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Abstract
The analysis of Functional Connectivity (FC) is a key technique of fMRI, having been used to dis-

tinguish brain states and conditions. While many approaches to calculating FC are available, there

have been few assessments of their differences, making it difficult to choose approaches, and

compare results. Here, we assess the impact of methodological choices on discriminability, using a

fully controlled data set of continuous active states involving basic visual and motor tasks, provid-

ing robust localized FC changes. We tested a range of anatomical and functional parcellations,

including the AAL atlas, parcellations derived from the Human Connectome Project and Indepen-

dent Component Analysis (ICA) of many dimensionalities. We measure amplitude, covariance, cor-

relation, and regularized partial correlation under different temporal filtering choices. We evaluate

features derived from these methods for discriminating states using MVPA. We find that multidi-

mensional parcellations derived from functional data performed similarly, outperforming an ana-

tomical atlas, with correlation and partial correlation (p < .05, FDR). Partial correlation, with

appropriate regularization, outperformed correlation. Amplitude and covariance generally discrimi-

nated less well, although gave good results with high-dimensionality ICA. We found that discrimi-

native FC properties are frequency specific; higher frequencies performed surprisingly well under

certain configurations of atlas choices and dependency measures, with ICA-based parcellations

revealing greater discriminability at high frequencies compared to other parcellations. Methodo-

logical choices in FC analyses can have a profound impact on results and can be selected to opti-

mize accuracy, interpretability, and sharing of results. This work contributes to a basis for

consistent selection of approaches to estimating and analyzing FC.
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1 | INTRODUCTION

The mapping and analysis of correlated brain activity patterns present in

functional magnetic resonance imaging (fMRI) recordings has widespread

applications including the investigation of the organization of cognitive

processing, the decoding of brain states, and the development of bio-

physical models and clinical biomarkers (Barkhof, Haller, & Rombouts,

2014; Castellanos, Di Martino, Craddock, Mehta, & Milham, 2013). Core

functional connectivity (FC) methodology consists of the calculation of

functional dependencies between neurophysiological (functional) mea-

surements of brain activity fluctuations (Biswal, Yetkin, Haughton, &

Hyde, 1995; Smith et al., 2011, 2013). One of the major products of FC

analyses of FMRI has been the identification of resting state networks

(RSNs) (Damoiseaux et al., 2006). RSNs are correlated patterns of brain

activity that are consistently found during rest, and reflect the major

functionally specialized brain networks related to cognition (Smith et al.,

2009). FC studies often aim to explore interactions both within and

between these RSNs and their subnetworks, and how these interactions

are modulated by cognitive states or other external factors. FC

approaches can inform other methods in estimating effective connectiv-

ity (EC), the underlying functional and structural relationships producing

correlated brain activity (Friston, 1994, Woolrich & Stephan, 2013). The

spatial and temporal complexity of fMRI data is such that characteriza-

tion of FC remains a crucial component to any investigation of EC.
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Despite the widespread use of FC-based methods, there has been

limited standardization or optimization of analysis approaches. There is

considerable variability in approaches to selecting nodes, preprocessing

the time series data, and measuring dependencies between nodes

(Varoquaux & Craddock, 2013). The lack of standard approaches makes

analysis design decisions arbitrary, and the results of different studies

difficult to compare or integrate.

FC analyses typically begin with a selection of a set of nodes from

a parcellation of the brain, to form network nodes or seed regions.

There are many choices for parcellation strategy, which can trade off

neurobiological interpretability and specificity. One option is to use

anatomical parcellations or atlases, such as the automated anatomical

labeling (AAL) (Tzourio-Mazoyer et al., 2002) or the Harvard-Oxford

probabilistic atlas (Smith et al., 2004). However, these methods may

not be ideal in the sense that observable anatomical boundaries do not

necessarily correspond to functional units (Smith et al., 2013). Alterna-

tive approaches use information from functional data. In these, nodes

are defined from the analysis of blood-oxygen-level dependent (BOLD)

activations obtained from a localizer or task-driven fMRI scan (Lashkari

et al., 2012; Thirion, Varoquaux, Dohmatob, & Poline, 2014), or by inde-

pendent component analysis (ICA) of resting fMRI data (Marrelec &

Fransson, 2011; Smith et al., 2011). Other, more recent approaches use

information from multiple modalities to create parcellations (Glasser

et al., 2016). In addition to the nature of defining the parcellations, the

level of granularity of the parcellation (i.e., dimensionality) may also

have substantial impact on FC analysis results and interpretations. For

example, using ICA, it has been observed that in low dimensional par-

cellations, each component typically represents an extended “entire”

brain network, whereas in high-dimensionality parcellations the

obtained components are smaller and they are more likely to represent

subparts of networks (Abou Elseoud et al., 2011; Kiviniemi et al., 2009).

The choice of the dimensionality will depend on the application or the

objective of the study. It has been shown that higher dimensionalities

can provide better discrimination between states, particularly if the final

analysis is to be a “nodes and edges” network modeling, as opposed to

voxel-wise spatial mapping (Duff, Makin, Madugula, Smith, & Wool-

rich, 2013).

