast in the literature. The easiest way to

explain contrast is the difference between the brightest and darkest pixel values. There-
fore, the HVS’s capability to recognize and separate objects on an image heavily de-
pends on image contrast. Consequently, contrast is an image quality factor. In this study,
Matkovic et al.’s [40] global contrast factor (GCF) model was adopted which is defined
as follows:

GCF =
9

∑
i=1

wiCi, (19)

where wi = (−0.406385 · i
9 + 0.334573) · i

9 + 0.0877526, i ∈ {1, 2, . . . , 9}. Moreover, Cis are
defined as

Ci =
1

w · h
w·h
∑
i=1

lCi , (20)

where w and h stand for the width and height of the input image, respectively, and

lCi =
|Li − Li−1|+ |Li − Li+1|+ |Li − Li−w|+ |Li + Li+w|

4
, (21)

where the Ls denote the pixel values after gamma correction (γ = 2.2) and assuming that
the image is reshaped into a row-wise one dimensional array.

Table 3 illustrates the average values of the applied perceptual features(CF, sharpness,
DCF, and GCF) in the KADID-10k [46] database with respect to the five different distortion
levels. It can be observed that the applied four perceptual features strongly correlate with
the distortion levels.

Table 3. The average values of perceptual features in the KADID-10k [46] database with respect to
the five different distortion levels. Level 1 stands for the lowest level of distortion, while Level 5
denotes the highest distortion.

CF Sharpness DCF GCF

Reference 0.2430 0.1635 0.1655 7.3100
Level 1 0.2423 0.1640 0.1678 7.4314
Level 2 0.2590 0.1580 0.1588 7.5798
Level 3 0.2663 0.1526 0.1581 7.5652
Level 4 0.2732 0.1497 0.1573 7.6172
Level 5 0.2857 0.1458 0.1534 7.6995

3. Experimental Results

In this section, our experimental results are presented. Section 3.1 gives a brief
overview about the used publicly available IQA benchmark databases. Next, Section 3.2
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describes the used experimental setup and evaluation metrics. Section 3.3 contains a
parameter study in which our design choices are reasoned. Subsequently, Section 3.4
consists of a performance comparison to other state-of-the-art NR-IQA algorithms using
publicly available IQA benchmark databases. Finally, Sections 3.5 and 3.6 contain detailed
results with respect to distortion types and levels.

3.1. Databases

Five publicly available benchmark IQA databases are used in this study to demonstrate
and validate the results of the proposed method including CSIQ [58], KADID-10k [46],
MDID [59], LIVE In the Wild [35], and KonIQ-10k [60] datasets.

CSIQ [58] has 30 reference images, each one distorted by one of six predefined dis-
tortion types at four or five different distortion levels. MDID [59] contains 20 reference
images and 1600 distorted images derived from the reference images using multiple distor-
tions of random types and distortion levels. Moreover, the authors [59] proposed a novel
subjective rating method, called pair comparison sorting, to obtain more accurate data.
KADID-10k [46] consists of 10,125 distorted images derived from 81 pristine (distortion
free), reference images using 25 different distortion types at 5 different distortion levels.
Moreover, each image is associated with a differential MOS value in the range of [1, 5].
In contrast, LIVE In the Wild [35] database contains images captured by mobile camera
devices so the images are affected by an intricate mixture of different distortion types. In to-
tal, it contains 1162 authentically distorted images which were evaluated by 8100 human
observers. Similarly, KonIQ-10k [60] database consists of digital images with authentic
distortions. Specifically, 10,073 images were sampled from the YFCC100m [61] database
using seven quality indicators, one content indicator, and machine tags. Moreover, 120
quality ratings were collected for all images using crowd sourcing platforms.

Table 4 presents a comparison of the applied IQA benchmark databases with respect
to their main characteristics.

Table 4. Publicly available IQA benchmark databases used in this paper.

