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Abstract: Suspended particles play a vital role in aquatic environments. We propose a method
to rapidly measure the scattered polarization parameters of individual suspended particles with
continuously large angular range (PCLAR), from 60◦ to 120◦ in one shot. A conceptual setup is built
to measure PCLAR with 20 kHz; to verify the setup, 10 µm-diameter silica microspheres suspended
in water, whose PCLAR are consistent with those simulated by Mie theory, are measured. PCLAR
of 6 categories of particles are measured, which enables high-accuracy classification with the help
of a convolutional neural network algorithm. PCLAR of different mixtures of Cyclotella stelligera
and silica microspheres are measured to successfully identify particulate components. Furthermore,
classification ability comparisons of different angular-selection strategies show that PCLAR enables
the best classification beyond the single angle, discrete angles and small-ranged angles. Simulated
PCLAR of particles with different size, refractive index, and structure show explicit discriminations
between them. Inversely, the measured PCLAR are able to estimate the effective size and refractive
index of individual Cyclotella cells. Results demonstrate the method’s power, which intrinsically takes
the advantage of the optical polarization and the angular coverage. Future prototypes based on this
concept would be a promising biosensor for particles in environmental monitoring.

Keywords: optical scattering; polarization parameters; continuously large angular range; individual
suspended particle

1. Introduction

Suspended particles can be divided into three major categories, including microalgae,
microplastics, and sediments [1], which are important indicators for the health status of the
aquatic environment. Monitoring the categories and physiological states of microalgae can
prevent toxic blooms and help understand the changes of carbon cycle [2]. The emerging
pollutant, microplastics, threatens both marine organisms and human beings [3]. The
sediments are important components of the aquatic environment, which easily adsorb the
pollutant matter, and affect the underwater propagation of sunlight [4]. However, the rapid
and in situ classification of these suspended particles is still challenging for the community.

Optical microscopy is a common method to probe the suspended particles by pre-
treatment and specialized skills [5,6], which nowadays is assisted by new techniques such
as computer-assistant recognition and multimodality measurement [7,8]. Recently, some
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other imaging tools have been developed, showing a great potential in phytoplankton
taxonomy [9,10], but all these imaging methods are still limited by the tradeoff between the
acquisition speed, image resolution, and visual filed [11].

Meanwhile, the acoustic backscatter profiling sensor and turbidimeter are two popular
techniques in bulk water analysis, and their results show a good correlation with the
concentration of the target particles [12,13]. However, these methods can only be used
to probe the particles of the bulk volume, which indicate that they may easily meet their
bottleneck in further detailed analysis of different components [14].

Scattering is related to the physical and optical properties of the particles, such as size,
shape, and the refractive index [15,16]. The scattering measurement has been applied in
diverse fields, such as oceanic science, astrophysics, meteorology, and material research [17].
Compared with traditional scattering measurement, polarized light scattering measure-
ment can provide more physical information of particles [18], and the polarization state of
light can be used to quantitatively evaluate the biogenic particles in water [19]. Recently, by
taking advantage of individual particle measurement, the classification of individual mi-
croalgae and microplastics with the scattered light at a backward continuous angle of 120◦

was reported [20]. Because polarized light scattering at 120◦ is sensitive to the intracellular
structural changes of cells, this shows its potential for environmental monitoring, such as
early warning of the toxic blooms [21,22]. Additionally, the statistical Mueller matrix is
introduced to enhance the discrimination ability [23]. Meanwhile, the polarized light scat-
tering at several discrete angles, such as 60◦, 85◦, and 115◦, was proposed to discriminate
different categories of aerosols [24,25]. However, these scattering measurements based on
the single angle, or the discrete angles, easily meet their bottlenecks during the classifica-
tion of particles. To measure the continuous scattered light, angularly resolved scattering
measurement is proposed and realized by analyzing the two-dimensional angular optical
scattering patterns to characterize particles [26]; however, this kind of experimental setup
is subject to the acquisition speed and the sensitivity of the camera, and the intensity-only
measurement also limits its classification ability for particles.

