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Abstract: Cardiomyopathies comprise a heterogeneous group of cardiac diseases identified by my-
ocardium disorders and diminished cardiac function. They often lead to heart failure or heart
transplantation and constitute one of the principal causes of morbidity and mortality worldwide.
Circular RNAs (circRNAs) are a novel type of noncoding RNAs. They are covalently closed and
single-stranded and derived from the exons and introns of genes by alternative splicing. This specific
structure renders them resistant to exonuclease digestion. Many recent studies have demonstrated
that circRNAs are highly abundant and conserved and can play central roles in biological functions
such as microRNA (miRNA) sponging, splicing, and transcription regulation. Emerging evidence
indicates that circRNAs can play significant roles in cardiovascular diseases, including cardiomy-
opathies. In this review, we briefly describe the current understanding regarding the classification,
nomenclature, characteristics, and function of circRNAs and report recent significant findings con-
cerning the roles of circRNAs in cardiomyopathies. Furthermore, we discuss the clinical application
potential of circRNAs as the therapeutic targets and diagnostic biomarkers of cardiomyopathies.

Keywords: circular RNAs; cardiomyopathy; non-coding RNAs; ceRNA

1. Background
1.1. Cardiomyopathies

The American Heart Association (AHA) in 2006 defined cardiomyopathies as a hetero-
geneous group of disorders of the myocardium that can change cardiac function (mechani-
cal and/or electrical dysfunction) and structure and lead to heart failure and cardiovascular
death [1–4]. Cardiomyopathies can be categorized into two main groups according to the
prevailing organ involvement and the evolution of genetic testing and diagnostic imaging
methods in cardiology [5,6]. Primary cardiomyopathies, which are caused by genetic,
nongenetic, and acquired conditions, consist of dilated cardiomyopathy (DCM), hyper-
trophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and arrhythmogenic
cardiomyopathy (ACM). Secondary cardiomyopathies comprise a group in which the
pathological myocardial disease is the outcome of a systemic (multiorgan) condition [1].
In 2008, the European Society of Cardiology updated the classification system for car-
diomyopathy. It classified patients based on morphological and functional phenotypes. In
this classification, the use of the terms primary and secondary cardiomyopathy were not
applied for cardiomyopathies [4,7]. In 2013, the MOGE(S) classification for cardiomyopathy
was proposed by Arbustini et al. [8]. In this classification, which was endorsed by the
World Heart Federation, M refers to the phenotype, O refers to organ involvement, G refers
to genetic transmission, E refers to pathogenesis, and S refers to disease stage.
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1.2. Noncoding RNAs (ncRNAs)

Accumulating evidence indicates that a great part of the genome is transcribed.
Nonetheless, while only a small percentage of the genome encodes proteins, most of
it encodes ncRNAs, which theoretically do not encode proteins [9–11]. Recent studies have
shown that ncRNAs function as molecular regulators and have a momentous functional
role in cellular homeostasis and disease pathophysiology [12–15]. Therefore, ncRNAs
form a very heterogeneous group of RNAs divided into small (<200 nt in length) and long
(>200 nt in length) ncRNAs based on their size. In this regard, Piwi-interacting RNAs
(piRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) are categorized
into the small ncRNA group, and circular RNAs (circRNAs) and long noncoding RNAs
(lncRNAs) are characterized into the lncRNA group (Figure 1). Additionally, based on their
function, ncRNAs can be divided into housekeeping and regulatory ones. Housekeeping
ncRNAs, composed of ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear
RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), are expressed in all cell types
and perform crucial functions in cells, whereas regulatory ncRNAs, consisting of miRNAs,
circRNAs, and lncRNAs, cooperate in the regulation of gene expression [16–19].
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Figure 1. The image depicts the classification of ncRNAs: rRNA, ribosomal RNA; tRNA, transfer
RNA; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; miRNA, microRNA; siRNA, small
interfering RNA; PiRNA, Piwi-interacting RNA; lncRNA, long noncoding RNA.

1.3. CircRNAs
1.3.1. Formation (Biogenesis) and Classes of circRNAs

CircRNA, a type of ncRNA, constitutes a group of single-stranded RNAs covalently
forming a closed-loop framework without the usual terminal structures of RNAs (5′ cap or a
polyadenylated tail). A special alternative splicing mode termed “backsplicing”, which does
not follow the same canonical 5′–3′ polarity, is responsible for generating circRNAs. A closed
structure is formed via the backsplicing of pre-messenger RNAs (premRNAs) by the ligation
of the 3′ end of an exon to the 5′ end of its own or an upstream exon via a 3′,5′-phosphodiester
bond [20–22]. In general, circRNAs are catalyzed either by the spliceosomal machinery or by
ribozymes (Group I and Group II) [23]. Two models of circRNA biogenesis, the lariat model
and the direct backsplicing model, have been determined and validated [21,24,25]. Li et al. [26]
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recently demonstrated that the assembling of the spliceosome E complex on premRNAs could
cross an exon in which it either remodeled to span an intron for canonical linear splicing
(typically on short exons) or drove backsplicing to make circRNAs (on long exons).

CircRNAs may originate from exons or introns, culminating in the development of
three different types of circRNAs: exonic (ecircRNAs), intronic (ciRNAs), and exon-intron
(elciRNAs) [25].