The frequency dependence of connectivity signals remains rela-

tively poorly explored. FMRI time series activity will combine a variety

of signals across a wide range of frequencies, particularly with the

development of fast multiband sequences (Feinberg et al., 2010; Moel-

ler et al., 2010). Analyses often apply some band pass filtering in pre-

processing to reduce artifacts and target functional activity; however,

optimal choices are not well-established. Although the dominant signal

contribution to FC patterns is typically found in frequencies below

0.1 Hz (Cordes et al., 2001), there is a variety of evidence suggesting

that fMRI FC is the result of processes occurring at a wider range of

frequencies. Meaningful RSN patterns have been observed even after

removing all contributions below 0.25 Hz from the fMRI data (Boubela

et al., 2013), and some authors have described functional integration of

the RSNs at multiple frequency bands up to 0.75 Hz (Gohel & Biswal,

2014) and 1.4 Hz (Kalcher et al., 2014). At higher frequencies, neural

signals are more difficult to isolate at least in part due to the slow

hemodynamics and higher levels of physiological noise (Cordes et al.,

2001; Niazy, Xie, Miller, Beckmann, & Smith, 2011).

Finally, there are numerous choices for the statistical dependency

measure used for FC. Correlation—the simplest measure of pairwise

similarity between two timeseries–is a generic choice and it is the

most widely used measure in FC. However, it is sensitive to global sig-

nals and SNR variations, and it cannot be used for distinguishing direct

from indirect influences (Cole, Yang, Murray, Repovš, & Anticevic,

2016; Duff, Makin, Smith, & Woolrich, 2018; Friston, 2011). Partial

correlation (PC) provides a measure of the statistical dependence

between two regions after removing mutual effects from other nodes,

reducing some of these issues (Marrelec et al., 2006). PC is commonly

estimated via the inverse covariance (i.e., precision) matrix and often

requires the use of a regularization technique, as the limited number

of time points in the fMRI data sets leads to poorly conditioned

inverse covariance matrices. In such cases, a penalty is applied to reg-

ularize off-diagonal elements of the precision matrix (Varoquaux &

Craddock, 2013). The choice of the regularization method and the

parameters used can affect the structure of FC and its ability to dis-

criminate states (Brier, Mitra, McCarthy, Ances, & Snyder, 2015; Duff

et al., 2013; Smith et al., 2011). Besides correlation and PC, other

dependency measures have been used. Such measures may involve

higher-order statistics or temporal/phase lag to estimate directionality

and temporal causality of connections. These include mutual informa-

tion (Shannon, 1948) and Granger (lag-based) causality (Granger,

1969). However, it has been shown that they may perform worse for

modeling fMRI connectivity than correlation (Smith et al., 2011). FC

changes have been linked to changes in amplitude or power (Duff

et al., 2008, 2018; Yang et al., 2007). Cole et al. (2016) recently dem-

onstrated an approach combining covariance and correlation.

The various analytic choices are likely to have interdependent

effects on outcomes. Here, we focus on combinations of choices that

enable optimal discrimination between brain states. Discrimination is

a key outcome for applications that ultimately aim to provide predic-

tions relating to, for example, health outcomes. We assess the specific

conditions that optimize discrimination, and their implications for the

sources of FC. To date, several studies have separately assessed some

of these aspects, such as the performance of partial correlation com-

pared to full correlation (Duff et al., 2013; Smith, Beckmann, et al.,

2013), the effects of different preprocessing choices of FC (Shirer,

Jiang, Price, Ng, & Greicius, 2015), and differences across region-

definition approaches using activation data (Craddock, James,

Holtzheimer, Hu, & Mayberg, 2012; Shirer, Ryali, Rykhlevskaia,

Menon, & Greicius, 2012). In a recent study, Abraham et al. (2017)

performed a methodological investigation of resting-state FC pipelines

by studying the effects of region extraction, time series estimation,

functional interactions, and classification models. They found that the

region definition step has the strongest impact on classification, with

atlases defined from clustering approaches of resting-state data, both

derived from their own study or defined on large available data sets,

as being the best choice among all the options tested. The authors

also explored the effect of varying the number of regions in the par-

cellation, and found an optimal performance with 84 regions.

One reason for the lack of detailed validation of FC analysis

methods is that there has been relatively limited data available in

which FC has been robustly modulated by basic task conditions where

the localization of underlying brain processes are reasonably well

408 SALA-LLONCH ET AL.



understood (Duff et al., 2008; Shirer et al., 2012; Zabelina & Andrews-

Hanna, 2016). FC studies have tended to focus on clinical conditions,

where the expected differences in connectivity are unclear and in

many cases expected to be subtle. These do not necessarily provide

optimal data sets for assessing the sensitivity and interpretability of

analysis methods. In this work, we explore the ability of different anal-

ysis choices to distinguish fMRI data measuring simple steady state

active task conditions involving motor and visual processing, where

underlying brain processes are reasonably well understood and local-

ized. The use of active conditions allows controlled manipulations of

FC associated with steady state brain activity. The assessment of

these steady state conditions provides a simulation of possible differ-

ences seen in the resting state in experimental studies, for example

across patient groups, or across a learning period. In larger data sets,

such as the Human Connectome Project (HCP), fMRI acquisitions con-

sist of pure resting state data–in which classification between states

cannot be easily assessed–or block design task-fMRI data where peri-

odic task switches confound measures of FC. Data with event related

trials or block design stimuli, which introduce shifting mean signal

levels and transient effects, will grossly affect measures of functional

connectivity (Kwon, Watanabe, Fischer, & Bartels, 2016); in other

words it becomes hard to disentangle changes in connectivity from

changes in coactivation.

The aim of the work is to provide a focused survey of the impact

some major analysis choices, and their interactions to complement

broader studies that explore the performance of classifiers across

larger clinical data sets (Abraham et al., 2017).

