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Acute respiratory failure contributes significantly to nonrelapse mortality after allogeneic hematopoietic stem
cell transplantation. Although there is a trend of improved survival over time, mortality remains unacceptably
high. An understanding of the pathophysiology of early respiratory failure, opportunities for targeted therapy,
assessment of the patient at risk, optimal use of noninvasive positive pressure ventilation, strategies to
improve alveolar recruitment, appropriate fluid management, care of the patient with chronic lung disease,
and importantly, a team approach between critical care and transplantation services may improve outcomes.

� 2016 American Society for Blood and Marrow Transplantation.
INTRODUCTION noninfectious or infectious. Noninfectious lung injury may

Allogeneic hematopoietic stem cell transplantation

(HSCT) is a curative modality for patients with certain
hematologic malignancies and nonmalignant disorders.
Post-transplantation pulmonary complications and acute
respiratory failure (ARF) contribute significantly to the
morbidity and mortality from this procedure [1]. Although
the incidence of ARF after HSCT has decreased over time,
mortality remains high, particularly for patients who require
endotracheal intubation and mechanical ventilation [2].
Hence, a team approach between transplantation, intensive
care, and ancillary services is essential to improve outcomes.
This review will highlight an approach to ARF from this
perspective, focus on identifying patients at risk for ARF
before transplantation, update definitions of pulmonary
complications, discuss newer insights into pathophysiology
and novel therapeutic options, explore the role of brocho-
alveolar lavage (BAL) in the context of newly developed in-
fectious diagnostic arrays, and include posteintensive care
(ICU) rehabilitation.

Lung injury occurs in 25% to 55% of HSCT recipients and
accounts for approximately 50% of transplantation-related
mortality [3]. Lung injury may be classified as
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be acute idiopathic pneumonia syndrome (IPS) or chronic,
leading to either obstructive lung disease (OLD) or restrictive
lung disease (RLD). OLD is defined on the basis of Global Lung
Initiative (GLI)-2012 equations endorsed by the American
Thoracic Society and the European Respiratory Society [4], as
forced expiratory volume in second (FEV1) over forced vital
capacity (FVC) less than lower limits of normal. RLD is
defined as total lung capacity less than 80% predicted.
NONINFECTIOUS LUNG INJURY
Acute IPS: Pathophysiology

In 1993, a National Institutes of Health (NIH) workshop
proposed a broad definition of IPS that included widespread
alveolar injury in the absence of active lower respiratory
infection, cardiogenic causes, acute renal failure, or iatro-
genic fluid overload after HSCT [5]. The diagnostic criteria of
IPS have been updated based on an official American
Thoracic Society Research Statement (Table 1) and classified
into entities based on anatomical sites of inflammation as
related either to interstitial, vascular and airway tissue, or
unclassifiable (Table 2) [6]. Clinical symptoms include cough,
dyspnea, and hypoxemia with or without fever. Chest radi-
ography may show bilateral infiltrates. The incidence of IPS
in the first 120 days after allogeneic HSCTwithmyeloablative
conditioning is 3% to 15% [5,7]. Risk factors include total body
irradiation, older recipient age, and acute graft-versus-host
disease (GVHD) [3,8,9]. The incidence of IPS is lower after
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Table 1
Definition of IPS [4,5]

I Evidence of widespread alveolar injury:
a. Multilobar infiltrates on routine chest radiographs or computed

tomography
b. Symptoms and signs of pneumonia (cough, dyspnea, tachypnea,

rales)
c. Evidence of abnormal pulmonary physiology: (1) increased

alveolar to arterial oxygen difference and (2) new or increased
restrictive pulmonary function test abnormality