Database #Distorted Images Distortion Type #Distortion Types #Ref. Images Resolution

CSIQ [58] 866 artificial 4-5 30 512× 512
MDID [59] 1600 artificial 5 20 512× 384

KADID-10k [46] 10,125 artificial 25 81 512× 384
LIVE In the Wild [35] 1162 authentic - - 500× 500

KonIQ-10k [60] 10,073 authentic - - 1024× 768

3.2. Experimental Setup and Evaluation Metrics

To evaluate our model and other state-of-the-art algorithms, databases containing
artificial distortions (CSIQ [58], MDID, and KADID-10k [46]) are divided into a training
set and a test with respect to the pristine, reference images to avoid any semantic content
overlapping between these two sets. Databases with authentic distortions (LIVE In the
Wild) are simply divided into a training and a test set. Moreover, approximately 80% of
images are in the training set and the remaining 20% are in the test. In this study, two
widely applied correlation criteria are employed including Pearson’s linear correlation
coefficient (PLCC) and Spearman’s rank order correlation coefficient (SROCC). For both
PLCC and SROCC, a higher value indicates a better performance of the examined NR-
IQA algorithm. Furthermore, we report average PLCC and SROCC values which were
measured over 100 random train–test splits.

3.3. Parameter Study

In this subsection, a parameter study is carried out to find an optimal regression
technique for the proposed quality-aware global statistical features. Specifically, we made
experiments with five different regression algorithms, such as rational quadratic Gaussian
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process regressor (GPR) [62], Gaussian support vector regressor (SVR) [63], linear SVR [63],
binary tree regression (BTR) [64], and random forest regression (RFR) [65]. The results
are summarized in Figure 5. It can be seen that rational quadratic GPR provides the best
performance on CSIQ [58], KADID-10k [46], and LIVE In the Wild [35]. On MDID [59],
RFR provides the best results, while rational quadratic GPR is the second best. On KonIQ-
10k [60], rational quadratic GPR and RFR give similar results. As a consequence, rational
quadratic GPR was chosen in our method. Moreover, this architecture is codenamed
GSF-IQA in the following subsections and compared to the state-of-the-art.

(a) (b)

(c) (d)

(e)

Figure 5. Performance comparison of rational quadratic Gaussian process regressor (GPR), Gaussian support vector
regressor (SVR), linear SVR, binary tree regression (BTR), and random forest regression (RFR) techniques. Average
Pearson’s linear correlation coefficient (PLCC) and Spearman’s rank order correlation coefficient (SROCC) values measured
100 random train–test splits are plotted. (a) CSIQ [58]. (b) MDID [59]. (c) KADID-10k [46]. (d) LIVE In the Wild [35].
(e) KonIQ-10k [60].
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3.4. Comparison to the State-of-the-Art

To compare our GSF-IQA method to the state-of-the-art, several NR-IQA methods
were collected whose original source codes are available online, including BLIINDS-II [66],
BMPRI [67], BRISQUE [6], CurveletQA [9], DIIVINE [68], ENIQA [69], GRAD-LOG-CP [70],
NBIQA [71], PIQE [4], OG-IQA [36], SPF-IQA [16], and SSEQ [72].

As already mentioned, five benchmark IQA databases are used in this study: CSIQ [58],
MDID [59], KADID-10k [46], LIVE In the Wild [35], and KonIQ-10k [60]. The measured
results of the proposed method and other state-of-the-art algorithms on artificial distortions
(CSIQ [58], MDID [59], and KADID-10K [46]) can be seen in Table 5, while those on
authentic distortions (LIVE In the Wild [35] and KonIQ-10k [60]) are summarized in
Table 6. In addition to this, Table 7 presents the results of the one-sided t-test which was
applied to give evidence for the statistical significance of GSF-IQA’s results on the used
IQA benchmark databases. In this table, each record is encoded by two symbols. Namely,
‘1’ means that the proposed GSF-IQA method is statistically significantly better than the
NR-IQA method in the row on the IQA benchmark database in the column. The ‘-’ symbol
is adopted when there is no significant difference between GSF-IQA and another NR-IQA
method. Table 8 illustrates the weighted and direct average of PLCC and SROCC values
found in Tables 5 and 6.

From the results presented in Tables 5–8, it can be seen that the proposed GSF-IQA
provides the best results on four out of five IQA benchmark databases. Moreover, it gives
the second best PLCC and SROCC values on LIVE In the Wild [35]. From the significance
tests, it can be observed that the improvement is statistically significant on all databases
containing artificial distortions. On the other hand, the difference between the best and the
second best performing methods on LIVE In the Wild [35] and KonIQ-10k [60] is statistically
not significant. It can be also observed from Table 8 that the proposed GSF-IQA method
is able to outperform other state-of-the-art algorithms in terms of direct and weighted
average PLCC and SROCC values. Specifically, GSF-IQA outperforms the second best
method by approximately 0.02 both in terms of direct and weighted average PLCC and
SROCC values.