2 | METHODS

2.1 | Overview

The aim of the study was to assess different Functional Connectivity

analysis pipeline choices for their ability to produce FC data that would

be discriminative of different states. We utilized specifically acquired

fMRI data that recorded 15 subjects under five separate steady-state

conditions. These conditions corresponded to the continuous perfor-

mance of different tasks that elicit activation of well understood net-

works. FMRI data from a localizer scan was also acquired and used for

ROI definition (Figure 1a). The basic pipeline for the analysis is shown

in Figure 1b. We separately assessed methodological choices for (1) par-

cellation, (2) bandpass filtering, and (3) FC dependency measures. We

assessed each step separately, utilizing the performance of a multivari-

ate classifier to discriminate between states as a key metric.

2.2 | Study design and data acquisition

Sixteen healthy volunteers (7 females, 8 males, mean

age = 27.25 years, 10 right handed) without previous neurological dis-

orders were initially included in the study after providing written

informed consent, in accordance with NHS national research ethics

service approval (10/H0707/29). One subject was excluded a poster-

iori, leaving a total sample of 15 subjects. All of them were scanned

under five separate 5 min steady-state conditions, with no baseline

epochs: rest (eyes open), visual only, motor only, simultaneous (but

independent) visual and motor tasks; and a combined condition

involving a visually cued task, where subjects were instructed to

change direction of their tapping when they observed visual features

in the video. The visual conditions consisted of videos of colorful

abstract shapes in motion designed to be consistent in their visual

properties over time. The motor conditions involved uncued continu-

ous sequential finger tapping against the thumb, using the right hand,

with periodic changes in direction. An additional task-activation locali-

zer scan, using pseudo-randomized 30 s block intervals by baseline

periods was performed under the same conditions to enable the iden-

tification of brain regions changing in average activation levels during

these conditions (Figure 1). This set data was specially designed to

assess the ability of imaging methods to discriminate between states

and it has already been published elsewhere, in two methodological

papers (Costa et al., 2015; Duff et al., 2018).

FMRI data were acquired in a Siemens 3 T scanner, using a

32-channel coil and a high-resolution (2 × 2 × 2 mm) fast (TR = 1.3 s)

multiband (factor 6) whole-brain acquisition (Feinberg et al., 2010;

Moeller et al., 2010). Each steady-state scan was approximately 5 min

(230 time points). The block-designed fMRI scan was 10 min. A high-

resolution T1-weighted 3D magnetization prepared rapid acquisition

gradient echo sequence (MPRAGE) was acquired with parameters:

TR = 2.0 s; TE = 4.7 ms; flip angle = 8�, 1 mm isotropic resolution.

2.3 | Data preprocessing

FMRI data were preprocessed using tools from FSL-FEAT (Smith

et al., 2004). Standard preprocessing steps included motion correction,

brain extraction, fieldmap unwarping of EPI images using FUGUE

(Wilson, Jenkinson, & Jezzard, 2002), and spatial smoothing with a

Gaussian kernel of FWHM of 2 mm. Additionally, data was cleaned

using FIX (FMRIB's ICA-based Xnoiseifier) (Griffanti et al., 2014) auto-

mated denoising. Registration of EPI data to standard MNI space was

performed via high-resolution T1 images using FSL FLIRT and FNIRT

(Andersson, Jenkinson, & Smith, 2007; Jenkinson, Bannister, Brady, &

Smith, 2002).

2.4 | Comparison of connectivity analysis choices

2.4.1 | Brain parcellations

We compared the ability of a variety of parcellation approaches to

generate discriminative FC matrices. We first evaluated a study-

specific set of ROIs defined from the localizer scans (Study-ROIs). It

might be expected that the measurement of FC changes within net-

works seen to show activations to given conditions should produce

accurate discrimination. The ROIs were derived from a FEAT-based

general linear model (GLM) analysis of data obtained from the block-

design localizer scan using the same task stimuli. For this, we identi-

fied ROIs from significant activation clusters generated using an F-test

across BOLD signal level responses to all tasks. Note that this proce-

dure assessed changes in mean BOLD signal levels (activation), and

not interregional correlations within conditions. We derived 33 ROIs

that were classified into: Visual Regions, Motor Regions, and Task

Deactivated Regions (details in Supporting Information).
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Second, we explored parcellations derived from two anatomical

atlases. The Automated Anatomical Labeling (AAL) Atlas (Tzourio-

Mazoyer et al., 2002), which includes 58 ROIs in each hemisphere, and

the multimodal surface-based atlas parcellation provided within the

Human Connectome Project (HCP) (Glasser et al., 2016), which includes

180 cortical regions in each hemisphere. The HCP atlas was originally

defined in gray-ordinates. Here, as these analyses focused on volumetric

data, we converted it into a volumetric parcellation using the workbench

analysis suite (Marcus et al., 2013) projecting the parcellation onto the

MNI 2 mm template. We examined the performance of a symmetrized

version of the HCP atlas consisting of averaging the time series within

the same region across hemispheres, the full atlas containing 360 regions

and a combined version including subcortical regions defined from the

Harvard-Oxford subcortical atlas (Smith et al., 2004) (results reported in

Supporting Information).

We also assessed parcellations derived using FSL-MELODIC ICA

(Beckmann, DeLuca, Devlin, & Smith, 2005) with dimensionalities

ranging from 10 to 200. Group-ICA decompositions were performed

concatenating data from all subjects and all tasks. Of the obtained IC

sets, components determined to represent nonneural features such as

motion artifacts were removed, giving decompositions of 10, 20,

27, 43, 80, 104, and 130 features.