EcircRNAs comprise a notable proportion of the discovered circRNAs. They are linear
transcripts without introns and are mostly present in the cytoplasm. This type of circRNA is
formed via two model mechanisms. The first one is the lariat-driven circularization model,
in which the 3′ splice site of the acceptor is joined with the 5′ splice site of donor exons; then,
the intron between these exons is eliminated, and the exons form a lariat. The second one
is the intron pairing-driven circularizing model, formed based on reverse complementary
matches (RCMs) within flanking introns. In detail, base pairing between flanking introns
is induced by RCMs following the formation of hairpins. Hairpin formation brings the
5′ and 3′ termini of an exon into spatial proximity, resulting in “head-to-tail” splicing. In
this mechanism, adenosine deaminases acting on RNAs (ADARs) are involved, together
with RCMs [27]. Moreover, a corresponding elevation in the number of circRNAs has been
noted, correlating with the number of exons per gene [28].

CiRNAs are intronic RNAs without exonic sequences. This type of circRNA is not
developed via backsplicing. Additionally, ciRNAs have the limited enrichment target site
of miRNAs, exist mostly in the nucleus, and regulate the expression of their parental genes.
The 7 nt GU-rich sequence, close to the 5′ splicing site, and the 11 nt C-rich motif, close to
the 3′ branchpoint site, play essential roles in the formation of ciRNAs [25,29–32].

ElciRNAs contain both introns and exons in their sequences and boost the transcription
of their parental genes through interactions with U1 small nuclear ribonucleoprotein
particles (snRNPs) and pol II. They are mostly localized in the nucleus; nevertheless, the
mechanism of elciRNA formation is still unknown. The production of elciRNAs could
be facilitated through premRNAs, encompassing flanking Alu complementary pairs or
flanking complementary sequence pairs other than Alu [25,29,33].

Furthermore, corresponding to their genomic location, circRNAs can be divided
into two groups: intergenic and intragenic. The intergenic group consists of non-exonic
circRNAs harbored between two genes, while the intragenic group is located in genes
(Figure 2) [34].

1.3.2. Nomenclature of circRNAs

Despite numerous circRNA studies, there is no standard nomenclature for circRNAs.
Recently, the circBank database introduced a novel naming system for circRNAs based
on the host gene of the circRNA and the starting/ending location of the circRNA in the
host gene. According to the circBank, human circRNAs are named depending on the
Human Genome Organization (HUGO) host gene symbol, shown by the following scheme:
“hsa-circHUGO-#”. Further, circRNAs emanating from the same host genes are numbered
according to their respective location in the host gene, with the upstream one allocated as
the starting number. If circRNAs start in the same starting site and end in a different ending
site, the earlier ending site is assigned the lower number. For circRNAs with the same
starting site and the same ending site, the alternative splicing of the circRNA is considered.
In this respect, the circRNA nomenclature includes “hsa-circHUGO-#_V#”, in which “V”
stands for “variant”, and the number after “V” depends on the length of the circRNA. The
shorter circRNA is earmarked the earlier number.

For the nomenclature of intergenic circRNAs, the “hsa-circChrom#_#” scheme is applied,
whereby the first number denotes the chromosome number, and the circRNA order number
is placed following the same rule as that for circRNA form-coding genes [35].
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1.3.3. Localization of circRNAs

Advances in high-throughput sequencing and in vivo and in vitro experimental val-
idation and bioinformatics have confirmed the existence of circRNAs as a separate class
of ncRNAs that can be enriched in the cytoplasm, the nucleus, the mitochondria of the
cells, and body fluids, including whole blood, plasma, serum, saliva, seminal fluid, and
urine [36–39].

Exonic circRNAs are mostly localized in the cytoplasm [37], although some of them
are detected in the nucleus, where they are chiefly involved in the augmentation of the
nuclear retention of proteins or delivery of proteins to chromatin [40,41]. Some studies
have demonstrated that ciRNAs are mostly retained in the nucleus and are involved in the
regulation of parental gene expression [30,33]. Evidence also indicates that some circRNAs
are located in mitochondria [42,43].

1.3.4. Functions of circRNAs

There is a growing body of evidence demonstrating that circRNAs function as the molec-
ular regulators of gene expression at the level of transcription and post-transcription in the
nucleus and the cytoplasm. CircRNAs regulate the expression of the target by acting as spong-
ing miRNAs, holding RNA-binding proteins (RBPs), translating RNA into polypeptides, and
controlling the alternative splicing of their parental gene (Figure 2) [20,21,31,44,45].

Many studies have posited that circRNAs might have serious roles in the cause,
development, and progression of human diseases, including central nervous system dis-
eases [46,47] and various cancers such as lung cancer [48], osteosarcoma [49], renal can-
cer [50], hepatocellular carcinoma [41], gallbladder cancer [51], and breast cancer [52].
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Recent research shows that the profile expression of circRNAs is associated with
different types of cardiovascular diseases such as cardiomyopathies, chronic heart failure,
and coronary artery disease [53–59]. Jakobi et al. [60] reported that circRNAs generated from
Hectd1, Ppp2r3a, Slc8a1, Dmd, and Ttn host genes were associated with cardiomyopathies.

In addition, perturbation in RNA editing can affect the secondary structure of RNAs,
regulate circRNA formation, and thus cause human diseases [25,61]. Previous investiga-
tions of the transcriptome sequencing of the myocardium demonstrated that adenosine-to-
inosine (A-to-I) RNA editing underlays 80% of editing events. A reduction in RNA editing
is one of the characterizations of failing human hearts and is attributed to Alu elements in
the introns of protein-coding genes [25,61]. In a study on the expression profile of failing left
ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared
with non-failing ones. The results of that study also showed that a reduction in RNA
editing in the host gene was associated with the majority of upregulated circRNAs [61].