In this work, by using a polarization line scan CCD, an experimental setup is built
based on the polarized light scattering to rapidly measure the polarization parameters of
individual suspended particles with continuously large angular range (PCLAR). Firstly, the
optical polarization measurement is calibrated, and the suspension of the 10 µm diameter
silica microspheres is used to validate the PCLAR and their angular range by comparing
them with the simulation result of Mie theory. Different categories of particle are separately
measured with the setup, and the measured PCLAR are used by the convolutional neural
network (CNN) algorithm to build a classifier that can well classify these categories of
particles. Then, the experiments are conducted for the mixture of the particles, and the
classifier is used to successfully identify the particulate components in mixtures. The classi-
fication abilities of different angular selection strategies are compared, and PCLAR with
the continuously large angular range performs best. The PCLAR of particles with different
size, refractive index, and structures are simulated, which show the explicit discriminations
between these particles. Inversely, PCLAR are used to estimate the effective size and
refractive index of the individual Cyclotella cells. In this work, our results demonstrate
the power of our method and show the intrinsic advantage of the scattered polarization
parameters within a continuously large angular range in probing the suspended particles.
With these advantages, future prototypes based on this concept would be a promising
biosensor to probe and monitor the suspended particles in aquatic environments.

2. Materials and Methods
2.1. Samples

Different particles are measured in this work, including 3 categories of microplastics
with different sizes and structures, i.e., polystyrene microsphere with a diameter of 5 µm
(PS5), polystyrene microsphere with a diameter of 10 µm (PS10), polystyrene microsphere
with a diameter of 10 µm and uniformed holes on its surface (PSH), one category of
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sediment, i.e., 10 µm-diameter silica microsphere (SiO2), and two categories of microalgae
cells, Euglena gracilis (EU) and Cyclotella stelligera (CY).

During the preparation of the suspensions, first, the powders of PS5, PS10, PSH,
and SiO2 are separately dispersed in distilled water as their own concentrates whose
concentrations are 8.01 × 103, 1.32 × 103, 1.04 × 103, and 5.40 × 102 particles per milliliter
(mL), respectively. For microalgae, we sample 400 µL of their concentrates in 5 mL distilled
water in the sample pool, and these are measured by the setup. All of the microalgae
were taken at their logarithmic growth state and provided by INFORE ENVIRO Co.,
Ltd. (Foshan, China), and other non-biological microsphere were provided by Suzhou
Nanomicro Technology Co., Ltd. (Suzhou, China).

2.2. Experimental Setup

The schematic diagram of the experimental setup is shown in Figure 1a; light with
532 nm wavelength is emitted from the light source (S). Then the polarization state of
light is modulated by the polarization state generator (PSG), which consists of a rotating
half-wave plate (HW) and a rotating quarter-wave plate (QW). In this work, we use PSG
to set the illuminating light as the fixed 45◦ linearly polarized, then the diaphragm (DP)
and the lens (L1) are used to focus the polarized light into a very small light spot in the
sample pool (SP). In SP, the particles are suspended in water with an electromagnetic stirrer
rotating at a speed of 150 rounds per minute (rpm). Once the particle is illuminated by the
light spot, the scattered light can be detected by the receiving optical path. After the light is
received and collimated by lens L2, the collimated light is focused by lens L3. Both L2 and
L3 share the same focal length of 30 mm and diameter of 2 inches.
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Figure 1. (a) Schematic of experimental setup: S, light source; PSG, polarization state generator; HW,
half-wave plate; QW, quarter-wave plate; DP, diaphragm; L1, L2, L3, L4, lens; SP, sample pool; PH,
pinhole; CL, cylindrical lens. Inserted image in the dashed box: pixel arrangement of polarization
line scan CCD; (b) Physical picture of the built experiment setup.

Subsequently, the focused light passes through a pinhole (PH), and is then collimated
by the lens L4 with 15 mm focal length to change the diameter of the light beam into
1 inch. Then, a cylindrical lens (CL) is applied to compress the circular light beam into a
light sheet, to raise the intensity density. Finally, the light sheet is recorded at one shot by
the polarization line scan CCD (P4-CP-02K07Q, Teledyne DALSA) whose maximal frame
rate is 70 K frames per second. The setup’s physical photo is shown in Figure 1b.