In addition, we tested three further atlases. First, to enable the

assessment of the general performance of surface-derived parcellations,

we assessed an atlas obtained by applying surface ICA on the HCP data,

at a range of different dimensionalities similar to the volumetric ICA

derived from our own study (Smith, Beckmann, et al., 2013). These

surface-defined parcellations were further projected into volumetric

space. We also tested a group functional atlas derived from applying a

multilevel bootstrap analysis of stable clusters (BASC) (Bellec, Rosa-

Neto, Lyttelton, Benali, & Evans, 2010) on a subset of data from the

1,000 functional connectome project (Liu, Stufflebeam, Sepulcre, Hed-

den, & Buckner, 2009), which is publicly available and includes parcella-

tions of different dimensionalities. Finally, we included the functional

parcellations from Craddock et al. (2012). These were obtained from

clustering algorithms with various similarity metrics, including spatial

and temporal correlation and averaged in a group level approach. Fur-

ther details on these three atlases and their implementation within our

study set obtained are provided in Supporting Information.

2.4.2 | Extracting time-series

Study-specific ROIs, group ICA maps, and atlas-derived masks were

projected onto individual preprocessed fMRI data using spatial regres-

sion to obtain subject-specific time-series of each component. For

ICA-derived maps, the resulting time-series were obtained through

spatial multiple regressions, the first step of dual regression, using the

group ICA spatial maps. For atlas-based parcellations, timeseries were

calculated as the average of all voxels in each parcel.

2.4.3 | Connectivity structure with correlation and partial
correlation

We derived connectivity matrices from each parcellation using the

FSLNets toolbox (Smith, Beckmann, et al., 2013). We first assessed the

(full) correlation between time series to study whole-brain connectivity,

given that this is the simplest and most commonly used measure of

FC. Functional connectivity (FC) between ROIs or nodes was calculated

as the correlation between their time series. Correlation matrices were Z-

transformed for statistical purposes. Network matrices of differences

between tasks were calculated with paired two-sided t-tests of connectiv-

ity features implemented in MATLAB (MathWorks Inc., Natick, MA, USA).

Results were corrected using False Discovery Rate (FDR)

(Benjamini & Hochberg, 1995), with q = 0.2 and q = 0.05. We find

FIGURE 1 (a) Task design for the fMRI acquisition, and (b) main analysis pipeline including the methodological choices along the process [Color

figure can be viewed at wileyonlinelibrary.com]

410 SALA-LLONCH ET AL.

http://wileyonlinelibrary.com


connectivity changes between tasks using an FDR of 0.05 and we also

explored changes at a lower rate of 0.2 to visualize the broader pat-

tern of connectivity changes between states.

We also explored the capabilities of partial correlation (PC). As esti-

mation of PC from large covariance matrices can be poorly conditioned,

we used group regularization using the L2-norm (also known as Ridge-

regression or Tikhonov-based regularization). We assessed several reg-

ularization values (from 0 to 5 in steps of 0.1) with the optimal amount

of regularization calculated by means of cross validation (CV) using a

nested leave-one-subject-out loop (see Supporting Information).

2.5 | Analysis of covariance and spectral properties

2.5.1 | Overall variance (power)

In addition to correlation, we calculated the variance (i.e., reflecting

amplitude of time series) and covariance of the ROI-specific time

series as stand-alone features.

2.5.2 | Power spectra and temporal filtering

To investigate the frequency structure of FC, and the effects of data filter-

ing, we obtained the estimated power spectral density of the time series.

To obtain robust spectral estimates, we used the Welch's overlapped seg-

ment averaging estimator with a maximum eight segments with no more

than 50% overlap (Welch, 1967). These are used to calculate a set of peri-

odograms that are combined to obtain the final PSD estimate.

Band pass filtering is a common preprocessing step in FC FMRI

analyses. A number of temporal filtering strategies were applied to

the individual time-series. We evaluated no filtering (beyond a

removal of very low-frequency drift <0.005 Hz), and we tested high-

pass filtered data at different frequency cutoffs covering the full avail-

able range. In addition, we evaluated band-pass filtered data in four

nonoverlapping bands: [0.005–0.096] Hz; [0.096–0.182] Hz;

[0.182–0.298] Hz, and [0.298–0.385] Hz. These bands do not cover

equal spectral power, but are intended to correspond to frequency

bands often explored in practice. For filtering the timeseries, we used

Butterworth filters of order N = 4 implemented in MATLAB.

2.6 | Classification

We assessed the discriminative capabilities of connectivity features

using a multiclass linear Support Vector Machine (SVM) classifier

(Chang & Lin, 2011) with a leave-one-subject-out (LOSO) cross-

validation approach, both implemented in MATLAB. At each iteration,

the 5 acquisitions of a given subject were separated to be used as a

test set and the remaining subjects were used for training in order to

estimate the SVM model. For SVM, we evaluated eight soft margin C-

values between 0.001–1,000 to ensure maximal discrimination for

each data input. Overall, predictions were consistently maximized for

values of soft margin parameter C > =1. When PC regularization was

used, we selected the best regularization with cross-validation within

the training set. For each assessment of classification performance, all

features from connectivity (correlation and partial correlation) or

power/variance were included for classification. Before model estima-

tion, features from the training set were normalized within subjects.

We obtained normalized features as the ratio between each subject

and task specific connectivity network and the average connectivity

network of the same subject across the five tasks. While it was not

the core focus of this work, we also tested whether k-NN and random

forest (RF) classifiers would produce similar results (Mitchell, 1997).