In vivo studies have demonstrated that some circRNAs can be translated [62–65].
Several studies have revealed that circRNAs have a longer half-life and are more resistant
to ribonuclease R (RNAse R) than other ncRNAs due to their unique structure. Consistent
with these findings, circRNAs can be promising biomarkers and therapeutic targets for
diseases [36,63,66,67].

The following section discusses the roles of circRNAs in different types of cardiomyopathies.

2. CircRNAs in Cardiomyopathies
2.1. DCM

DCM is a type of nonischemic cardiomyopathy characterized by left or biventricular
dilation and decreased systolic function. DCM causes can be classified as genetic and
nongenetic, with a great number of genes and alleles involved in its pathogenesis. The
exact genetic DCM prevalence has yet to be determined. A detectable genetic cause has
been reported in 40% of familial DCM cases, and pathogenic genetic variants have been
detected in sporadic DCM [68,69].

Several studies have demonstrated that ncRNAs, including lncRNAs and miRNAs,
play key roles in DCM. For instance, lncRNA H19 boosts cardiomyocyte apoptosis in
patients with DCM [70]. Additionally, circulating lncRNA ENST00000507296 is a probable
prognostic biomarker [71], and circulating miR-3135b, miR-3908, and miR-5571-5p might
be considered diagnostic biomarkers of DCM [72,73].

2.1.1. CircSLC8A1

CircSLC8A1 is one of the most abundant circRNAs in CMs arising from the second exon,
with a length of 1832 bp of the sodium–calcium exchanger gene Slc8a1, known to be involved
in arrhythmias [74,75]. CircSLC8A1 was discovered by Li et al. [74] in 1999 (in the “pre-NGS
era”). The authors were the first to report that this circRNA coded a truncated protein with the
ability of Na/Ca exchange in HEK cells. Recently, it has been demonstrated that circSLC8A1
is mainly located in the cytoplasm of cells and functions as an endogenous miRNA sponge
to regulate the expression of genes [28,76]. In addition, circSlc8a1 has an essential role in CM
differentiation, cardiac development, and homeostasis. Thus, dysregulation in the expression
of this circRNA might contribute to heart disorders [75,77–80].

A previous study demonstrated that the highly specific expression of circSLC8A1,
along with another five circRNAs (SLC8A1, ARID1A, FNDC3B, CACNA1D, SPHKAP, and
ALPK2), emanated from the exons of protein-coding genes in human-induced pluripotent
stem cell (hiPSC)-derived CMs, while circAASS, circFIRRE, and circTMEFF1 expression
levels were sharply downregulated in hiPSC-derived CM fibroblasts. Therefore, the cardiac-
specific expression of circSLC8A1, circCACNA1D, circSPHKAP, and circALPK2 circRNAs
indicated the potential role of these RNAs as biomarkers of CMs [79]. In detail, high
expression levels of circSLC8A1, circCACNA1D, and circSPHKAP RNAs were detected
on days 9, 15, and 30 of cardiac differentiation in beating CMs. The abundant expression
of circALPK2 was found in cells on day 4 of cardiac differentiation, and regardless of the
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expression of circFNDC3B transcripts in all stages of differentiation, the expression of these
circular transcripts was raised considerably in differentiated CMs from day 9 [79].

A prior investigation showed the expression of circSLC8A1_11 and circ-SLC8A1_12,
generated from SLC8A1 in the normal heart and concluded that it was involved in the
maintenance of cardiac homeostasis [81].

Moreover, the expression of circSLC8A1 is upregulated in the heart tissues of patients
with DCM compared with control groups, and a positive correlation exists between circ-
SLC8A1 expression and its linear isoform, whereas circSLC8A1 expression is more stable
and much higher than that of the other transcripts of SLC8A1 [79,80].

2.1.2. Deregulated circRNAs in DCM

Accumulative research has introduced different circRNAs mostly originating from
genes whose mutations cause DCM. The remarkable misexpression of circRNAs generated
from CHD7, ATXN10, and DNAJ6C was found in patients with DCM in comparison with
a control group in a previous investigation. There was an upregulation in circ-CHD7
and circ-ATXN10, while the expression of circ-DNA6JC was downregulated. The study
suggested novel therapeutic targets given the new signatures of potential disease-relevant
circRNAs [80].

The results of the analysis of RNA high-throughput sequencing on the heart samples
of patients with DCM revealed 9585 circRNAs, with differential expression levels. Of this
total, 213 circRNAs were upregulated and 85 were downregulated. The top 10 upregulated
circRNAs were generated from ICA1, TTN, BTBD7, FAT1, LYPLAL1, NHLRC2, DHX40,
and PKN2 genes, all of which except circ-LYPLAL1 and circ-NHLRC2 (sense-overlapping
circRNAs) were exonic circRNAs. Further, MYH7, EBF1, ZNF670, SEC23A, NBEA, TTN,
PDE1C, CTNND2, ATRX, and OR2A1-AS1 genes generated the top 10 downregulated
circRNAs. In addition, circRNAs from EBF1, SEC23A, NBEA, PDE1C, ATRX, and OR2A1-
AS1 were exonic, whereas circ-ZNF670 and circ-CTNND2 were intronic circRNAs. The
results of that investigation also demonstrated that MYH7 and TTN genes developed
sense-overlapping circRNAs. Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) confirmed the upregulation of circRNAs from ICA1, FAT1, and LYPLAL1, as
well as the downregulation of circ-EBF1, circ-ZNF670, and circ-NBEA [82].