The pixel arrangement of the polarization line scan CCD is showed as the inserted im-
age in Figure 1a. The CCD consists of 4 rows, and each row has 2048 pixels. The upper three
rows are linear polarizers with polarization angles of 0◦, 135◦, and 90◦, respectively, and
the last row is unfiltered. In this work, the upper three rows detect the linear polarization
properties of the light sheet and record in the data acquisition card for further analysis.
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Different from the two-dimensional CCD used in the imaging system or the photomul-
tiplier used in the single angle or discrete angles, the polarization line scan CCD is used in
the setup, which has 4 × 2048 pixels with a 12-bit depth; its acquisition speed is 70 kHz
at maximum, which is quite different from the acquisition speed of the two-dimensional
CCD (tens or hundreds Hz) or the photomultiplier (millions Hz). Because the individual
particle passes the scattering volume within several microseconds [20], the polarization
line scan CCD is suitable to effectively acquire the temporal signal of the light scattered by
the individual particle. Meanwhile, considering the very weak intensity scattered by the
individual particle in water, the high sensitivity is always needed, which is easy for the
photomultiplier but is rather costly for the two-dimensional CCD. Due to the cylindrical
lens in the setup, the scattered light is focused onto a light sheet to effectively enhance
the intensity in different scattering angles. This design makes it possible for the angular
distribution of the scattered light of individual particles to be acquired by the polariza-
tion line scan CCD, whose sensitivity is evaluated by the noise equivalent exposure as
9.8 pJ/cm2.

2.3. Calibration

The intensities after three polarizers with different polarization angles are I0, I135, and
I90. The polarization state of light is known to be always represented by the Stokes vector,
S, whose linear part, SL, is calculated by Equation (1).

SL =

 I
Q
U

 =

 I0 + I90
I0 − I90

I0 + I90 − 2I135

 (1)

where I is the total intensity, Q and U are, respectively, the residual intensities at linear
polarization angles 0◦ and 45◦. Subsequently, Q and U are normalized by I to obtain
polarization parameters q (≡Q/I) and u (≡U/I), respectively, which makes both the q and
u range from −1 to 1.

The pixels of polarization line scan CCD may have some production deviations in the
polarization angle, extinction ratio, and intensity response [27]. To reduce the measurement
error caused by production deviations, the CCD pixels are first calibrated. Before the
calibration, a 20-mm-diameter uniform light beam is modulated by rotating a polarizer
with equally spaced interval from 0◦ to 170◦, to obtain 18 polarization states of the light,
and their polarization states, Sre f , are measured separately by a commercial polarimeter
(PAX1000IR1, Thorlabs, Newton, NJ, USA). The linear parts of these Stokes vectors are then
combined into a matrix as [SL

re f ]3×18
. Each modulated light beam is measured by CCD and

each polarization state is calculated by Equation (1), and they are combined into a matrix
as [SL

meas]3×18. Subsequently, calibration matrix A for each column of the pixels in CCD can
be calculated by solving Equation (2), where pinv(*) presents the pseudoinverse calculator
for a matrix.

A = [SL
meas]3×18 × pinv([SL

re f ]3×18
) (2)

To testify the polarization calibration of the CCD, we illuminate it with a uniform
parallel light beam with a 10◦ linear polarization state. To quantitatively evaluate the
accuracy of the polarization detection, we calculate the degree of linear polarization (DoLP)
and the angle of polarization (AoP) to evaluate the effects of the calibration, and they are
defined as Equations (3) and (4).

DoLP =

√
Q2 + U2

I
(3)

AoP = (1/2) tan−1(U/Q) (4)

The uncalibrated and calibrated results are shown in the first two rows of Figure 2,
where the vertical axis of the images is 1000 times the measurement. The uncalibrated and
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calibrated results of the intensity are showed in Figure 2a,d, and the two intensity images
are normalized to the maximum in Figure 2a. One can see that Figure 2d looks much more
uniform than Figure 2a. The histograms of Figure 2a,d are shown in Figure 2g, which
indicates that the calibration improves the intensity measurement. Meanwhile, the images
of uncalibrated and calibrated DoLP are shown in Figure 2b,e, respectively. Figure 2e seems
much more uniform than Figure 2b, even though their values are quite different, which
can be explicitly described by their histograms shown as Figure 2h. One can see that the
distribution of calibrated DoLP is much narrower than those of the uncalibrated DoLP in
Figure 2h. Similar results about the uncalibrated and calibrated AoP, and their histogram,
are shown in Figure 2b,e,I, respectively. Except for the uniformity, the calibrated values are
closer to the true values than the uncalibrated ones; the true value is 1 for DoLP and 10◦

for AoP, respectively. The results in Figure 2 indicates that the CCD after calibration can
effectively measure the linear part of the polarization state of the incident light.
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2.4. Signal Processing