II Absence of active lower respiratory tract infection based upon:
a. Bronchoalveolar lavage negative for significant bacterial patho-

gens including acid-fast bacilli, Nocardia, and Legionella species
b. Bronchoalveolar lavage negative for pathogenic nonbacterial

microorganisms: (1) routine culture for viruses and fungi, (2)
shell vial culture for CMV and respiratory RSV, (3) cytology for
CMV inclusions, fungi, and Pneumocystis jirovecii (carinii) and (4)
direct fluorescence staining with antibodies against CMV, RSV,
HSV, VZV, influenza virus, parainfluenza virus, adenovirus, and
other organisms

c. Other organisms/tests to also consider: (1) PCR for human met-
apneumovirus, rhinovirus, coronavirus, and HHV6, (2) polymer-
ase chain reaction for chlamydia, mycoplasma, and Aspergillus
species and (3) serum galactomannan ELISA for Aspergillus
species

d. Transbronchial biopsy if condition of the patient permits
III Absence of cardiac dysfunction, acute renal failure, or iatrogenic fluid

overload as etiology for pulmonary dysfunction

CMV indicates cytomegalovirus; RSV, respiratory syncytial virus; HSV,
herpes simplex virus; VZV, varicella zoster virus.
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nonmyeloablative conditioning; however, the clinical course
resulting in ARF and death once the diagnosis was estab-
lished is unchanged [8]. IPS-related mortality has been his-
torically high (>50%) despite treatment with corticosteroids
[7]. Noninfectious lung injury occasionally occurs after
autologous HSCT [10].

Murine models of IPS support the lung as a target of
T cellemediated injury after HSCT [11]. Increased TNF-a is
found in the BAL fluid of mice with IPS [12]. A causal role for
TNF-a has been established by neutralizing this cytokine in
experimental HSCT models [13].

TNF-aeindependent pathways may also contribute to
the pathophysiology of IPS. Lipopolysaccharide levels are
Table 2
Salient Clinical Features of Lung Injury Syndromes Defined under IPS

Parenchyma
Acute interstitial pneumonitis: onset day 0-100 after transplantation.

Secondary to chemotoxicity (BCNU, bleomycin, busulfan).
ARDS: Noncardiogenic capillary leak syndrome with onset day 0-30

after transplantation.
Delayed pulmonary toxicity syndrome: presents months to years

after auto HSCT for breast cancer.
Vascular endothelium
Peri-engraftment respiratory distress syndrome: present within

5-7 days of engraftment may progress to ARDS.
Diffuse alveolar hemorrhage: progressively bloodier BAL fractions,

presents within 0-100 days after transplantation.
Airway epithelium [6]
BOS: Diminished FEV1, onset 3-24months after transplantation. Chest

radiography may be normal or show hyperinflation. Chest CT may
show mosaic attenuation, air trapping, septal lines, centrilobular
nodules or bronchiectasis. Histology reveals bronchiolar
inflammation with luminal obstruction.

COP (formerly known as bronchiolitis obliterans organizing
pneumonia or BOOP): restrictive findings on spirometry, impaired
DLCO, onset 2-12 months after transplantation. Chest CT may show
patchy airspace disease, or nodular opacities. Histology reveals
intraluminal organizing fibrosis in distal airspaces with mild
interstitial inflammation.

BCNU indicates Carmustine; DLCO, diffusing capacity for carbon monoxide;
CT, computed tomography.
increased in BAL fluid of mice with IPS [12]. Translocation of
lipopolysaccharide across a gut mucosa damaged in the early
post-transplantation period stimulates the release of cyto-
kines that contribute to lung damage and development of
acute GVHD [14]. The lung is also sensitive to reactive oxygen
species, whose production is enhanced in this setting [15].
Changes in exhaled nitric oxide, a marker of airway inflam-
mation, are useful to guide risk stratification for noninfec-
tious lung injury after lung transplantation [16]. Surfactant
dysfunction caused by decreased synthesis in alveolar type II
cells or degradation by oxidants likely contributes to IPS [17].
Transtracheal instillation of human surfactant protein-A
attenuated the manifestations of IPS in mice [18]. Keratino-
cyte growth factor is a growth factor for type II pneumocytes
in vivo. Keratinocyte growth factor increases lung surfactant
levels, may detoxify reactive oxygen species, lowers serum
TNF-a levels, and diminishes lung injury in IPS mouse
models [19].

