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ABSTRACT
The human gut is home to trillions of bacteria and provides the scaffold for one of the most complex
microbial ecosystems in nature. Inflammatory bowel diseases, such as Crohn’s disease, involve a
compositional shift in the microbial constituents of this ecosystem with a marked expansion of
Enterobacteriaceae, particularly Escherichia coli. Adherent-invasive E. coli (AIEC) strains are frequently
isolated from the biopsies of Crohn’s patients, where their ability to elicit inflammation suggests a
possible role in Crohn’s pathology. Here, we consider the origins of the AIEC pathovar and discuss
how risk factors associated with Crohn’s disease might influence AIEC colonization dynamics within
the host to alter the overall disease potential of the microbial community.
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Introduction

Crohn’s disease (CD) is an inflammatory bowel condi-
tion with increasing incidence worldwide, most recently
expanding into newly industrialized nations in South
America, Asia, and the Middle East.1 In Canada, CD
incidence is among the highest in the world where
about 20 per 100,000 individuals are diagnosed annu-
ally with the disease.2 The protracted and often refrac-
tory course of CD constitutes a significant societal
burden, both in direct medical costs to the health care
system, and also in indirect costs that often exceed
health spending.1

Transmural inflammation and ulceration are com-
mon signatures of CD and about half of patients
develop extraintestinal symptoms as well.2 An abnor-
mal immune response to commensal gut microbes is
believed to be the driving force for CD-associated
inflammation, yet the triggers of this aberrant immune
response remain unclear.3 Hampering the understand-
ing of CD etiology is a complex web of host and envi-
ronmental factors that interact in indistinct ways to
drive disease progression. Genome-wide association
studies have established genetic links to CD; however,
only »12% of CD patients have a family history of the

disorder4,5 and no single gene variant comes close to
full penetrance in affected individuals. These findings
stress the importance of non-genetic factors in disease
onset and progression. It is tempting to speculate that
the non-hereditary factors have propelled the high
levels of CD in various countries, yet more studies are
required to investigate this hypothesis.

CD is now considered a global disease. The sharp
rise in CD in newly industrialized countries again
emphasizes the involvement of a constellation of non-
hereditary factors.1 This may include the consumption
of diets high in fat and low in fiber,6 smoking,7 and the
use of certain medications including oral contra-
ceptives, aspirin, and non-steroidal anti-inflammatory
drugs.2 The use of antibiotics, particularly during
childhood, is linked to an increased risk of new onset
CD.8 Despite the obvious beneficial role of antibiotics
in combating bacterial infections, their indiscriminate
activity also disturbs the balanced partnership between
the human host and the gut microbiome, now
recognized to preside over diverse states of health and
disease in our bodies.9 Multiple studies have used
metagenomics and 16s RNA profiling to examine the
composition of gut bacteria during CD. This work as
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led to the broad conclusion that the microbiome of
CD patients is compositionally different compared to
healthy subjects.10-13 Changes in microbial abundance,
also known as dysbiosis, can markedly alter human
immune responses, thus disturbing gut homeostasis
and possibly leading to disease. Dysbiosis in CD is
characterized by a loss of keystone species in the phyla
Firmicutes and Bacteriodetes and the enrichment of
Actinobacteria and Gammaproteobacteria.14,15

Nearly 20 years ago, a newly described pathovar of
the species Escherichia coli was isolated from CD
patients in the laboratory of the late Dr. Darfeuille-
Michaud, who made seminal contributions to AIEC
research during her lifetime.16 These E. coli were
referred to as adherent-invasive E. coli (AIEC), reflect-
ing their ability to adhere to gut epithelial cells and
their unusual ability to invade into mucosal epithelial
cells. This moniker differentiates AIEC from other
better-described E. coli pathovars like enteropatho-
genic E. coli, enterohemorrhagic E. coli, and enteroin-
vasive E. coli (EIEC).17 Despite the common ability of
AIEC and EIEC to invade and replicate within intesti-
nal epithelial cells, a closer scrutiny reveals a clear dis-
tinction between the two pathovars at the genomic
level. In addition to the distinctive biochemical differ-
ences between the two pathotypes, AIEC lacks the typ-
ical invasins and pathogenicity islands found in EIEC.
AIEC are now known to have an intracellular lifestyle
where they can induce inflammatory pathways in host
cells.18,19 Numerous studies have confirmed that AIEC
are enriched in humans with CD, where they are
about six-times more likely to be isolated from ileal
and colonic samples compared to healthy controls
and represent the dominant bacterial species pres-
ent.16,20-25 Attention around the potential role of
AIEC in the pathophysiology of CD is growing; how-
ever much remains to be learned about the host-path-
ogen interactions that govern AIEC infection biology.