Dong et al. [81] reported a list of circRNAs enriched in normal and DCM hearts based
on an RNA-seq data-set analysis of left ventricular tissues of five patients with DCM and
five healthy controls. Their analysis showed that NPPA expression was highly increased in
the DCM samples, as well as in the circRNAs derived from MYH6 and MYH7 genes, which
are highly enriched and conserved in the heart of humans, mice, and rats. Since these two
genes have crucial functions in healthy hearts and cardiovascular diseases, their circRNAs
are important and have roles in the pathophysiology of heart diseases, including DCM.

The largest number of exons in the human genome belongs to Titin (TTN) and Ryan-
odine receptor 2 (RYR2) genes, which produce 197 and 173 circRNAs, respectively. Some
circRNAs of these two genes, including circTTN_34, circTTN_52, circTTN_70, circTTN_132,
circRYR2_71, and circRYR2_95, are downregulated in DCM [81].

Read-through circRNAs (rt-circRNAs) are a newly discovered type of circRNAs gener-
ated from two neighbor genes on the same strand. Most rt-circRNAs originate from SCAF8
and TIAM2 genes, which are dysregulated in DCM. They can also sponge several miRNAs
linked to heart diseases, exemplifying this phenomenon. Moreover, SCAF8_e4: TIAM2_e1,
and SCAF8_e4: TIAM2_e2 are considerably downregulated in DCM [81].

One of the causes of DCM is the mutation in the RNA-binding motif protein 20 (RBM20)
gene [83], which is vital for the appropriate splicing of a great number of genes. In addition,
RBM20 is critical for the organization of a subclass of circRNAs derived from a specific
region within the TTN I-band [84]. The loss of function of RBM20 leads to defects in the
splicing of the TTN gene [85,86], as well as the development of a specific circRNA TTN
subclass involved in the pathophysiology of DCM (Table 1) [84].
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Table 1. The circular RNAs involved in dilated cardiomyopathy.

Circular RNAs Related Disease Expression Methods Samples Ref

Circ-SLC8A1 DCM Up

RNA
high-throughput
sequencing and

qRT-PCR

Heart samples [78]

circ-SLC8A1
circ-CHD7

circ-ATXN10
DCM Up RNA sequencing

and qRT-PCR Heart samples [79]

Circ-DNA6JC DCM Down RNA sequencing
and qRT-PCR Heart samples [79]

circTTN_70
circTTN_132
circTTN_34
circTTN_52
circRYR2_71
circRYR2_95

DCM Down Read-through
circRNA Heart samples [80]

circSLC8A1_11
circ-SLC8A1_12 DCM Up Read-through

circRNA Heart samples [80]

circ- EBF1
circ- ZNF670
circ- NBEA

DCM Down

RNA
high-throughput
sequencing and

qRT-PCR

Heart samples [81]

circ- FAT1
circ- ICA1

circ- LYPLAL1
DCM UP

RNA
high-throughput
sequencing and

qRT-PCR

Heart samples [81]

circ- MYH7
circ- SEC23A

circ- TTN
circ- PDE1C

circ- CTNND2
circ- ATRX

and OR2A1-AS1

DCM Down
RNA

high-throughput
sequencing

Heart samples [81]

circ- TTN
circ- BTBD7

circ- NHLRC2
circ-DHX40

circ- G083903
circ- PKN2

DCM UP
RNA

high-throughput
sequencing

Heart samples [81]

2.2. HCM

HCM, described in the 1950s for the first time, is one of the most prevalent inher-
ited and heterogeneous cardiomyopathies [87–90]. HCM prevalence is estimated at 1
in 500 people, although recent investigations have reported an even higher prevalence
rate [91,92].

Recently, three circRNAs (circDNAJC6, circMBOAT2, and circTMEM56) have been
implicated in HCM. According to a prior study, the expression levels of these three circR-
NAs were significantly decreased in the serum samples of patients with HCM compared
with a healthy group. Further, a negative correlation existed between the severity of left
ventricular obstruction and the thickness of the interventricular septum and the expression
levels of two circRNAs (TMEM56 and DNAJC6) [93].

Six circRNAs (hsa_circ_0011555, hsa_circ_0036248, hsa_circ_0041499, hsa_circ_0041554,
hsa_circ_0043762, and hsa_circ_0071269) were introduced as RNAs related to HCM by



Genes 2022, 13, 1537 8 of 20

Guo et al. [94], who performed a circRNA microarray assay on plasma samples from
15 patients with HCM and 7 healthy controls.

Another study reported that mm9-circ-012559, a heart-related circRNA (HRCR), was
downregulated in a mouse model of failing hearts. The results also demonstrated that circ-
HRCR acted as an anti-hypertrophic molecule causing the upregulation of ARC expression
by sponging miR-223, which is related to the progression of cardiac hypertrophy and heart
failure [95].

Guo et al. [94] conducted a circRNA microarray assay using plasma samples from
15 patients with HCM and 7 controls. They found that hsa_circ_0011555, hsa_circ_0036248,
hsa_circ_0041499, hsa_circ_0041554, hsa_circ_0043762, and hsa_circ_0071269 were corre-
lated with HCM. Their gene ontology (GO) analysis demonstrated that hsa_circ_0071269
and hsa_circ_0043762 were enriched during the activity of the calcium-release channel.
Conversely, hsa_circ_0036248 was embellished during the activity of the calcium-release
channel and the sliding of muscle filaments. In addition, the results of the KEGG analy-
sis demonstrated that hsa_circ_0036248 might regulate transient receptor potential (TRP)
channels, adrenergic signaling in CMs, and calcium signaling pathways. The authors
concluded that since the expression of TRP channels increased in the HCM model and
contributed to diastolic calcium overload, hsa_circ_0036248 might be involved in HCM,
while hsa_circ_0071269 was associated with DCM through the regulation of TRP channels
(Table 2).