Investigators have also found an increased expression of
CC-chemokine ligand 2 ([CCL-2]MCP-1) in murine lung
models of IPS that paralleled the recruitment of leukocytes
and cellular expression of Chemokine receptor 2 (CCR2) [20].
IL-6 generated by lung parenchyma promotes IPS via in-
duction of Th17 differentiation [21]. High plasma concen-
trations of IL-6 at time of diagnosis are associated with lack
of response to TNF inhibition [21]. Blockade of IL-6 signaling
with anti-IL-6R monoclonal antibody (Tocilizumab, Gene-
tech, Inc., San Francisco, CA) reduced GVHD while preserving
a graft-versus-tumor effect in mice [22]. In summary, in-
flammatory factors contributing to IPS have strong founda-
tions in basic science, offering promising targets for therapy.

Acute IPS: Clinical Spectrum
Engraftment syndrome

IPS is a syndrome with a wide clinical spectrum
depending on the site of disease (Table 2). Engraftment syn-
drome is defined by consensus according to the criteria
outlined by Spitzer [23] and is mainly characterized by fever,
rash, and noncardiogenic pulmonary edema occurring at the
time of neutrophil recovery after HSCT. The risk was reported
to be higher among male recipients, myeloablative condi-
tioning with total body irradiation (TBI) � 1200 cGy, and
unrelated donor HSCT [24]. Patients with engraftment syn-
drome were at higher risk for developing GVHD, and bio-
markers such as suppression of tumorigenicity 2, interleukin
2 receptor alpha (IL2Ra), and tumor necrosis factor receptor
1 are elevated, as described in patients with GVHD [24].

Diffuse alveolar hemorrhage
Diffuse alveolar hemorrhage (DAH) originates from the

pulmonary microvasculature in response to alveolar injury,
which may be noninfectious; secondary to chemotherapy,
radiation, or immune-mediated events; or due to systemic or
pulmonary infections [25]. Older age, allogeneic donor
source, myeloablative conditioning, and acute severe GVHD
were independently predictive of an increased risk of DAH.
The probability of 60-day survival is poor with >50% mor-
tality in both noninfectious and infection-associated DAH.

Lung injury syndromes not defined under IPS
Other noninfectious pulmonary complications not

included under the classification of IPS include radiation
pneumonitis, pulmonary alveolar proteinosis involving the
lung parenchyma, pulmonary veno-occlusive disease [26],
pulmonary cytolytic thrombi [27], transfusion-related acute
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lung injury, pulmonary arterial hypertension, and pulmonary
thrombo-embolism, all involving the vascular endothelium
(Table 3).

Chronic Pneumonia Syndromes
Bronchiolitis obliterans syndrome (BOS) is a progressive,

insidious lung disease manifesting as new fixed airflow
obstruction due to progressive circumferential fibrosis and
cicatrization of the small terminal airways [28]. The patho-
genesis of BOS involves both alloimmune and nonalloimmune
(infectious, chemo-radiotherapy injury) processes, but the
association between chronic GVHD and BOS is well accepted
[29].

Cryptogenic organizing pneumonia (COP), formerly
known as bronchiolitis obliterans organizing pneumonia, is a
Th1 inflammatory disease [29]. HLA disparity, female-to-male
HSCT, peripheral blood stem cell transplantation, and TBI-
based regimen are associated with increased risk of COP
[30]. An association between acute and chronic GVHD and the
subsequent development of COP has been noted [31].
Although COP and BOS have both been associated with
chronic GVHD, and occur in similar time frame, patients with
BOS present without fever and have wheezing, whereas pa-
tients with COP present with fever and have crackles on
physical examination. Other notable differences are described
in Table 2. A lung biopsy is recommended for diagnosis of COP.