Where does adherent-invasive Escherichia coli
come from?

E. coli is a diverse bacterial species whose members
range from seemingly innocuous commensal strains
to quite dangerous human pathogens. Pathovar desig-
nations are used to classify E. coli into groups with
unique molecular mechanisms that govern their path-
ogenic behavior.26 The genetic determinants that help
define E. coli pathovars (including serotype, toxins,

and virulence factors) represent the basic tenets for
their identification and facilitate the tracking of their
evolutionary history.27,28 While much is known about
the evolution of many E. coli pathotypes, the origin of
the AIEC group is less clear. One key challenge in
defining the AIEC pathovar is that the genetic factors
conferring the adherent-invasive phenotype are not
fully defined. Consequently, the identification of AIEC
is done based on a series of in vitro phenotype assays
that are laborious, time-consuming, and somewhat
non-standardized. Also, virulence determinants that
define other E. coli pathovars at the genetic level (i.e.
Shiga toxin, type III secretion systems) are not found
in AIEC.17 While this fact can be used as exclusion cri-
teria when attempting to classify isolates of E. coli
from patients, a molecular genetic signature that dis-
tinguishes the AIEC pathovar remains elusive. In a
recent study, comparative whole-genome analysis of
14 AIEC strains identified a potential subgroup within
the B2 phylotype that appeared more similar due to
three genetic insertions that differentiated them from
commensal E. coli.29 A separate study by a different
group did not identify a readily distinguishable geno-
mic signature among 11 different B2 phylotype AIEC
strains although these strains were from a different
geographic locale.22 As shown in different genomic
studies, AIEC appear to be most closely related to
extraintestinal E. coli strains such as UPEC, APEC,
and ExPEC, which are also among the B2 clade.17,29,30

Furthermore, many virulence factors were found to be
shared between AIEC and UPEC, including genes that
are required for iron acquisition and transport.17

Together, these findings suggest that AIEC do not
arise by parallel evolution and clonal expansion as
described for the notorious O157:H7 enterohemorrha-
gic E. coli.31

At this point, available evidence suggests that AIEC
can evolve from diverse founder populations and use
genetically distinct mechanisms to attain the ‘AIEC
phenotype’. This is reminiscent of the genetic variabil-
ity that exists among uropathogenic E. coli (UPEC),
which also lacks a common genetic signature.32 UPEC
are members of the so-called ‘extraintestinal patho-
genic E. coli’ to which AIEC are also closely related.17

The selective drivers of AIEC’s evolutionary trajectory
remain obscure, yet they likely originate within the
host. Given that individual host environments can
drive adaptive bacterial evolution,33 an important
question is whether unique host environments (i.e.
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different CD patients; biogeography within a single
individual; or combinatorial risk factors, for example)
might select for AIEC emergence and outgrowth.
Considering that research is now mobilizing towards
AIEC as a new therapeutic frontier in CD,34-39 efforts
to understand the selective pressures driving AIEC
evolution should be redoubled.