Figure 6 depicts the boxplots of PLCC and SROCC values produced by GSF-IQA on
each applied IQA benchmark database. On every box, the red central mark stands for the
median value, and the blue bottom and top edges of the box denote the 25th and 75th
percentiles, respectively. In addition, the whiskers indicate the most extreme values which
are not considered as outliers. The outliers are depicted by ’+’.

Table 5. Comparison of GSF-IQA to the state-of-the-art on artificial distortions. Mean PLCC and
SROCC are measured over 100 random train–test splits with respect to the reference images. Best
results are typed in bold, second best results are typed in italic.

CSIQ [58] MDID [59] KADID-10K [46]
Method PLCC SROCC PLCC SROCC PLCC SROCC

BLIINDS-II [66] 0.763 0.718 0.676 0.677 0.548 0.530
BMPRI [67] 0.785 0.737 0.757 0.751 0.554 0.530

BRISQUE [6] 0.613 0.531 0.612 0.618 0.383 0.386
CurveletQA [9] 0.738 0.707 0.671 0.673 0.473 0.450
DIIVINE [68] 0.654 0.635 0.713 0.722 0.423 0.428
ENIQA [69] 0.838 0.807 0.747 0.751 0.634 0.636

GRAD-LOG-CP [70] 0.786 0.766 0.608 0.628 0.585 0.566
NBIQA [71] 0.831 0.794 0.760 0.768 0.635 0.626

PIQE [4] 0.644 0.522 0.269 0.253 0.289 0.237
OG-IQA [36] 0.749 0.696 0.729 0.714 0.477 0.440
SPF-IQA [16] 0.860 0.830 0.727 0.725 0.717 0.708

SSEQ [72] 0.710 0.642 0.763 0.762 0.453 0.433

GSF-IQA 0.875 0.840 0.781 0.773 0.737 0.725
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Table 6. Comparison of GSF-IQA to the state-of-the-art on authentic distortions. Mean PLCC and
SROCC are measured over 100 random train–test splits. Best results are typed in bold, second best
results are typed in italic.

LIVE In the Wild [35] KonIQ-10k [60]
Method PLCC SROCC PLCC SROCC

BLIINDS-II [66] 0.450 0.419 0.571 0.575
BMPRI [67] 0.521 0.480 0.636 0.619

BRISQUE [6] 0.503 0.487 0.702 0.676
CurveletQA [9] 0.620 0.611 0.728 0.716
DIIVINE [68] 0.602 0.579 0.709 0.692
ENIQA [69] 0.578 0.554 0.758 0.744

GRAD-LOG-CP [70] 0.579 0.557 0.705 0.698
NBIQA [71] 0.607 0.593 0.770 0.748

PIQE [4] 0.171 0.108 0.206 0.245
OG-IQA [36] 0.526 0.497 0.652 0.635
SPF-IQA [16] 0.592 0.563 0.759 0.740

SSEQ [72] 0.469 0.429 0.584 0.573

GSF-IQA 0.618 0.595 0.784 0.752

Table 7. One-sided t-test. Symbol ‘1’ means that the proposed GSF-IQA method is statistically better than the NR-IQA
method in the row on the IQA benchmark database in the column. Symbol ‘-’ is used when there is no significant difference.

CSIQ [58] MDID [59] KADID-10K [46] LIVE In the Wild [35] KonIQ-10k [60]

BLIINDS-II [66] 1 1 1 1 1
BMPRI [67] 1 1 1 1 1

BRISQUE [6] 1 1 1 1 1
CurveletQA [9] 1 1 1 - 1
DIIVINE [68] 1 1 1 1 1
ENIQA [69] 1 1 1 1 1

GRAD-LOG-CP [70] 1 1 1 1 1
NBIQA [71] 1 1 1 1 -

PIQE [4] 1 1 1 1 1
OG-IQA [36] 1 1 1 1 1
SPF-IQA [16] 1 1 1 1 1

SSEQ [72] 1 1 1 1 1

Table 8. Comparison of GSF-IQA to the state-of-the-art. Weighted and direct average of measured
PLCC and SROCC values are reported. Best results are typed in bold, second best results are typed
in italic.