Because PH in Figure 1 is placed on the focus of L3 in the receiving path, the location
and size of the detection volume in the sample pool are determined. The intersectional
part of the detection volume and the light spot in the illuminating path is the scattering
volume. Considering the numerical aperture of L1 and L2, and the size of PH (0.5 mm),
the effective probing volume of the setup is considered to be the same as the scattering
volume, which is less than 0.1 µL, and the equivalent field of view is less than 0.2 square
millimeters. So, if the concentration of the suspended particles is less than 104 particles
per mL, there is at most only one particle in the scattering volume, which ensures the
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individual particle measurement. When the particle passes through the scattering volume,
the scattered light contributes to a temporal pulse as the signal, and, generally, there is only
quite low background originated from the scattering of water or the environmental light
through PH.

To test the ability of the experiment setup, we prepare an aquatic suspension of SiO2.
During the experiments, the scattering signals are quickly and continuously recorded by
the data acquisition card (Xtium-CL MX4, Teledyne DALSA, Waterloo, ON, Canada) at a
sampling rate of 20 kHz, and a series of temporal pulses can be obtained. Therefore, the
polarization parameters, I = I(n, t), q = q(n, t), and u = u(n, t) are calculated, where n = 1,
2, . . . , 2048.

Figure 3a shows a piece of the signal of the measured parameter I, which are both
indexed to the sampling time and the pixels of the CCD. Obviously, one can see the two
pulses along the sampling time, which span along the pixels. The temporal pulses originate
from the optical scattering of the suspended particles passing through the scattering volume.
However, note that the spanning of the pulses does not cover the full pixel range of the
CCD. To facilitate our future analysis, we only consider the middle 1458 pixels that fully
cover the effective signals and re-index them from 1 to 1458.
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To find the temporal locations of the pulses, the averaged intensity is obtained at
I(t) ≡ ∑1458

i=1 I(i, t)/1458. I(t) is shown in Figure 3b, and the red dotted line is the threshold,
which is 8 times larger than the background. By using the threshold, the pulses can be
found, their peaks are used to determine the temporal locations, and the widths around
4 milliseconds (ms) in Figure 3b describe how long the individual particles pass through
the scattering volume. From Figure 3, the pulses with peaks lower than the threshold are
omitted in order to ensure the high quality of the signals. Until now, a pulse set can be
obtained and each pulse is a temporal slice, that is,

{
Ii(ti), ti ∈ [Ti,1, Ti,2], i = 1, 2, . . . , k

}
,

where k is the total number of pulses and Ti,1, Ti,2 are, respectively, the starting and ending
time of the i th pulse.

For the i th pulse, we have the signal Ii(n, ti), where n = 1, 2, . . . , 1458. To sim-
plify the processing procedure and reduce the noises, the temporal data is averaged to
Ĩi(n) = ∑

Ti,2
Ti,1

Ii(n, ti)dti/(Ti,2 − Ti,1). Because CCD acquires the pixels simultaneously, q
and u share the same temporal slice as I, then q̃i(n) and ũi(n) can be obtained similarly
with Ĩi(n).

3. Results
3.1. Comparison of Measured PCLAR with Those Simulated by Mie Theory

Because the pixel location corresponds to the scattering angle of the scattered light,
experiments on the SiO2 suspension are conducted to derive the detecting angular range
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of our measured scattered light and verify the feasibility and accuracy of our experiment
setup. Mie theory is a classical algorithm for analyzing the interaction between a spherical
scatterer and light [28]. Note that micron-size particles in water have a close diameter
with the wavelength of the light source, so Mie theory can be applied to analyze the
theoretical distribution of the scattering intensity at different angles. We first measure the
silica microsphere individually by our experiment setup, and then the measured PCLAR
are compared with the result of the Mie theory.