Factors mediating AIEC virulence

Despite the genetic diversity of AIEC, several strains
do share common virulence factors, albeit not unique
to AIEC. One of the defining features of AIEC is their
ability to adhere to intestinal epithelial cells, which is
likely facilitated by several bacterial surface structures.
For example, surface expression of chitin-binding
domains by AIEC was found to mediate their adher-
ence to the chitinase-like receptors on the intestinal
epithelium.40 Additionally, long polar fimbriae medi-
ate AIEC attachment to Peyer’s patches, allowing
AIEC to localize to the terminal ileum from where
they are often isolated.41 And finally, AIEC type I pili
can bind carcinoembryonic antigen-related cell adhe-
sion molecule 6 (CEACAM6) via FimH, the terminal
subunit of these surface appendages.42,43 Unlike com-
mensal E. coli strains, FimH in AIEC has accumulated
a small number of non-synonymous mutations that
may facilitate binding to CEACAM6.44 Notably, the
abundance of CEACAM6 in the ileum of CD
patients43 makes FimH a plausible target for pathoa-
daptation during AIEC evolution, and is the focus of
most of the anti-adhesive strategies in therapeutic
development in this space. Other host surface recep-
tors that were found to be upregulated in the ileum of
CD patients include the endoplasmic reticulum stress
response glycoprotein Gp96. This host protein may be
clinically relevant because it has been shown to inter-
act with AIEC OmpA, a member of a family of outer
membrane porins in Gram-negative bacteria.45 Given
that both CEACAM6 and Gp96 are more abundant
during inflammation, the expression of inflammation
itself may promote the redistribution of AIEC to sites
proximal to the epithelial surface, a process seen by
the host as a danger signal that initiates even greater
inflammatory responses.46

Other virulence factors in AIEC may help dictate its
distribution within a host. These include GipA, a puta-
tive transcription factor involved in AIEC transcytosis
of Peyer’s patches similar to its function in the enteric

pathogen Salmonella enterica serovar Typhimu-
rium.47,48 Access to the gut epithelium may be facili-
tated by Vat-AIEC, a vacuolating toxin related to one
found in avian pathogenic E.coli that has proteolytic
activity towards mucin.49 It is noteworthy that both
Vat-AIEC and long polar fimbriae were upregulated
in the presence of bile salts. Although little is known
about the chemical cues that direct AIEC gene regula-
tion in the host, this finding infers the presence of
potential regulatory circuits that have evolved to
detect and respond to chemical signals that are unique
to the gut environment. AIEC are able to invade, per-
sist, and in some cases replicate within intestinal epi-
thelial cells.50 Multiple AIEC strains encode an
invasin, called IbeA that is important for invasion of
Caco-2 and M-cells, as well as survival within macro-
phages51 but it should be noted that a full accounting
of how AIEC invades into cells is ongoing. Although
IbeA is the only invasin identified in AIEC, the IbeA
mutant strain was still able to invade epithelial cells,
thus suggesting the possible presence of other unchar-
acterized invasins. Furthermore, the genomes of mul-
tiple AIEC strains encode for type VI secretion system
(T6SS) components.29 The T6SS is a surface structure
related to contractile phage tails and used by Gram-
negative bacteria to translocate effector proteins into
both bacterial and eukaryotic cells. Although origi-
nally defined for its role in inter-bacterial competi-
tion,52 the T6SS is now recognized to have wider
target specificity. For example, in some bacteria the
T6SS is involved in dampening host immunity,53 pro-
moting intracellular growth in macrophages,54 and
interacting with the host microtubule network to pro-
mote bacterial internalization into host cells.55 It
remains to be determined whether type VI secretion
contributes to AIEC pathogenesis, but given the role
mediated by this machinery in other species, investiga-
tion of it in AIEC is warranted.

Antimicrobial peptides are host defense peptides
that are capable of killing microbes by disrupting their
membrane integrity and are often enriched in the gut
during inflammation.56 Many enteric pathogens can
evade killing by these bactericidal molecules using
enzymatic modification systems that alter surface
chemistry of lipopolysaccharide, and by outer mem-
brane proteases that cleave dibasic sites within the
core of these cationic peptides. AIEC strain NRG857c,
one of two prototype strains that have been fully
sequenced, has high levels of resistance towards
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several antimicrobial peptides that are common in the
gut.57 Resistance to this arm of innate host defense in
this particular strain is mediated by a plasmid-based
genomic island (PI-6) that encodes an outer mem-
brane protease (ArlC) and a Mig-14 family protein
(ArlA). Mig-14 homologs are involved in antimicro-
bial peptide resistance in multiple bacteria, yet their
mode of action is not fully understood.