Table 2. The circular RNAs involved in hypertrophic cardiomyopathy.

Circular RNAs Related Disease Expression Methods Samples Ref

circDNAJC6
circMBOAT2
circTMEM56

HCM Down qRT-PCR Serum samples [92]

hsa_circ_0043762
hsa_circ_0036248
hsa_circ_0071269

HCM - Microarray Plasma samples [93]

HRCR Cardiac hypertrophy
and heart failure Down Microarray and

qRT-PCR Animals model [94]

3. Diabetic Cardiomyopathy

Diabetic complications are the principal cause of death in patients with diabetes [96].
The phenomenon is exemplified by such cardiovascular problems as diabetic cardiomyopa-
thy, which accounts for 80% of diabetic deaths [97]. The term “diabetic cardiomyopathy”
was introduced four decades ago by Rubler [98], who reported the death of four patients
with diabetes mellitus due to heart failure. Diabetic cardiomyopathy is the main cause of
morbidity and mortality, the prevalence of which is positively correlated with the incidence
of obesity, type II diabetes mellitus, insulin resistance, and hyperinsulinemia in developed
countries [99]. Moreover, diabetic cardiomyopathy occurs in patients with type I or type II
diabetes mellitus regardless of hypertension or other cardiovascular diseases [100].

3.1. Circ-HIPK3

CircHIPK3 is an oncogene circRNA originating from the second exon of homeodomain-
interacting protein kinase 3 (HIPK3), usually localized in the cytoplasm of cells [101,102].

In a previous study, Circ-HIPK3 was upregulated in the ventricular tissues of dia-
betic mice. The knockdown of circ-HIPK3 decreased fibrosis in myocardial tissue and
enhanced left ventricular function in a mice model of diabetic cardiomyopathy. Further-
more, circ-HIPK3 enhances the synthesis of types I and III collagen by acting as a competing
endogenous RNA (ceRNA), sponging miR-29b-3p, and upregulating the expression of
COL1A1 and COL3A1 [103].
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3.2. Dysregulated circRNAs

Yang et al. [104] found that the expression level of hsa_circ_0076631, a novel circRNA
named “caspase-1-associated circRNA (CACR)”, was highly increased in high-glucose-
treated CMs and the serum of diabetic patients. CACR is localized in both the nucleus
and the cytoplasm of the cell and regulates the pyroptosis and expression of caspase-1 by
playing the role of a ceRNA and sponging miR-214-3p. The authors suggested that CACR
could act as a clinical biomarker of diabetic cardiomyopathy and might be a new therapeutic
target for diabetic cardiomyopathy, because silencing CACR could exert cardioprotective
effects by significantly repressing CM pyroptosis, inflammation, and death.

CircRNA_000203 is upregulated in the myocardium of diabetic mice, as well as in
the cardiac fibroblasts of Ang-II-induced mice. This circRNA is generated from exon 7
to exon 15 of Myo9a as a host gene, and it causes the upregulation of Col1a2, Col3a1,
and α-SMA expression in cardiac fibroblasts. In detail, the inhibitory effect of miR-26b-
5p on Col1a2 and CTGF targets is suppressed through the sponging of miR-26b-5p by
circRNA_000203, resulting in increased Col1a2 and CTGF expression levels. This circRNA
is proposed as a potential target for the prevention and treatment of cardiac fibrosis in
diabetic cardiomyopathy [105].

The expression of circRNA_010567 exhibits a significant rise in the myocardium of
diabetic mice and cardiac fibroblasts treated with Ang II. Additionally, knocking down the
expression of circRNA_010567 culminates in repressing the expression of Col I, Col III, and
α-SMA, which is associated with fibrosis in cardiac fibroblasts, and upregulating miR-141,
which leads to the downregulated expression of TGF-β1 [106].

Dong et al. [107] carried out high-throughput RNA sequencing on the myocardium of a
mouse model in order to identify circRNA expression. They determined that 58 circRNAs were
markedly differentially expressed. Among them, 29 circRNAs were downregulated, whereas 29 cir-
cRNAs were upregulated. Six overexpressed circRNAs (mmu_circ_0001697, mmu_circ_0001160,
novel_circ_0008273, novel_circ_0009344, mmu_circ_0001625, and mmu_circ_0000431) and seven
downregulated circRNAs (mmu_circ_0000652, mmu_circ_0000058, mmu_circ_0001058, mmu_circ_
0000680, novel_circ_0000824, mmu_circ_0000547, and novel_circ_0004285) were confirmed by
RT-qPCR. They found that mmu_circ_0000652 and mmu_circ_0001058 interacted with miR-195
and miR-21, both of which had roles in the metabolism of diabetic cardiomyopathy. Additionally,
the downregulation of mmu_circ_0000652 was indirectly associated with the inhibition of BCL2
and stimulated apoptosis. The authors hypothesized that mmu_circ_0001160 might produce a
protein linked to its host gene, ZNT7 (Zn2+ transporter 7), and participate in the early stage of
diabetic cardiomyopathy. Overall, their results suggested that the aforementioned circRNAs could
be potential diagnostic biomarkers in the early stage of diabetic cardiomyopathy (Table 3).