In the simulation, the refractive index of SiO2 is set as 1.451 + 0.0030i with a diameter
of 10 µm, while that of water is 1.330. Figure 4 shows the measured and simulated
results, which indicates that the experimental results are well consistent with the simulated
results. In Figure 4a, the intensity distributions are normalized to their own maxima,
and for all distributions, the locations of the peaks and the valleys for the measured
and simulated results match well. The dynamic range between the peaks and valleys
of the measured results seems smaller than those from the simulation, especially for the
polarization parameters, which may result from the temporal averaging within the pulse
when calculating q̃i(n) and ũi(n). By comparing the measured and simulated results, q̃i(n)
and ũi(n) are accordingly considered as qi(θ) and ui(θ), and the angular range covers the
range from 60◦ to 120◦. Until now, qi(θ) and ui(θ) are the so-called PCLAR. Note that the
angle range are divided into 1458 pixels, and generally the angular resolution is around
0.08◦ per pixel, which ensures a high angular resolution. In the following context, both the
polarization parameters, q and u are the 1 × 1458 vectors.
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3.2. Classification of Six Categories of Particles

In the aquatic environment, different categories of particle are undoubtedly mixed,
and the particulate composition information is always important for environmental moni-
toring [29]. Before that, we first investigate the classification ability of PCLAR. Different
samples in Section 2.1 are measured separately and fed to the convolutional neural network
(CNN) to build the classifier. In our work, we focus on the polarization parameters q and u.
To fit into the input of CNN and take full use of these parameters, we combine them as a
1 × 2916 vector [q, u], and then realign them into a 54 × 54 image. Every realigned image
corresponds to one particle. The grayscale images of six categories of particles are shown as
Figure 5, and the stripes and speckles in the images correspond to the angular vibrations of
the polarization parameters. The distributions in the columns of Figure 5 seem to be robust
for each category, but those along the rows for different categories are quite different.
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Figure 5. Grayscale maps realigned from PCLAR for six categories of particles.

The images are then processed by the CNN algorithm, a well-known tool for image
classification tasks, and the architecture in this work is shown as the dashed box in Figure 6.
For each category, 1000 images are measured to form its dataset, where 800 images form
the training set, and the left 200 images form the testing set. Then, 4800 images are used
to train the classifier, and the other 1200 images are used to test the classifier. Finally, the
performance of the classifier is quantitatively evaluated.
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The performance of the classifier is visualized by the confusion matrix, as shown
in Figure 7. The result shows that all the accuracy values are larger than 85%, and the
overall accuracy is more than 90%, which demonstrates that all the categories can be well
classified from each other based on PCLAR. The current 6 categories of particles cover
the different physical properties, such as the size, shape, structure, and refractive index,
and the convincing results in Figure 7 demonstrate that PCLAR can effectively describe
the optical difference originated from the physical properties. Additionally, we notice
that the classification accuracy suffers from the mutual confusion between the microalgae
EU and CY. Obviously, there are more abundant data in PCLAR than the discrete angles
detection methods or the intensity-only detection methods. Besides that, the large angular
range and the polarization measurement give PCLAR more opportunity to include specific
information that is sensitive to the physical properties.
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3.3. Identifying the Particulate Compositions in Mixtures

Based on the excellent classification ability of PCLAR with the help of CNN, we
subsequently try to identify the particulate compositions in mixtures, which is desired for
in situ environmental monitoring [30]. The mixture experiments of the silica microspheres
and microalgae CY are then conducted.

Firstly, 50 µL of SiO2 concentrate is added into 5 mL distilled water in the sample
pool (group 1) and is then measured by the setup. Then, 50 µL CY is sampled from its
concentrate and successively added into the sample pool for three rounds (group 2~4), and
finally 100 µL CY is added for the fourth round (group 5). After each addition, the sample
is measured for 100 s to obtain PCLAR; the stirrer rotates at a speed of 150 rpm to keep
these particles suspended in the sample pool.