BOS causing obstructive lung disease and COP/bronchio-
litis obliterans organizing pneumonia causing RLD may not
be used interchangeably, as they have clinical, radiological,
pulmonary function, and histological differences, as
described in Table 2.

INFECTIOUS LUNG INJURY
Diagnostic Utility of BAL

Although the syndrome of IPS excludes infection, infec-
tious lung injury has a role the pathophysiology of DAH and
exacerbations of BOS. BAL should strongly be considered in
patients with diffuse lung infiltrates after transplantation.
The availability of automated multiplexed PCR for rapid and
Table 3
Salient Clinical Features of Lung Injury Syndromes not Defined Under IPS

Parenchyma
Radiation pneumonitis: restrictive findings on spirometry. Impaired

DLCO, onset 2-4 months after therapy.
Pulmonary alveolar proteinosis: may occur early or late (1-2 years)

after transplantation. Chest radiography may show crazy paving
pattern. BAL shows milky periodic-acid-Schiffepositive milky
fluid.

Vascular endothelium
Pulmonary veno-occlusive disease: occurs 2-6 months after

transplantation and results in pulmonary hypertension. Histology
reveals fibrous intimal proliferation of pulmonary venules.

Pulmonary cytolytic thrombi: observed in pediatric HSCT recipients
2-3 months after HSCT. Chest CT may show pulmonary nodules.
Histology reveals thrombi in small to medium distal pulmonary
vessels, associated with pulmonary infarction.

Transfusion-related acute lung injury: Present with fever, chills,
leukopenia, acute dyspnea, and hypotension within 6 hours of
cellular product infusion. Histology reveals aggregation of
leukocytes in pulmonary vasculature.

Pulmonary artery hypertension: insidious onset of dyspnea, within
0-6 months after transplantation. Detected by follow-up
echocardiogram. Histology reveals intimal hyperplasia in small
pulmonary vessels.

Pulmonary thrombo-embolism: acute onset of fever, dry cough and
dyspnea due to embolus in a pulmonary vein detected by chest CT
or lung angiography.
accurate detection of respiratory pathogens has increased
the assay sensitivity and specificity to 80% to 100% and 100%,
respectively [32]. BiofireFilmArray Respiratory Panel (BioFire
Diagnostics, Inc., Salt Lake City, UT, USA) targets 20 patho-
gens including 17 viruses and subtypes and 3 bacteria, and it
is performed with minimal sample manipulation [32].
Although 33% of BAL specimens on HSCT patients between
days 31 to 100 were positive for infection in a retrospective
study performed from 2001 to 2007 [33], with improved
diagnostic arrays, this yield may be higher. Procedural
complications were noted in only 3.6% of cases, and only 2%
of patients required intubation and mechanical ventilation
within 48 hours after procedure. BAL data resulted in
changes in medical management in approximately 60% of
cases [33]. The diagnostic yield of BAL was as high as 75%
when performed within 24 hours of clinical presentation
[34]. Procedural complications occurred in only .6% of pa-
tients in this study. Pathogens detected in the lower respi-
ratory tract with BAL often differ from those detected in the
upper respiratory tract with a nasopharyngeal wash. In
addition, assay for galactomannan in BAL has a 93% negative
predictive value for diagnosing proven and probable invasive
fungal infections (IFI) [35]. Further, institution of corticoste-
roid therapy for IPS may cause more harm than benefit in the
context of an undiagnosed infection. The risks associated
with empiric antimicrobial therapy, including medication
side effects and development of resistance, compound the
potential harm of delaying targeted management.

IFI
Isolated lung involvement alone accounts for 49.4% of

deaths due to proven IFI after HSCT [36]. In a review of cases
of aspergillosis over a 34-year period at our institution, no
cases of isolated abdominal or pelvic disease were noted; the
lung was the most common organ involved with concurrent
abdominal disease [37]. IFI of the lung have decreased with
better antifungal prophylaxis and pre-emptive screening
with galactomannan [36-39]. The use of PCR and other mo-
lecular approaches, such as matrix-assisted laser desorption
ionization, have proved promising in clinical trials and their
use after standardization may reduce the need for antifungal
therapy [40].