2.7 | Summary scores and differences between
methods

Final classification performance scores were computed as the per-

centage of correct classification across tasks and subjects. The total

number of samples was 75 to be classified into five tasks. Chance per-

formance was therefore at 20%. That is, one would expect a classifica-

tion rate of 1/5 by chance. We used McNemar's test to obtain

statistics for the comparison of error rates between the different

assessments of classification (Fleiss, 1981). This test is used to evalu-

ate the improvement in correct classification between two methods

based on their error rates given the actual observed categories.

We sequentially performed a series of assessments: (1) across

parcellations using correlation and minimal filtering, (2) between cor-

relation and partial correlation for each given parcellation, (3) across

parcellations using partial correlation, and (4) between methods and

parcellations with filtered data.

Given the many possible permutations of analysis settings, and

expected random variation in performance of individual pipelines, we

did not aim to identify a single optimal pipeline, or make definitive

comparisons between individual permutations of pipelines. Instead,

we assess separate pipeline elements sequentially, identifying general

patterns of effects. To control false positives, we use False Discovery

Rate (FDR) with q = 0.05, and test for robustness to variations of par-

cellation schemes using the AAL as a baseline (i.e., which parcellations

give significantly higher predictions than AAL?), while keeping the

other pipeline components fixed.

When assessing overall differences between correlation and par-

tial correlation across parcellations (i.e., does partial correlation proves

a better prediction?) we used a pairwise Wilcoxon signed-rank test.

2.8 | Combining pipelines

Features from different analysis pipelines could be complementary—

for example, large and fine scale parcellations, or features in different

frequency bands. We therefore assessed the value for discrimination

of conditions using concatenations of features generated by different

analysis pipelines.

3 | RESULTS

3.1 | Standard correlation based analysis of test data

Standard correlation-based FC assessments identified distinct differ-

ences in functional connectivity across the resting, visual, motor and

combined states. With respect to rest, the visual condition produced

increases in correlation within the visual cortex, and decreases in corre-

lation of these regions with other brain regions, including parts of the

motor network and regions associated with task-related deactivations.

The motor task did not show significant changes compared to rest at
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an FDR q value of 0.05. However, at a FDR q of 0.2, a pattern of reduc-

tion of FC between regions of the motor network with the visual and

task deactivated regions, and increases in some motor connections,

including the connections from cerebellum and putamen with the

motor cortex. The two tasks combining visual and motor conditions

produced an extensive pattern of connectivity changes with respect to

rest, which broadly reflected a combination of effects of the visual and

motor conditions, together with additional differences in the connec-

tions showing interactions between systems (Figure 2 showing FDR-

threshold differences using parcellations from Study-ROIs at q = 0.05

with the pattern at q = 0.2 at the background). To assess the effects of

head motion on discrimination, we used individual summary measures

of motion as classification features in the same SVM algorithm. These

were not predictive of brain states (accuracy 20% chance), indicating

that our results are not likely to be driven by differences in head motion

during the scanning session.

3.2 | Assessment of Parcellations using correlation

We evaluated the effect of parcellation on between state discrimina-

tion using correlation as a dependency measure. We compared the

performance of the different parcellation approaches using the AAL

atlas as the baseline parcellation. Results are summarized in

Figure 3a. The HCP parcellations performed significantly better than

the AAL atlas (p = .00045). Using ICA, we obtained an accuracy of

51% for ICA10 and values around 60% for the rest of ICA dimension-

alities. ICA parcellations of dimensionalities 20, 30, 150, and 200 per-

formed significantly better than the AAL atlas (p = .008, p = .020,

p = .0175, and p = .008). All results were significant for an FDR

of q = 0.05.

The two multiscale parcellations derived from functional data—

the Craddock and BASC parcellations–also performed similarly (accu-

racies around 60%). In this case, the Craddock atlas of dimensionalities

150, 170, and 200 performed significantly better than AAL (p = .01,

p = .01, and p = .0102).

Surface-ICA of all dimensionalities performed better than AAL

parcellations (p = .008 for surface-ICA10, p = .02 for surface-

ICA15, p = .0053 for surface-ICA25, p = .0022 for surface-ICA50,

p = .0067 for surface-ICA100, p = .004 for surface-ICA137, and

p = .017 for surface-ICA200). All significant for an FDR

of q = 0.05.

FIGURE 2 Overall pattern of connectivity changes between the active tasks and rest using the study-ROIs. All connectivity maps are thresholded

using FDR with q = 0.05 (highlighted with unfilled black squares). Connectivity differences with q = 0.2 are shown on the background using blue-
red scale for decreases (blue) and increases (red) with respect to rest [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Partial correlation and regularization
techniques

We tested partial correlation for its discriminative capabilities, and

explored the role of regularization on this outcome. Regularization

imposes sparsity on the obtained partial correlation matrices, avoiding

overfitting. As different levels may be optimal for different parcella-

tions, we evaluated performance with various regularization levels

and we selected the optimal regularization for each parcellation by

using a Leave-one-subject-out (LOSO) cross-validation approach. We

report the mean, standard deviation and the range of the optimal reg-

ularization scores for HCP, AAL, Study-ROIs, and ICA parcellations in

Table 1. In general, atlas-based parcellations and Study-ROIs required

higher regularization than ICA parcellations of similar number of fea-

tures, perhaps indicating these parcellations are of lower rank. For the

FIGURE 3 Classification rates for all the parcellations tested. (a) Using correlation as the dependency measure and (b) using regularized partial

correlation as the dependency measure. For comparisons across parcellations, * indicates p < .05, ** indicates p < .01, and *** indicates p < .001.
For comparisons between methods, * inside the bars indicates significant differences between full correlation and partial correlation at p < .05
level. Results are reported here as uncorrected p values. Refer to main text for comparisons surviving FDR threshold [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 1 Summary of optimal regularization levels across

parcellations

Mean Range (min-max)