Table 3. The circular RNAs involved in diabetic cardiomyopathy.

Circular RNAs Related Disease Expression Methods Samples Ref

circHIPK3 Diabetic cardiomyopathy Up qRT-PCR Animals model [102]

CACR Diabetic cardiomyopathy Up qRT-PCR Serum samples and cell culture [103]

circRNA_000203 Diabetic cardiomyopathy Up CircRNA microarray and
qRT-PCR Animals model [104]

circRNA_010567 Diabetic cardiomyopathy Up CircRNA microarray and
qRT-PCR Animals model [105]

mmu_circ_0001697
mmu_circ_0001160
novel_circ_0008273
novel_circ_0009344
mmu_circ_0001625
mmu_circ_0000431

Diabetic cardiomyopathy Up RNA sequencing and qRT-PCR Animals model [106]

mmu_circ_0000652
mmu_circ_0000058
mmu_circ_0001058
mmu_circ_0000680
novel_circ_0000824
mmu_circ_0000547
novel_circ_0004285

Diabetic cardiomyopathy Down RNA sequencing and qRT-PCR Animals model [106]
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4. Ischemic Cardiomyopathy (ICM)

ICM is a common secondary cardiomyopathy and a major cause of heart failure and
cardiac-related mortality worldwide [108]. It is a complex disease with interactions be-
tween environmental and genetic factors, including inflammation, microvessel dysfunction,
apoptosis activation, and Ca2+ homeostasis disruption [109,110]. In the ischemic heart,
many fetal and immediate-early genes are deregulated [111].

Circ-Fndc3b

Circ-Fndc3b is a novel circRNA originating from exons 2 and 3 of the Fndc3b gene,
harbored in chromosome 3, and it is mainly enriched in the cytoplasm [112].

Recently, Garikipati et al. [113] reported that circ-Fndc3b expression was downregu-
lated in post-myocardial infarction mouse hearts and the cardiac tissues of patients with
ICM. They also revealed that circ-Fndc3b did not serve as an miRNA sponge in vitro or
in vivo. In addition, circ-Fndc3b regulated vascular endothelial growth factor (VEGF)
expression and signaling by binding to RBPs fused in the sarcoma (FUS) and decreasing its
level. Furthermore, the overexpression of circ-Fndc3b regulated the function of endothelial
cells, diminished apoptosis in CMs in vitro, augmented angiogenesis, restricted the size of
the infarct, maintained cardiac function and integrity of post-myocardial infarction, and
mediated cardiac repair. The authors concluded that the upregulation of circ-Fndc3b might
potentially serve as a new feasible therapeutic target to restrict ischemic injury.

5. Doxorubicin-Induced Cardiomyopathy (DIC)

Anthracyclines are the most potent anticancer chemotherapy drugs ever created and
are used to treat a wide range of human neoplasms, including breast cancer, leukemia,
malignant lymphomas, and sarcomas [114,115].

Doxorubicin (DOX) is one of the most effective types of anthracyclines developed
since the 1960s [114,116,117]. Despite the highly advantageous anticancer effect of DOX,
however, its clinical utility is limited by cardiotoxicity. Exposure higher than a thresh-
old dose of DOX is associated with elevated risks of progressive heart failure and irre-
versible cardiomyopathies [118–122]. Genetic combinations are greatly involved in variable
threshold doses of DOX, leading to DIC among individual patients [115]. Several hy-
potheses have been suggested, with activated reactive oxygen species (ROS) [117,123–125],
topoisomerase II-β (TOP2β) inhibition [126,127], calcium overloading, and mitochondrial
dysfunction [120,128] considered the potential mechanisms underlying DIC.

5.1. Circ-Amotl

CircRNA derived from angiomotin-like 1 (Circ-Amotl1),generated from exon 3 of
the angiomotin-like 1 (Amotl1) gene, is located in chromosome 11q21, and is a member
of the Motin family. Amotl1, in cooperation with angiomotin (Amot) and angiomotin-
like 2 (Amotl2), plays a key role in modulating the migration and polarity of endothelial
cells [40,129–131].

In the neonatal heart compared with the mature heart, circ-Amotl1 is highly expressed,
resulting in augmented CM function. This circRNA is found mainly in the nucleus and does
not act as an miRNA sponge. A recent study showed that circ-Amotl1 expression conferred
a protective effect (act) against DIC by promoting the activation of protein kinase B (PKB),
also known as “AKT”, and the translocation of the nucleus [132]. Commonly, AKT is located
in the cytosol and is inactive [133]. AKT is activated by phosphorylation and becomes
pAKT, which is translocated to the nucleus, and through direct phosphorylation regulates
proliferation-related factors in a positive manner and regulates the expression of pro-
apoptotic proteins in a negative manner [134]. Circ-Amotl1 motivates AKT phosphorylation
and pAKT nuclear translocation by binding AKT and PDK, leading to increased cell
proliferation, survival, and cardioprotection in DIC.

Furthermore, the in vivo delivery of circ-Amotl1 could serve as a potential therapeutic
target for prohibiting adverse cardiac remodeling [132].
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5.2. Circ-FoxO3

The forkhead box O3 (FOXO3) gene encodes both circ-FoxO3 and linear FOXO3 (FOXO3
mRNA). It is a transcription factor belonging to the forkhead family, which is distinguished
by a forkhead DNA-binding domain [135–137].