The diversity of virulence factors displayed by
multiple AIEC strains, some of them shared with
ExPEC, suggests that members of this pathovar have
evolved different strategies to colonize their hosts.
This is also in keeping with the genetic variability
that exists within the AIEC. It remains to be deter-
mined whether the host environment might favor
AIEC strains that harbor a specific set of virulence
determinants. We believe that an important next
step in our understanding of AIEC is to broaden the
scope of genomic studies to both bacteria and host.
This could reveal potential associations between
bacterial genotypes and host genetic backgrounds
from which the strains arose.

A polymicrobial view of AIEC pathogenesis: The
enigmatic role of acute infectious gastroenteritis
in the long-term risk of CD onset

Crohn’s disease is more common in individuals
following acute infectious gastroenteritis caused by
Salmonella and other enteric pathogens, sometimes
with onset times on the order of years after the infec-
tious episode.58-60 The mechanistic basis for this long-
term risk association following an acute infectious
stimulus is enigmatic. The interaction between AIEC
and their host seem to bring about multiple states,
ranging from commensalism to pathogenic; however,
the triggers for transitioning between these states are
not known. The pathogenic potential of a microbe is
often influenced by synergistic and antagonistic inter-
actions with other microbes that collectively influence
the community’s pathogenic potential, known as
nososymbiocity.61 Thus, disruption of gut homeostasis
may be a key trigger that increases the overall disease
potential of the microbial community.61 The well
known ability of enteric pathogens to induce gut
inflammation and disrupt the microbial community
therein led us to question whether acute infectious
gastroenteritis could be a trigger for the emergence of
keystone pathogens like AIEC.

To address this question, we leveraged a previous
model for chronic AIEC colonization that we devel-
oped in a range of inbred mouse lines.62 This resulted
in two new polymicrobial infection models to measure
host comorbidities related to acute gastroenteritis in
mice colonized with a clinical isolate of AIEC. In these
models, mice are colonized sub-clinically with AIEC
and later exposed to secondary infection stimuli with
either S. Typhimurium or Citrobacter rodentium,
modeling what might occur in healthy AIEC-
colonized individuals exposed to acute infectious gas-
troenteritis. S. Typhimurium is a prominent enteric
pathogen linked to food poisoning in humans that
triggers a strong inflammation in the gut,63 while C.
rodentium is a murine pathogen that recapitulates the
gastroenteritis mediated by enteropathogenic E. coli in
humans.64 Using these models, we showed that AIEC-
colonized mice exposed to acute infectious gastroen-
teritis have a significantly worsened outcome com-
pared to AIEC-na€ıve animals exposed to the same
infection stimuli.65 To our surprise, disease activity
was not driven by the secondary pathogen but rather
by AIEC in the post-infectious period when the host
had largely constrained the secondary pathogen.
Acute bacterial gastroenteritis induced an AIEC
bloom in mucosal tissue that was associated with host
damage. Importantly, rendering AIEC susceptible to
host defense peptides, or quelling the inflammation
induced by the secondary pathogen prevented AIEC
blooms and mitigated the disease activity, indicating
that AIEC is a tractable disease modifier following
acute infectious gastroenteritis.

Other environmental factors can instigate gut
inflammation that might be relevant to AIEC coloni-
zation dynamics. For example, dysbiosis triggered by
antibiotics or a “Western diet” high in sugar and fat
was shown to cause a reduction in short-chain fatty
acid (SCFA) levels in the intestine.66-68 SCFA can
mediate anti-inflammatory functions in the gut via
the activation of regulatory T cells,69 and the reduction
of oxygen availability.69 Antibiotic treatment was
shown to increase the inflammatory tone of the gut
mucosa in mice, characterized by increased infiltration
of neutrophils and inflammatory monocytes in the
lumen. The converging view is that the induction of
inflammation in mice with either antibiotics,62

Western diet,66 or acute infectious gastroenteritis65

causes expansion of resident AIEC that is linked to
worsening levels of gut pathology, leading to the
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suggestion that inflammation provides AIEC with a
selective advantage in the gut (Fig. 1).