Weighted Average Direct Average
Method PLCC SROCC PLCC SROCC

BLIINDS-II [66] 0.569 0.560 0.602 0.584
BMPRI [67] 0.609 0.588 0.651 0.623

BRISQUE [6] 0.547 0.534 0.563 0.540
CurveletQA [9] 0.611 0.595 0.646 0.631
DIIVINE [68] 0.581 0.574 0.620 0.611
ENIQA [69] 0.699 0.692 0.711 0.698

GRAD-LOG-CP [70] 0.644 0.633 0.653 0.643
NBIQA [71] 0.706 0.692 0.721 0.706

PIQE [4] 0.260 0.246 0.316 0.273
OG-IQA [36] 0.580 0.553 0.627 0.596
SPF-IQA [16] 0.735 0.720 0.731 0.713

SSEQ [72] 0.539 0.522 0.596 0.568

GSF-IQA 0.759 0.737 0.759 0.737
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(a) (b)

(c) (d)

(e)

Figure 6. Box plots of the PLCC and SROCC values produced by GSF-IQA on five IQA benchmark databases (CSIQ [58],
MDID [59], KADID-10k [46], LIVE In the Wild [35], and KonIQ-10k [60]). Measured over 100 random train–test splits.
(a) CSIQ [58]. (b) MDID [59]. (c) KADID-10k [46]. (d) LIVE In the Wild [35]. (e) KonIQ-10k [60].
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3.5. Performance over Different Distortion Types

In this subsection, we examine the performance of the state-of-the-art NR-IQA meth-
ods over different distortion types. Specifically, we report on average SROCC values
measured over the different distortion types of KADID-10k database [46]. As already men-
tioned, this database consists of images with 25 different distortion types, such as Gaussian
blur (GB), lens blur (LB), motion blur (MB), color diffusion (CD), color shift (CS), color
quantization (CQ), color saturation 1 (CSA1), color saturation 2 (CSA2), JPEG2000 compres-
sion noise (JP2K), JPEG compression noise (JPEG), white noise (WN), white noise in color
component (WNCC), impulse noise (IN), multiplicative noise (MN), denoise, brighten,
darken, mean shift (MS), jitter, non-eccentricity patch (NEP), pixelate, quantization, color
block (CB), high sharpen (HS), and contrast change (CC). The results are summarized in
Table 9. It can be seen that the proposed GSF-IQA algorithm is able to provide the best
results on 12 out of 25 distortion types.

3.6. Performance over Different Distortion Levels

In this subsection, we examine the performance of the state-of-the-art NR-IQA meth-
ods over different distortion levels. Specifically, we report on average SROCC values
measured over the different distortion levels of the KADID-10k database [46]. The re-
sults are summarized in Table 10. As one can see from the results, the proposed GSF-IQA
algorithm is able to outperform all the other state-of-the-art methods on all distortion levels.
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Table 9. Mean SROCC value comparison on different distortion types of the KADID-10k [46] database. Measured over 100 random train–test splits with respect to the reference images.
The best results are typed in bold.

Dist. Type BLIINDS-II [66] BMPRI [67] CurveletQA [9] ENIQA [69] GRAD-LOG-CP [70] NBIQA [71] OG-IQA [36] SPF-IQA [16] SSEQ [72] GSF-IQA

GB 0.789 0.839 0.806 0.785 0.809 0.843 0.841 0.835 0.714 0.873
LB 0.755 0.815 0.850 0.797 0.808 0.845 0.804 0.802 0.739 0.800
MB 0.416 0.390 0.720 0.574 0.513 0.749 0.340 0.545 0.368 0.640
CD 0.519 0.445 0.270 0.691 0.416 0.633 0.289 0.791 0.422 0.750
CS 0.023 0.106 0.113 0.163 0.066 0.001 0.112 0.324 0.050 0.348
CQ 0.476 0.667 0.628 0.644 0.677 0.690 0.534 0.720 0.551 0.759

CSA1 0.126 0.099 0.040 0.064 0.007 0.024 0.046 0.086 0.108 0.161
CSA2 0.509 0.439 0.038 0.675 0.333 0.641 0.175 0.759 0.213 0.695
JP2K 0.636 0.616 0.605 0.634 0.670 0.694 0.566 0.605 0.455 0.699
JPEG 0.759 0.817 0.615 0.773 0.783 0.803 0.742 0.806 0.689 0.795
WN 0.544 0.841 0.723 0.769 0.846 0.767 0.723 0.890 0.638 0.883