The majority of FoxO3 proteins are situated in the cytoplasm and form a scaffold to
bind to various RBPs [138]. FoxO3 is a crucial regulator in the insulin/insulin-like growth
factor-1 signaling pathway and is related to apoptosis and cell death [137,139].

Du et al. [140] reported that circ-FoxO3 was upregulated in the heart tissue of DIC
mice. They also found that the expression level of circ-FoxO3 was correlated with the tissue
apoptosis level, left ventricular chamber dilation, and cardiac fibrosis, exacerbating DIC.

Further, the in vivo delivery of siRNA-targeting endogenous circ-FoxO3 is regarded
as a potential therapeutic approach to protecting myocardial cells by abrogating the effect
of DOX.

5.3. Circ-ITCH

CircRNA-itchy E3 ubiquitin-protein ligase (Circ-ITCH, hsa_circ_0001141), which em-
anates from exon 7 to exon 14 of the itchy E3 ubiquitin-protein ligase (ITCH) gene, was
first introduced by Memczak et al. [63] in 2013. Some studies have demonstrated that
the circRNAs of ITCH are enriched in the human heart and human-induced pluripotent
stem-cell-derived CMs (hiPSC-CMs) [75,79].

Circ-ITCH, mainly localized in the cytoplasm of hiPSC-CMs, sponges miR-330-5p.
It is significantly increased in DIC and aggravates DOX-induced cardiac injury. Con-
versely, circ-ITCH expression is decreased in the heart tissue of patients with DIC, and
the overexpression of circ-ITCH confers protection against DIC by sponging miR-330-5p
and upregulating SIRT6, survivin, and SERCA2a. Thereby, circ-ITCH might be a novel
therapeutic target for DIC (Table 4) [141].

Table 4. The circular RNAs in doxorubicin-induced cardiomyopathy.

Circular
RNAs

Related
Disease Expression Methods Samples Ref

circ-Amotl1 DIC Up Microarray
and qRT-PCR

Human cardiac
tissues and

Animals model
[130]

circ-Foxo3 DIC Up
Circular RNA

sequencing
and qRT-PCR

Animals model [138]

CircITCH DIC Down qRT-PCR

hiPSC-CMs
and heart

samples and
animals model

[139]

6. Cardiomyopathy Caused by Alcohol

One of the common causes of cardiomyopathy and heart failure is alcohol [142]. The
term “alcoholic cardiomyopathy” is defined as a specific heart muscle disease found in
individuals with excessive levels of alcohol consumption. Several mechanisms in alcoholic
cardiomyopathy may correlate with detrimental cellular and structural changes to the
myocardium, including oxidative stress, apoptotic cell death, and impaired mitochondrial
bioenergetics/stress [143].

Yang et al. [144] performed a microarray assay using left ventricular tissues from
three alcoholic cardiomyopathy samples and three controls in a mouse model to de-
tect circRNA involvement in alcoholic cardiomyopathy, and found 643 circRNAs ex-
pressed in the left ventricular myocardium. Among them, 114 circRNAs were upregulated
(viz., mmu_circ_011978, mmu_circ_011979, mmu_circ_011977, and mmu_circ_011982),
while 151 circRNAs were downregulated (viz., mmu_circ_011976, mmu_circ_011975,
mmu_circ_011981, mmu_circ_011980, and mmu_circ_011983). In their investigation, the
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bioinformatics analysis revealed that each circRNA could bind to more than five different
miRNAs. Further, the qRT-PCR validation showed a reduced expression level in only one
circRNA (viz, circRNA_011975), and this finding was subsequently corroborated by the
microarray analysis. The expression of another two circRNAs was inconsistent with the
microarray results.

7. CircRNAs in the Animal Model of Cardiomyopathy

There is a paucity of research into the functional role of circRNAs in cardiomyopathies
in animal models. A previous investigation reported that circRNAs originating from
the titin gene, usually with complicated exon structures, are involved in heart disease
development [84]. In a study of the RBM20 knockout mice heart, no TTN I circRNA
expression was generated [84]. A prior study on the expression profile of the mice heart
reported that the differential expression of circSLC8A1, the most abundant circRNA in CMs,
could act as an endogenous sponge for miR-133a and regulate the expression of miR-133a
targets (serum response factor (Srf), connective tissue growth factor (Ctgf), adrenoceptor
beta 1 (Adr β 1), and adenylate cyclase 6 (Adcy6)) in cardiac hypertrophy in vivo [28]. Wang
et al. [145] concluded that mitochondrial fission and apoptosis-related circRNA (MFACR)
had pathogenic roles in the ischemic heart. They also reported that MFACR regulated
mitochondrial fission and apoptosis in the heart by sequestering miR-652-3p. Moreover, in
their study, miR-652-3p directly lessened mitochondrial protein 18 kDa (MTP18) and, thus,
attenuated mitochondrial fission, CM apoptosis, and myocardial infarction in in vitro and
in vivo models [145].