HCP 7.36 5.5–8

AAL 2.37 1–5

Study-ROIs 1.90 0.5–4.9

ICA10 0.61 0.3–1.1

ICA20 0.95 0.1–2.3

ICA30 2.94 0.4–4.3

ICA50 0.88 0.3–1.8

ICA100 1.39 0.6–4.4

ICA150 1.48 0.3–2.4

ICA200 2.23 0.3–3.9
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HCP atlas, we obtained optimal regularization using high regulariza-

tion scores. We observed that across ICA dimensionalities, the level of

regularization needed was higher for higher number of components

(See detailed results in Supporting Information).

3.4 | Assessment of Parcellations using partial
correlation

The results of a pairwise Wilcoxon signed-rank test indicated that

across parcellations, partial correlation tended to improve prediction

accuracy compared to full correlation (p = .045). The best perfor-

mances were obtained with ICA20 and ICA30 parcellations

(74.67%). Compared with the AAL, we observed statistically higher

performance for ICA30, ICA50, ICA100, (p = .008, p = .003,

p = .0058). Surface-ICA of dimensionalities 15, 25, and 50 also out-

performed AAL (p = .004, p = .001, p = .004). Craddock parcellations

of dimensionalities 20, 30, 60, and 170 performed worse than AAL.

All results were significant for an FDR of q = 0.05.

3.5 | Assessment of Parcellations using amplitude
and covariance

To some extent, discrimination obtained with correlation or covari-

ance measures could be produced by simple changes in the amplitude

(i.e., variance) of local signals, rather than intrinsic changes in connec-

tivity. To assess this, we assessed the extent to which amplitude and

covariance features from the different parcellations performed as fea-

tures for classification.

In general amplitude performed poorly for the majority of the par-

cellations, except for ICAs of higher dimensionalities (>100 compo-

nents), where performance was around 60%, similar to the values

obtained in correlation. ICA of dimensionalities 150 and 200 performed

significantly better than AAL (p = 6.5 × 10−6 and 2.7 × 10−6, surviving

an FDR threshold of q = 0.05).

For covariance, we observed in general poor performance for many

of the parcellations but significantly higher performance, when com-

pared with the AAL atlas, for the HCP parcellation (p = 9.4 × 10−4),

ICA of dimensionalities 100, 150, and 200 (p = 6.5 × 10−4,

p = 2.1 × 10−4, and p = 2.1 × 10−4,) and surface-ICA of 200 features

(Figure 4). All significant for an FDR of q = 0.05.

3.6 | Assessing frequency specificity and filtering
choices

Functional connectivity measures will be affected by a variety of pro-

cesses producing BOLD signal variation across a range of frequencies.

Temporal filtering is often used prior to FC estimation to isolate infor-

mative signals. We explored the frequency specificity of connectivity

signals, and their effects on discrimination. A variety of high-pass and

band-pass filter settings are used in FC analyses. We assessed the

effects of varying the high-pass filter cut-off for the BOLD time-series.

With correlation and partial correlation, we observed a drop-off

in performance at higher HPF cutoffs for low-dimensionality ICA and

atlas-based parcellations. However, for ICA parcellations of high

dimensionality, classification performance remained high even with

very high frequency cutoffs. Interestingly, this effect was observed in

partial correlation but not in correlation, where a drop-off in discrimi-

nation was observed at HPF levels around 0.25 Hz. Similar patterns

were observed for amplitude and covariance, but were not observed

in other non-ICA parcellations (Figure 5).

We also assessed the effects of band-pass filtering on discrimina-

tion, using four distinct bands. Classification results at the lowest fre-

quency bands were similar to those obtained with nonfiltered data for

most parcellations. However, similar to the results obtained with high-

pass filtering, we observed that higher frequency bands were generally

less discriminative. However, as for the high-pass filter, high-

dimensionality ICA parcellations remained reliably predictive even when

only high frequency data was available (Supporting Information).

The discrimination results concurred with changes in the spectral

profiles of nodes across tasks (Supporting Information). All regions

showed the greatest changes in the lowest frequencies (i.e., <0.1 Hz),

where power was greatest. Changes in this frequency band tended to

be in concordance with the overall time series—significant increases

and decreases during visual and motor tasks, respectively, compared

to rest (Supporting Information).

3.7 | Concatenation of features

We tested whether different choices of parcellation and frequency

band may contain complementary information to differentiate brain

states. For this, we created sets of features combining different

atlases, dimensionality, and temporal filtering. Overall, combining fea-

tures did not produce significant performance boosts over the best

single-choice features (data not shown).

3.8 | Choice of classifier

We also performed our classifications using K-NN and random forest

classifiers instead of SVM. Results followed the same pattern,

although overall scores were consistently lower than SVM

(Supporting Information).