In addition to the overt pathological changes trig-
gered by inflammatory reactions at mucosal sites,
inflammation can change nutrient availability in the
gut. For example, hypoferremia is a hallmark of gut
inflammation, and acts as a host defense mechanism
against invading pathogens by limiting iron availabil-
ity.70 Genes involved in iron utilization such as sidero-
phores are enriched in AIEC compared to E. coli
strains from other pathotypes.71 Siderophores are also
commonly found in extraintestinal E. coli species such
as UPEC where it is an important virulence factor.
Since siderophores, like aerobactin, provide a strong
fitness advantage in hypoferremic conditions,72 this
may suggest that AIEC emerge under selection in an
iron-poor environment. Similar to the closely related
UPEC and APEC, aerobactin was found to be impor-
tant for AIEC virulence.17 The production of reactive
oxygen and nitrogen species by neutrophils is another
important outcome of gut inflammation.68 Upon
release into the gut lumen, reactive oxygen and

nitrogen species can react with organic sulphides and
tertiary amines to generate S- and N- oxides that can
be used as alternative electron acceptors by some fac-
ultative anaerobes. It is conceivable that nutritional
changes associated with inflammation might create a
selective niche for AIEC that brings about their patho-
genic potential, or perhaps renders hosts more suscep-
tible to de novo colonization through loss of some
facet of colonization resistance, a host state that we
are just beginning to understand with granularity.73

More studies are required to investigate the metabolic
behavior of AIEC during gut inflammation, which
might provide insights to the evolutionary trajectories
that shaped this pathovar.

Concluding remarks

While a microbial basis for Crohn’s pathogenesis is
well founded, it is currently unclear how microbes
influence, and are influenced by, the inflammatory
environment in the gut. The role that environmen-
tal risk factors play in disease expression is also

Increased AIEC adhesion

AIEC AMP  resistance

Metabolic advantage for AIEC

Hypoferraemia

ROS/RNS

S-, N-oxides 

AMP secretion

CEACAM 6
expression

Antibiotics Host GeneticsDiet Acute Gastroenteritis

Inflammation

Adherent-invasive E. coli 

Commensal bacteria

Enteric pathogen
(ie. EHEC, Salmonella) Enterocyte Paneth cell
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(AMPs)

AIEC survival
in macrophages
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Figure 1. A schematic diagram that summarizes some of the inflammation-mediated changes in the gut and their influence on AIEC col-
onization. Gut inflammation can be triggered by multiple factors like host genetics, antibiotic administration, diet, and acute gastroen-
teritis. The resulting proinflammatory environment mediates pronounced changes in the human gut, which includes hypoferremia, the
generation of alternative electron acceptors, increased secretion of antimicrobial peptides, and overexpression of CEACAM6 surface
receptors by intestinal epithelia. During their evolution, AIEC strains have gained traits that confer on them a competitive advantage in
the inflamed gut. This includes the ability to utilize S- and N- oxides as alternative electron acceptors, an abundance of iron acquisition
genes, resistance to antimicrobial peptides and the ability to bind to CEACAM6 through a modified FimH protein.
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not fully understood, however the interactions cre-
ated along a genes-environment-microbe axis hold
the key to unlock future preventions and therapies.
Emerging data from multiple studies place
microbes at the epicentre of CD pathogenesis, with
members of the emergent AIEC pathovar being
possible disease modifiers. Evidence that the host
environment influences AIEC evolution, coloniza-
tion, and disease potential makes it a fascinating
case study in host-pathogen interactions. For exam-
ple, if gut inflammation plays a fundamental role
in evoking the pathogenic character of AIEC, then
many questions emerge. How does host genotype
affect AIEC behavior in vivo? Do anti-inflammatory
medicines used in CD treatments have secondary
effects on AIEC colonization dynamics that
improve disease outcome? How does AIEC influ-
ence disease potential of the microbial community
in which it resides? Are individuals with gut
inflammation more susceptible to host-to-host
transmission of AIEC? Phenotypic changes in the
gut induced by inflammatory reactions might pro-
vide the selective niche for the evolution of AIEC
strains from different phylogroups and explain the
lack of a common ancestor. To mitigate the burden
of CD, a primary goal of research centers on the
interactions between genes, the environment, and
intestinal microbes using robust preclinical models.
More studies investigating AIEC pathogenesis in
the context of host genetics and environmental risk
factors linked to CD will be informative towards
this goal. Finally, as evidence mounts against AIEC
as a tractable disease modifier, understanding the
provenance of AIEC, their movement through the
environment, and their transmission dynamics
from host-to-host is likely to yield major public
health dividends.
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