8. Conclusions

CircRNAs comprise an abundant, diverse, stable, and conserved class of regulatory
RNA molecules that may represent a new type of diagnostic or prognostic biomarker of
cardiac diseases given the limitations in the existing diagnostic markers. Nevertheless,
our knowledge of the expression patterns of circRNAs is still in its nascent stages. In-
deed, research is warranted into the identification of circRNAs and their localization and
degradation, as well as their biological and pathophysiological roles and potential use
for therapeutic or diagnostic purposes. Investigations have already been undertaken to
discover the roles that circRNAs play; still, many obstacles remain to be overcome. By way
of example, some genes such as the human CACR do not have a homologous gene in mice.
Therefore, investigations in this domain are limited to cell lines (in vitro). Furthermore, not
only is the number of patients involved in studies limited due to the low participation rate
of patients in genetic testing, but also the clinical collection of cardiac tissues from patients
poses a major challenge, undermining validation. Future expression research needs to
feature appropriate endogenous control for data normalization. In this regard, several
recent studies have probed into the roles of circRNAs as miRNA sponges, RBP holders,
and parental gene expression regulators in physiological and pathophysiological states. In
light of the evidence accumulated thus far, circRNAs could be considered novel diagnostic
or prognostic biomarkers and therapeutic targets in diseases, including cardiomyopathies.
Still, further in-depth functional studies are needed in this new field.
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Abbreviations

circRNAs Circular RNAs
DCM Dilated cardiomyopathy
HCM Hypertrophic cardiomyopathy
RCM Restrictive cardiomyopathy
ARVCM Arrhythmogenic right ventricular cardiomyopathy
ncRNA Noncoding RNA
piRNAs Piwi-interacting RNAs
miRNAs MicroRNAs
siRNAs Small interfering RNAs
lncRNAs Long noncoding RNAs
rRNAs Ribosomal RNAs
tRNAs Transfer RNAs
snRNAs Small nuclear RNAs
snoRNAs Small nucleolar RNAs
ecircRNA Exonic circular RNAs
RCMs Reverse complementary matches
ADAR Adenosine deaminases acting on RNA
ciRNAs Circular intronic RNAs
elciRNAs Exon-intron circular RNAs
HUGO Human genome organization
RBPs RNA-binding proteins
Hectd1 HECT domain E3 ubiquitin-protein ligase 1
Ppp2r3 α Protein phosphatase 2 regulatory subunit B” alpha
Slc8a1 Solute carrier family 8 (SODIUM-CALCIUM EXCHANGER) member A1
Dmd Dystrophin
Ttn Titin
CMs Cardiomyocytes
ARID1A AT-rich interaction domain 1A
FNDC3B Fibronectin type III domain containing 3B
CACNA1D Calcium voltage-gated channel subunit alpha1 D
SPHKAP SPHK1 interactor, AKAP domain containing
ALPK2 Alpha kinase 2
AASS Aminoadipate-semialdehyde synthase
FIRRE Firre intergenic repeating RNA element
TMEFF1 Transmembrane protein with EGF-like and two follistatin-like domains 1
CHD7 Chromodomain helicase DNA-binding protein 7
ATXN10 Ataxin 10
DNAJ6C DnaJ heat shock protein family (Hsp40) member B6
ICA1 Islet cell autoantigen 1
BTBD7 BTB domain containing 7
FAT1 FAT atypical cadherin 1
LYPLAL1 Lysophospholipase-like 1
NHLRC2 NHL repeat containing 2
DHX40 DEAH-box helicase 40
PKN2 Protein kinase N2
MYH7 Myosin heavy chain 7
EBF1 EBF transcription factor 1
ZNF670 Zinc finger protein 670
SEC23A SEC23 homolog A, COPII coat complex component
NBEA Neurobeachin
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PDE1C Phosphodiesterase 1C
CTNND2 Catenin delta 2
ATRX ATRX chromatin remodeler
OR2A1-AS1 OR2A1 antisense RNA 1
NPPA Natriuretic peptide A
MYH6 Myosin heavy chain 6
RYR2 Ryanodine receptor 2
SCAF8 SR-related CTD associated factor 8
TIAM2 TIAM Rac1 associated GEF 2
RBM20 RNA-binding motif protein 20
MBOAT2 Membrane bound O-acyltransferase domain containing 2
TMEM56 Transmembrane protein 56 (TLCD4 (TLC Domain Containing 4))
HRCR Heart-related circRNA
ARC Activity-regulated cytoskeleton-associated protein
GO Gene ontology
TRP Transient receptor potential
HIPK3 Homeodomain interacting protein kinase 3
ceRNA Competing endogenous RNA
COL1A1 Collagen type I alpha 1 chain
COL3A1 Collagen type III alpha 1 chain
CACR Caspase-1-associated circRNA
Myo9a Myosin IXA
COL1A2 Collagen type I alpha 2 chain
α-SMA α-smooth muscle actin
CTGF Connective tissue growth factor
TGF-β1 Transforming growth factor beta 1
BCL2 B-cell lymphoma 2
ZNT7 Zinc transporter 7 (SLC30A7)
Fndc3b Fibronectin type III domain containing 3B
VEGF Vascular endothelial growth factor
FUS RNA-binding protein fused in the sarcoma
DIC Doxorubicin-induced cardiomyopathy
DOX Doxorubicin
ROS Reactive oxygen species
TOP2β Topoisomerase II-β
Amotl1 Angiomotin-like 1
Amotl2 Angiomotin-like 2
AKT Protein kinase B (PKB)
pAKT Phosphorylated AKT
PDK Pyruvate dehydrogenase kinase
FOXO3 Forkhead box O3
RBPs RNA-binding proteins
ITCH Itchy E3 ubiquitin-protein ligase
hiPSC-CMs Human-induced pluripotent stem-cell-derived cardiomyocytes
SIRT6 Sirtuin 6
SERCA2a Sarco/endoplasmic reticulum calcium (Ca2+) ATPase
ACM Alcoholic cardiomyopathy
circ-ITCH CircRNA-itchy E3 ubiquitin-protein ligase
qRT-PCR Quantitative reverse transcription-polymerase chain reaction
rt-circRNAs Read-through circRNAs
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