4 | DISCUSSION

This work contributes to the comparison and identification of optimal

strategies for functional connectivity analysis (Abraham et al., 2017;

Shirer et al., 2012). We aimed to perform a detailed assessment of key

choices in functional connectivity analysis: brain nodes, dependency

measures, and temporal filtering and the frequency specificity of sig-

nals. In contrast to studies of such choices on data from clinical

research, we focused on analyzing simple, well-controlled task-

conditions with predictable loci of activity and reliable changes in con-

nectivity. We assessed these choices for their impact on discriminabil-

ity and interpretability, and explored how these different choices

interacted in their outcomes. Overall, we found important differences

in the discriminability of different analysis choices, and obtained

results providing insight into how these choices combine.

Assessing analysis pipelines must take into account the risk of

over-interpreting results that may be driven by noise and multiple
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assessments. We utilized FDR to limit false positives, and focus on

reporting overall patterns of the effects of different pipeline choices,

rather than making strong claims regarding optimal choices.

We found that many functionally derived parcellations outper-

formed the AAL atlas, both with correlation and partial correlation.

These included HCP-defined parcellations, ICA of different dimen-

sionalities and other functionally defined multidimensional atlases.

ICA parcellations, but not the HCP-derived parcellations, show some

benefit from the use of partial correlation and temporal filtering. ICA

parcellations provided signals with far greater predictive information

in higher frequency bands, which could be important in specific

applications.

Parcellation choice had a major impact on discriminability. ICA

provided strong discrimination, particularly at higher dimensionalities,

and was the best choice when partial correlation was used as depen-

dency measure. Lower dimensional ICA parcellations typically include

the well-studied resting-state-networks (RSNs), which are split at

higher dimensions (Kiviniemi et al., 2009; Smith et al., 2009). ICA can

be expected to identify distinct signal components, without redun-

dancy across nodes. However, the interpretability of measured con-

nectivity between these networks is complicated by the extended

nature of the networks, and possible dependences on specific con-

straints imposed in their generation (Abraham et al., 2017; Gonzalez-

Castillo et al., 2015).

The HCP multimodal parcellation, defined by an extensive

bespoke integration of a variety of modalities including high-quality

functional imaging of resting state and task activation and measures

of structural architecture (myelin and cortical thickness), also provided

good results, producing high discrimination accuracies, and outper-

forming AAL and Study-ROIs, with full correlation. The HCP atlas is

defined on the cortical surface (Glasser et al., 2016), while our data

are defined in the 3D volume space. To overcome this, here we pro-

jected the surface template parcellation onto a volume, which is likely

to be nonoptimal. Preprojecting functional data onto the surface could

FIGURE 4 Classification rates for all the parcellations tested. (a) With amplitude as the dependency measure and (b) with covariance as the

dependency measure. For comparisons across parcellations, * indicates p < .05, ** indicates p < .01, and *** indicates p < .001. Results are

reported here as uncorrected p values. Refer to main text for comparisons surviving FDR threshold [Color figure can be viewed at
wileyonlinelibrary.com]
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further improve the performance of the HCP atlas. Partial correlation

did not improve the results of the HCP atlas, possibly due to a higher

level of redundancy of signals across the many regions making partial

correlation estimates less stable (i.e., driven by noise). The HCP atlas

also appeared to be more sensitive to the choice of filter cutoff, indi-

cating that some of the regions might be heterogeneously affected by

high frequency noise. In summary, HCP parcellation outperformed the

AAL atlas and Study-ROIs and performed similarly to the best per-

forming ICA parcellations, although may be more sensitive to temporal

filtering. However, its state-of-the-art biological validity and its broad

general applicability compared with ICA maps suggest that it might be

recommended as an interpretable and high-performing parcellation.

We also used a simple data-driven parcellation derived from task

activation and deactivation maps derived in a separate scan (Study-

ROIs). Despite being directly derived from task-related activity, it pro-

vided weaker discrimination. This suggests that connectivity changes

may be more extensive or complex than changes in task activation,

and warns against driving connectivity analyses node selection from

task-activation results. The HCP atlas also includes information from

task-activation data. However, in HCP, the parcellation is defined

based on input a broad range of modalities, including resting-state

fMRI and structural information, which may enhance its discriminative

capabilities.

We observed covariance and even node power (amplitude) alone

performing well with ICA parcellations of high dimensionality. This sup-

ports recent reports of tight theoretical and empirical associations

between signal variance amplitudes and functional connectivity in FMRI

(Bijsterbosch et al., 2017; Cole et al., 2016; Duff et al., 2008, 2018).

We found partial correlation to perform better than full correla-

tion in many of the parcellations tested, with overall significantly bet-

ter performance. This is in agreement with previous results obtained

from simulations (Smith et al., 2011; Wang, Kang, Kemmer, & Guo,

2016) and it adds evidence to the advantages of partial correlation

summarized elsewhere (Varoquaux & Craddock, 2013)., The benefits

that we observed were largely only present for ICA parcellations. In

the spatial ICA used for FMRI data, components are defined from a

rotation of an initial principle component data reduction that maxi-

mizes explained variance by the N components (Beckmann et al.,

2005). Thus, every IC must explain substantial unique signal variation.

Anatomically defined atlases may define nodes with very similar func-

tional properties. In particular, they often define separate nodes in the

left and right hemispheres that in many states contain almost identical

functional signals. Redundancies across nodes may make the estima-

tion of partial correlation matrices challenging. These empirical results

suggest promise that underlying network dependencies can be esti-

mated from resting state data.