Viral Pathogens
Both prophylaxis and pre-emptive therapy based on

surveillance molecular screening have substantially reduced
the incidence of cytomegalovirus disease after trans-
plantation [41]. Novel drugs, such as maribavir, letermovir,
and brincidofovir, are undergoing clinical trials [41]. Adop-
tive cellular therapy promises to restore antiviral immunity
in the absence of significant toxicity and with a low risk of
induction of GVHD [42-44]. DAS181, a novel sialidase fusion
protein against parainfluenza virus [45], is undergoing ran-
domized placebo-controlled clinical trial in older children
and adults (NCT01644877). Treatment with oral GS-5806, a
respiratory syncytial viruseentry inhibitor, reduced viral
load and severity of disease in a double-blind, placebo-
controlled study in healthy adults [46]. These approaches,
when translated into clinical practice, may reduce infectious-
associated lung injury after transplantation.

APPROACH TO PATIENTS WITH PULMONARY
DYSFUNCTION
Identification of Patients at Risk

Patients at risk for pulmonary dysfunction after trans-
plantation should be identified on pretransplantation
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evaluation based on pulmonary function testing (PFT).
Children with noninfectious and infectious pulmonary
complications after transplantation had a significantly lower
forced expiratory flow at 25% to 75% of vital capacity on
pretransplantation PFT [47]. Lower FEV1, FVC, and RLD
predicted worse overall survival [47]. Reduced
pretransplantation FEV1 and FVC were associated with
higher risk of early respiratory failure [48]. A worse lung
function score, a combined measurement of FEV1 and single-
breath diffusing capacity for carbon monoxide was associ-
atedwith poor survival [49]. These patients may benefit from
non TBI-based conditioning, lung shielding, prevention of
GVHD, and close monitoring of PFT after transplantation.
Patients receiving myeloablative conditioning had much
greater declines in FEV1 compared with those receiving
nonmyeloablative conditioning, with a higher mortality risk,
especially if the pretransplantation FEV1 was less than 60%
[50]. For patients with combined ventilation/diffusing
capacity deficits before transplantation, reduction in lung TBI
dose improved survival [51]. Further, for patients with
abnormal pretransplantation lung function and others with
evolving pulmonary dysfunction after transplantation, our
approach is to conduct weekly multidisciplinary rounds in
conjunction with the intensive care team to discuss strate-
gies to prevent further respiratory compromise.

Acute IPS
Neutralization of TNF-a reduces lung injury after experi-

mental allogeneic HSCT [13]. Etanercept (Enbrel; Immunex,
Seattle, WA) is a dimeric protein consisting of 2 soluble p75
TNF receptors fused to the Fc portion of a type I IgG1 mole-
cule. Significant improvements in day 28 survival were re-
ported in several single-institutional, nonrandomized
studies combining etanercept with corticosteroids [52-54]. A
randomized, multicenter, double-blind, placebo-controlled
trial of etanercept for treatment of IPS after allogeneic HSCT
in adults was halted because of accrual of only 34 subjects
and precluded a definitive conclusion [55]. Etanercept
administration was not associated with increased toxicity,
increased incidence of opportunistic infections, or risk of
relapse compared with placebo controls [55]. A multicenter
phase II trial of etanercept with corticosteroids in children
with IPS accrued 28 evaluable patients. Complete responses
were seen in 20 (71%) patients, with a median time to
response of 10 days. Response rates were higher in patients
not requiring mechanical ventilation at study entry and
overall survival at 1 year after therapy was 63%, comparing
favorably with historical data [56]. Early recognition of the
disorder, BAL to exclude infectious pathogens, and therapy
with etanercept and corticosteroids may improve outcome
after IPS.