A new CNN classifier based on the above separate measurements is built to classify
SiO2 and CY, whose classification accuracy is larger than 95%. The results are shown in
Figure 8, and the numbers of SiO2 weakly fluctuate around the average, but those of CY
are proportional to the adding volume of the concentrate. Moreover, the concentration
proportion between SiO2 and CY in the mixture can be easily retrieved. The individual par-
ticle measurement and PCLAR empower the setup to classify the particulate composition
and their concentration proportion in the mixtures. This ability enables this method to be
instrumented when in situ probing the particles in water.
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4. Discussion
4.1. Performance Comparisons of Different Anglular Selectin Strategies

This method is designed to rapidly measure the scattered polarization parameters
of the individual suspended particle from 60◦ to 120◦, whose power is demonstrated by
the excellent classification result of different categories of particles. To further show the
contribution of different angles quantitatively, we compare the classification performance
of the scattered polarization measurement with other angular selection strategies, i.e., the
single angle (120◦), discrete angles (60◦, 90◦, 120◦), forward continuous angles (from 60◦

to 90◦), and backward continuous angles (from 90◦ to 120◦). The data with these angular
selection strategies are fed to the CNN model to train and test, and they are the same as
in Figure 6.

The confusion matrixes of the classifications are shown in Figure 9. From the confusion
matrixes, the recognition accuracy based on the single angle (Figure 9a) for PS10 and SiO2
are the lowest, and the recognition accuracy of PS5, EU, and CY are at lower levels than
those with other angular selection strategies. This is understandable due to the limited
information included in this single angle. Because only the linear polarization parameters
are considered, the recognition accuracy at 120◦ is lower than the previous works [31]. For
the strategy of discrete angels, as shown in Figure 9b, the recognition accuracy of PS10
and SiO2 are improved, which means the scattering angles of 60◦ and 90◦ introduce some
specific information for PS10 and SiO2. Meanwhile, the recognition accuracies of the other
categories do not benefit from the additional angles, which means adding information
from 60◦ and 90◦ contributes nothing to the classification. We should be aware of the
importance of the selection of the discrete angles. However, even though the discrete angles
are sophisticatedly selected in the literatures, their parameters still exclusively work for
limited cases [32].

For the forward continuous angles in Figure 9c, the recognition accuracies of PS5
and SiO2 become better than those with the single angle and the discrete angles, but
those of EU and CY become worse. The latter case may be explained by the absence of
scattered polarization parameters at 120◦, which has been proven to be essential for particle
discrimination [20]. For the backward continuous angles in Figure 9d, all the particles
except for SiO2 and PSH can be more accurately recognized than the other three cases in
Figure 9. Note that the recognition accuracies of SiO2 and PSH are also larger than 92%,
and the lower accuracies of SiO2 and PSH in Figure 9d compared to Figure 9c means that
there is some particular information included in the forward angles.
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It is obviously that the recognition accuracies of all categories in Figure 5 are larger
than those in Figure 9. We further compare the overall classification accuracy for all the
angular selection strategies, which is shown in Table 1. One can see that the recognition
accuracy of the angular coverage from 60◦ to 120◦ is the best, those from 90◦ to 120◦ are
the second best, and the single angle is the worst. Thus, the angular selection strategy
is important for particle recognition, which needs to be paid much attention to for the
scatterometer. It is easily understandable for the best performance of PCLAR becuse they
continuously cover the largest angular ranges and benefit from them. It should be noted
that, in our method, PCLAR is acquired at a single shot and can be rapidly measured at
20 kHz, which does not suffer from the continuously larger angular range.

Table 1. Comparisons of the overall accuracies.

Angular
Selection
Strategy

Single
Angle: 120◦

Discrete Angles:
60◦, 90◦, 120◦

Forward Continuous
Angles, Range from

60◦ to 90◦

Backward Continuous
Angles, Range from 90◦

to 120◦

Continuous
Angles, Range

from 60◦ to 120◦

Overall
accuracy 81.83% 84.58% 85.91% 89.50% 92.58%

4.2. Simulated PCLAR of the Four Non-Biological Microspheres

Section 3.2 shows that four categories of non-biological microspheres (PS5, PS10,
PSH, SiO2) can be well differentiated from each other. Among these four, PS5, PS10,
and SiO2 are uniform spheres, and Mie theory can be used to compute the scattered
polarization parameters [33]. Because PSH is not uniform, it is simulated by the discrete
dipole approximation (DDA) [34]. Specifically, in order to build the geometric model of
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PSH according to its classic structure [35], we first generate a smooth PS microsphere with
10 µm diameter, and then subtract the intersectional volume with the 200 small spheres
whose central points randomly locate at the surface of the 10 µm diameter microsphere.
The small sphere’s diameter is 0.4 µm. Here, we acquire the first version of the model.
We then repeat the operation to subtract the intersectional volume with another 200 small
spheres whose central points randomly locate at the surface of the last version of the model.
Totally, we iterate this operation 50 times, and acquire the PSH’s geometric model, as
shown in Figure 10. Then, we discretize the model and use DDA to calculate the angular
distributions for the scattered polarization parameters.
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Figure 10. Geometric model of PSH for DDA simulation.