FIGURE 5 Classification rates obtained using different HPF cutoffs for amplitude, covariance, correlation, and partial correlation measures. For

each dependency measure, we evaluated classification using filtered data across a set of HPF cutoffs, from 0.005 to 0.375 Hz. The different
parcellation schemes are coded in red for ICAs and in dashed blue for the anatomical and functional atlases [Color figure can be viewed at
wileyonlinelibrary.com]
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We found evidence that FC varies across different frequency

bands. As the largest amount of power in resting-state fMRI is typi-

cally concentrated in lower frequencies (<0.1 Hz), connectivity analy-

sis has typically focused on these low frequencies (Cordes et al.,

2001). In our study, we found that higher frequencies performed sur-

prisingly well under certain configurations of atlas choices and depen-

dency measures. Similar to Cordes et al. (2001), we find high

performances when low frequencies are included and a gradual

decline in performance at higher HPF cutoffs. However, the use of

partial correlation maintains performance at high levels even at high

cutoffs. This pattern is only observed when high dimensionality ICA

parcellations are used. ICA of low dimensionalities and all atlas

parcellations—including HCP, showed worse discrimination with

higher HPF cutoff. This result suggests an additional ability of high-

dimensionality ICA to isolate information from noise—typically found

in this range of higher frequencies (Griffanti et al., 2017). These results

support previous findings from the FC literature that point to a rich

distribution of FC information across frequencies. Richiardi, Eryilmaz,

Schwartz, Vuilleumier, and Van De Ville (2011) used wavelet decom-

position and found that even if the main discriminative connections

were reported in the lowest frequencies, the combination of informa-

tion from different bands improved classification results. Kwon

et al. (2016) studied attention and visual tasks using long-trial designs

and found that connections between visual and default mode net-

works occurred at low-frequencies, whereas connectivity of subre-

gions within the visual system was driven by high frequencies, they

suggested a dichotomy between long-range connectivity across larger

networks and short-range connectivity within the sensory network.

Another study, using fMRI in combination with EEG, has suggested

the applicability of fMRI in detecting higher frequency information to

map neural oscillations throughout the brain (Lewis, Setsompop,

Rosen, & Polimeni, 2016). In our study, we found an interaction

between ICA dimensionality and frequency; higher ICA dimensional-

ities showed high discriminability at high frequencies. We speculate

that partial correlation matrices obtained from these higher ICA par-

cellations may contain information about fine interactions within sub-

networks of larger brain systems, similar to what were reported by

Kwon and colleagues. While high dimensional ICA parcellations pro-

vided high discrimination even at high frequencies, all other parcella-

tions had substantially poorer discrimination in this band. This

suggests that ICA may successfully spatially separate complex pat-

terns of signal, retaining high frequency information that is averaged

out with other parcellations. However, care is required to ensure that

these are likely to be neural in origin.

In addition, the observed higher discrimination could be due to a

rank effect, given that connectivity matrices obtained from ICA fea-

tures are likely to be better-conditioned than the other parcellations

tested.

We tested the performance of concatenated covariance and cor-

relation matrices and we did not observe significant increases in per-

formance. Although one would predict that concatenation of matrices

could improve performance given that correlation and covariance

carry different information about brain states, we believe that we

were not able to detect such effect possibly because of a ceiling effect

in our classifier and the relatively small number of subjects tested.

Our study has some limitations. First, further studies should

increase the number of subjects and conditions, with more advanced

assessment methods, to explore combining different data. Another

caveat is that we reached a ceiling of discrimination, in the sense that

many of the combinations that we tried maximized prediction accura-

cies, without leaving enough space for observing an improvement in

classification. There are also some methodology-related limitations,

for example all parcellations were tested on the fMRI volumetric

space, even when the HCP atlas parcellation and the HCP-derived

ICA maps were originally defined in the cortical surface space. We

believe that future work should focus on extending FC methods to

map directly the parcellations to the surface.

Our active-state conditions provide reliable, localized modulations

of steady-state FC that are ideal to assess methods. The changes in

FC induced by these tasks affect major RSNs in a similar way to puta-

tive changes produced by disease or other factors, but are more

robust and localized (Fransson, 2006; Harrison et al., 2008; Duff et al.,

2018). Nevertheless, it is interesting to note that the changes in FC

induced by basic tasks remain poorly understood. Assessments of FC

using carefully controlled modulations complement assessments using

clinical and other experimental data sets where modulations are smal-

ler, less reliable and more prone to artifacts.

Our results complement those previously described in clinical

data sets (Abraham et al., 2017), especially those regarding the parcel-

lation choice. Both works agree in recommending data-driven parcel-

lations based on functional connectivity—both using study data or

independent data, rather than other choices based on predefined

atlases. The parcellation provided by Craddock performed well in both

studies. However, the high classification performance that we

observed with ICA was not found in their study. These differences

could be due to higher heterogeneity in their data set but also caused

by methodological differences. For ICA, they used a fixed number of

components selected with nonparametric noise modeling, while we

explored a wide range of dimensionalities. Similarly, in the implemen-

tation of partial correlation, we provide a deeper investigation using a

range of different regularization values.

In conclusion, we have provided empirical evidence showing how

different combinations of methodological choices affect the discrimi-

nability and interpretability of FC studies, and have provided recom-

mendations for choices of analysis pipelines. FC signals result from

interactions of contributions across different spatial, temporal, and

frequency ranges. In particular, we found predictive information at

higher frequencies under parcellations derived from high dimensional-

ity ICA, corroborating many recent observations (Lewis et al., 2016;

Trapp, Vakamudi, & Posse, 2018). Ongoing systematic assessment of

FC analysis pipelines on a broad range of data sets will provide an

increasingly solid basis for the design and interpretation of these

analyses.
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