Engraftment Syndrome
Corticosteroids are often dramatically effective in patients

with engraftment syndrome. A dose of 1 m/kg/day for 3 days
with no taper is suggested. Higher nonrelapse mortality and
lower overall survival at 2 years in patients with engraftment
syndrome was reported despite use of corticosteroids [24].

DAH
High-dose corticosteroids have not altered the poor

outcome associated with DAH [25]. In a large retrospective
study, patients with DAH who received steroids
<250 mg/day had lower mortality compared with those
receiving medium- and high-dose steroids [57]. Adjunctive
treatment with aminocaproic acid did not produce difference
in outcomes, and 100-day mortality was as high as 85% [57].
A previous study in a small group of 8 patients showed that
the use of aminocaproic acid with corticosteroids was safe
and had a favorable effect on survival [58]. Factor VIIa has
also been used in addition to steroids to control the acute
stage of DAH. However, in a recent retrospective study, the
use of factor VIIa in combination with steroids did not
improve the time of resolution of DAH, duration of me-
chanical ventilation, or hospital mortality compared with
outcomes after steroids alone [59].

BOS
Avoidance of systemic steroids and treatment with

inhaled budesonide/formoterol was shown to significantly
improve FEV1 as early as 2 month after treatment initiation
in a randomized, double-blind, placebo-controlled study in
32 patients with moderate to severe BOS [60]. A trial using
fluticasone, azithromycin, and montelukast for BOS is
ongoing (NCT01307462). A case series of 8 patients showed
similar change in FEV1 compared to a historical group who
received high-dose corticosteroids. Reducing systemic
corticosteroid exposure reduced treatment-related
morbidity in BOS with no change in efficacy [61]. Eta-
nercept, in addition to its efficacy in IPS, may have a potential
role in the treatment of subacute lung injury in patients at
least 100 days after allogeneic HSCT. Etanercept was well
tolerated in this population, and objective responses were
seen in 32% of patients [62].

A randomized, double-blind, placebo-controlled trial of
inhaled cyclosporine in addition to systemic immunosup-
pression after lung transplantation improved survival and
extended periods of chronic rejection-free survival. Histo-
logically, chronic rejection in lung transplantation presents
as BOS [63]. The excellent negative predictive value of
persistently low fractional exhaled nitric oxide for early
diagnosis of BOS after lung transplantation suggests a value
to exploring these novel diagnostic and therapeutic modal-
ities to treat BOS after HSCT [16]. A placebo-controlled trial of
azithromycin therapy given on alternate days for 12 weeks in
patients with BOS after lung transplantation showed signif-
icant improvement in FEV1 [64].

Early identification and management of patients with
evolving pulmonary dysfunction before development of
symptoms is critical to improve outcomes. The NIH
symptom-based lung score with score 0 (no symptoms),
score 1 (shortness of breath with climbing stairs), score 2
(shortness of breath on flat ground), and score 3 (shortness of
breath at rest or requiring oxygen) was associated with
nonrelapse mortality and overall survival [65]. Even an NIH
symptom-based lung score of 1 was associated with worse
overall survival compared with those with a score of 0.
Worsening of NIH symptom-based lung score was associated
with increased mortality [65].

More frequentmonitoringwith PFT using GLI-2012 indices
may detect changes before symptoms develop and guide
management. The GLI-2012 equations are based on a very
large reference population of ages 3 to 95 years and produces
age-specific spirometric indices for lower limits of normal.
Using fixed thresholds for FEV1/FVC < .70 could misdiagnose
>20% of patients referred for PFT [66]. Computed tomogra-
phyebased imaging biomarkers may provide a unique
signature for diagnosis of small airway disease and disease
progression [67]. Clinical biomarkers may aid early diagnosis
and prognostication of patients with evolving pulmonary
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dysfunction. Serum levels of suppression of tumorigenicity 2
were significantly elevated in patients with acute exacerba-
tions of idiopathic pulmonary fibrosis and these levels
inversely correlated with PaO2/FiO2 [68].