WNCC 0.683 0.769 0.756 0.796 0.861 0.789 0.684 0.912 0.674 0.900
IN 0.609 0.457 0.609 0.618 0.710 0.649 0.557 0.701 0.581 0.798

MN 0.589 0.606 0.624 0.722 0.722 0.745 0.673 0.773 0.602 0.829
Denoise 0.687 0.814 0.772 0.809 0.826 0.864 0.712 0.882 0.617 0.835
Brighten 0.397 0.437 0.403 0.515 0.449 0.489 0.216 0.643 0.277 0.624
Darken 0.425 0.372 0.198 0.361 0.367 0.476 0.264 0.386 0.312 0.307

MS 0.214 0.206 0.055 0.112 0.138 0.268 0.094 0.139 0.099 0.149
Jitter 0.820 0.701 0.594 0.645 0.790 0.777 0.483 0.715 0.539 0.821
NEP 0.042 −0.042 0.038 0.019 0.076 0.016 0.077 0.076 −0.002 0.172

Pixelate 0.576 0.526 0.113 0.472 0.681 0.567 0.280 0.716 0.460 0.735
Quantization 0.304 0.304 0.350 0.548 0.578 0.464 0.531 0.688 0.202 0.596

CB 0.176 0.151 0.072 0.126 0.306 0.158 0.076 0.377 0.167 0.291
HS 0.620 0.544 0.622 0.709 0.701 0.650 0.585 0.819 0.586 0.849
CC 0.116 0.129 −0.002 0.188 0.136 0.230 0.172 0.226 0.061 0.273

All 0.530 0.530 0.450 0.636 0.566 0.626 0.440 0.708 0.433 0.725

Table 10. Mean SROCC value comparison on different distortion levels of the KADID-10k [46] database. Measured over 100 random train–test splits with respect to the reference images.
The best results are typed in bold.

Dist. Type BLIINDS-II [66] BMPRI [67] CurveletQA [9] ENIQA [69] GRAD-LOG-CP [70] NBIQA [71] OG-IQA [36] SPF-IQA [16] SSEQ [72] GSF-IQA

Level 1 0.172 0.093 0.082 0.127 0.103 0.133 0.087 0.212 0.007 0.217
Level 2 0.228 0.259 0.186 0.373 0.298 0.366 0.223 0.458 0.127 0.490
Level 3 0.358 0.383 0.309 0.505 0.403 0.445 0.282 0.603 0.246 0.642
Level 4 0.535 0.488 0.417 0.610 0.513 0.595 0.374 0.691 0.363 0.694
Level 5 0.629 0.584 0.532 0.688 0.605 0.678 0.494 0.741 0.548 0.747

All 0.530 0.530 0.450 0.636 0.566 0.626 0.440 0.708 0.433 0.725
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4. Conclusions

In this paper, we proposed a novel NR-IQA algorithm based on a set of novel quality-
aware features which globally characterizes the statistics of an image. First, we utilized that
various image distortions change the local regularities of the texture. Thus, an extended
local fractal dimension feature was proposed to quantify the texture’s degradation. Second,
we demonstrated that first digit distributions of wavelet coefficients, DCT coefficients,
and singular values can be used as quality-aware features and proposed extended first digit
distribution feature vectors. This model was improved by Bilaplacian features which was
inspired by the extended classical receptive field model of retinal ganglion cells. To quantify
the degradation of edges, image moments were incorporated into the model. The proposed
algorithm was tested on five publicly available benchmark databases including CSIQ,
MDID, KADID-10k, LIVE In the Wild, and KonIQ-10k. It was demonstrated that our
proposal is able to outperform other state-of-the-art methods both on artificial and authentic
distortions. There are two main directions of future research. Beyond feature concatenation,
it is worth to study the selection process of relevant attributes provided by different sources.
Moreover, the incorporation of local statistical features provided by local feature descriptors
may improve the performance, since some distortion types do not uniformly distribute in
the image.

To facilitate the reproducibility of the presented results, the source code of the pro-
posed method and test environments written in MATLAB R2020a environment are available
at: https://github.com/Skythianos/GSF-IQA, accessed on 5 February 2021.
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