Subsequently, the distributions of the polarization parameters q and u of these four
categories of microsphere are collected, and these are shown in Figure 11. It can be seen that
the peak-valley structure is all curves, while that of PSH has less vibrations than the other
particles, which originates from the heterogeneous structure. Comparing the distributions
of PS5 and PS10, fewer peaks and valleys can be observed in the distributions of the former
compared to those of the latter, which originates from the size. Although the number of
peaks and valleys of PS10 and SiO2 are similar, their locations are different in q and values
are different in u. Generally, the q and u distributions of PSH look the most different to
those of the others in both the vibrations and the values, which ensures the best recognition
of PSH in all classifications in Figures 5 and 9.

It should be emphasized that the difference between the particles exist in not only
both the polarization parameters q and u but also in the different angles. For example, the u
values are most different in the angles around 90◦ for SiO2 and PS10, but those for PS10 and
PSH are in an angle near 120◦. Relatively, there are more difference in u than in q, for all
particles. These theoretical results demonstrate the measurement necessity of the scattered
polarization parameters with continuously large angular range.
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the experimental results shown as the green lines. Note that the shape of CY is stump-like, 
far from the sphere, and in the simulation, the size dominates the number and locations 
of the peaks in the angular distributions of q and u, but the refractive index is more sensi-
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Figure 11. Simulated polarization parameters q (a) and u (b) of SiO2, PS5, PS10, and PSH.

4.3. Effective Size and Refractive Index of Cells Retrieved from PCLAR

Taking advantage of the abundant and meaningful information carried by PCLAR, the
further investigation of its potential to explicitly retrieve the particle’s physical properties is
conducted below. The measured PCLAR of SiO2 and CY are shown in Figure 12 as the red
and green lines. For both q and u, CY and SiO2 can be easily differentiated. The simulated
PCLAR of SiO2 based on Mie theory shown in Figure 3 are recalled and shown in Figure 12
as the blue lines. Similar simulations are carried out for CY, and the solid sphere mostly
fitted to CY’s measured PCLAR is acquired with a 30 µm diameter and 1.359 + 0.0045i
refractive index, which falls in the ranges given in the literature [36]. The yellow lines in
Figure 12 show the simulated PCLAR, which do not perfectly match with the experimental
results shown as the green lines. Note that the shape of CY is stump-like, far from the
sphere, and in the simulation, the size dominates the number and locations of the peaks
in the angular distributions of q and u, but the refractive index is more sensitive to their
value ranges than the size. The imaginary part of the refractive index of SiO2 is comparable
with that of CY, which may originate from the residual polymer components in the silica
microspheres during manufacturing [37].
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5. Conclusions

In this paper, the methodological concept for measuring polarization parameters with a
continuously large angular range, i.e., PCLAR, of individual suspended particle is proposed.
The experimental setup is built to measure the scattered polarization parameters from 60◦

to 120◦ of the individual particles at single shot, and the measurement can be repeated
at 20 kHz. The setup is validated by the suspension of silica microspheres. Experimental
results show that PCLAR can well characterize the six categories of particles with different
size, shape, refractive index, and structure, which enables the excellent performance of
the classification equipped by CNN. Furthermore, PCLAR helps to effectively probe the
particulate compositions in the mixtures of SiO2 and CY with different proportions. The
comparisons with different angular selection strategies show that the continuously large
angular range of PCLAR enables the best classification. Simulations of PCLAR for particles
with different size, refractive index, and structure reveal the measurement necessity of
both polarization parameters and the continuously large angular range, for the excellent
discrimination of these particles. Moreover, with Mie theory, physical information such
as the effective size and refractive index of individual microalgal cells can be retrieved. In
summary, the method’s power, originating from the intrinsic advantages of PCLAR, are
convincingly demonstrated in this paper. A future prototype based on this concept may
provide a promising tool for particulate monitoring in aquatic environment.
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