COP
Symptoms typically respond to corticosteroids. Preven-

tive azithromycin treatment reduced noninfectious lung
injury and acute GVHD in a murine model of allogeneic HSCT
[69]. Macrolides in patients with acute lung injury have been
shown to improve survival and shorten the time to successful
discontinuation of mechanical ventilation [70].

Novel Investigational Agents
Cell-based therapy with bone marrowederived mesen-

chymal stem cells is a potentially attractive new therapeutic
option for treating patients with acute respiratory distress
syndrome (ARDS) [71] and has shown to be efficacious in
repair of established injury in animals [72].

IL-6 plays a role in the pathophysiology of IPS [21].
Blockade of IL-6 with toclilizumab reduced GVHD in mouse
models [22]. Addition of tocilizumab to standard GVHD
prophylaxis for patients who received HLA-matched alloge-
neic HSCT was shown to be safe and associated with a very
low incidence of significant acute GVHD [73]. Tocilizumab is
available for clinical use and may be considered in research
studies in combination with etanercept and corticosteroids.

Recently, preclinical studies have uncovered possible
novel strategies to treat BOS. Ibrutinib is a Food and Drug
Administrationeapproved reversible inhibitor of Bruton’s
tyrosine kinase and IL-2 inducible T cell kinase that targets
Th2 cells and B cells. In an alloantibody-driven multiorgan-
system chronic GVHD murine model that induces BOS,
ibrutinib treatment ameliorated pulmonary fibrosis and
curtailed the development of BOS in vivo as measured by
pulmonary function parameters, including resistance, ela-
stance, and compliance [74]. In another murine model with
BOS as a prominentmanifestation, lung pathology developed
in an IL-17 and colony-stimulating factor-1Redependent
manner. Antiecolony-stimulating factor-1R antibody signif-
icantly improved all pulmonary function parameters and
resulted in significant reduction in collagen deposition [75].

ICU CARE
Noninvasive Positive Pressure Ventilation

Noninvasive positive pressure ventilation (NIPPV) has been
increasingly used in the last decade to support patients with
ARF. In some instances, it helps avoid endotracheal intubation
and invasive mechanical ventilation. It is of particular interest
in patients who are highly susceptible to infections because it
does not breach the respiratory barrier. In a recent survey that
explored the variation in the care of critically ill pediatric HSCT
patients in North America, all 33 centers included in the study
reported the use of bontinuous positive airway pressure
(CPAP)/bilevel positive airway pressure (BiPAP) before intu-
bation [76]. A success rate (defined as the absence of subse-
quent endotracheal intubation) as high as 74.2% in 239
immune-compromised children has been reported [77]. Car-
diovascular dysfunction was 1 of the predictive factors for
NIPPV failure [77]. In a postallogeneic HSCT adult cohort, the
early initiation of noninvasive ventilation was associated with
better oxygenation but did not improve survival or need for
mechanical ventilation [78]. The benefit from the NIPPV is
usually seen early within few hours of its application. There-
fore, evolving pulmonary dysfunction in patients at risk
(Figure 1) should prompt escalation of therapy to the use of
invasive mechanical ventilation.

Ventilation Strategies: Conventional Mechanical
Ventilation

Nearly one half of children admitted to the pediatric ICU
after transplantation will require mechanical ventilation
[79]. A common theme that is particularly true of post-
transplantation patients with respiratory failure who
require mechanical ventilation is the clear and early der-
ecruitment of distal alveolar air space available for effective
gas exchange. The pathophysiology of IPS involves loss of
alveolar air space as a critical element leading to hypoxemia.
Efforts aimed at minimizing alveolar derecruitment include
judicious use of positive end-expiratory pressure (PEEP) with
low tidal volume (TV) strategies (6 mL/kg). Likewise, goals of
ventilation may need to be moderated toward maintaining
pH > 7.25 and supporting oxygen saturation to >85%. A
landmark study from the ARDS Network evaluated higher
versus lower TV mechanical ventilation and demonstrated a
reduction in mortality from 40% to 31% with 6 mL/kg ideal
body weight TV, compared to 12 mL/kg ideal body weight TV
[80]. To achieve optimal lung protection, the lowest plateau
pressure and TV possible should be selected. Accumulating
observational evidence suggests that TV should be limited in
all mechanically ventilated patientsdeven in those who do
not have ARDS. PEEP should be set to maximize alveolar
recruitment while avoiding over-distention. Judicious use of
higher PEEP may be needed in clinical settings of DAH or
engraftment syndrome.

Ventilation Strategies: High-Frequency Oscillatory
Ventilation

High-frequency oscillatory ventilation (HFOV) is an alter-
native technique of ventilation in which small TV are deliv-
ered at high frequencies (3 to 15Hz)with an oscillatory pump
[81]. Thus, high-frequency oscillation theoretically meets the
goals of a strategy of lung protective ventilation with
extremely small TV (1 to 4 mL/kg) and constant lung
recruitment. The benefit of HFOV in treatment of ARDS is still
controversial. In patients with ARDS, HFOV reduced hospital
and 30-day mortality and resulted in improved oxygenation,
asmeasuredby thepartial arterial oxygen saturation/inspired
oxygen fraction (PaO2/FiO2) ratio [82]. However, a recent
multicenter, randomized controlled trial of HFOV versus
conventional mechanical ventilation in 548 adult patients
with ARDS concluded that mortality was actually higher in
patients receiving early HFOV [83]. Pediatric literature is also
inconclusive, but many centers reported improved gas ex-
changewith the use of HFOV [84]. Therefore, the use of HFOV
may still be suitable as a rescue treatment in patients with
refractory hypoxemia,whenhighermean airwaypressures or
FiO2 are required to maintain oxygenation.

Prone Positioning
Prone positioning can improve ventilation perfusion

mismatch and help to recruit dependent lung regions and
drain tracheobronchial secretions. Although earlier studies
failed to show survival benefit, recent evidence suggests that
interval prone positioning in patients with severe ARDS can
reduce mortality. In a recent multicenter randomized trial,
474 adult patients with severe ARDS (PaO2/FiO2 <150) were
randomized either to standard supine or interval prone
positioning with protective mechanical ventilation strategies
implemented in both groups. Mortality was significantly
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Pre-transplant PFT
TBI-based conditioning
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Tailor conditioning regimen
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Absence cardiac, renal failure, infection
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Minimize antimicrobial therapy

Engraftment syndrome DAH BOS COP

*Corticosteroids

Etanercept Supportive care Bronchodilator Azithromycin

Progressive pulmonary dysfunction Early use NIPPV

Need for mechanical ventilation

Low tidal volumes
Higher PEEP

Early initiation CRRT
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Progressive hypoxemia
Consider HFOV 
Consider ECMO

Post-ICU rehabilitation
Chronic lung injury

Close follow up with PFT
Azithromycin
Vaccination

Physical therapy

Identify patients at risk

Figure 1. Approach to a patient with evolving pulmonary dysfunction after allogeneic HSCT. *A short course of corticosteroids without taper is suggested for
engraftment syndrome. Doses �2 mg/kg/day may be used for DAH. Inhaled steroids are recommended for BOS. A prolonged course of steroids may be necessary for
COP. PFT, pulmonary function test; BAL, broncho-alveolar lavage; DAH, diffuse alveolar hemorrhage; BOS, bronchiolitis obliterans syndrome; COP, cryptogenic
organizing pneumonia; NIPPV, non-invasive positive pressure ventilation; PEEP, positive end-expiratory pressure; CRRT, continuous renal replacement therapy;
HFOV, high-frequency ventilation; ECMO, extra-corporeal membrane oxygenation.
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lower in patients undergoing interval prone positioning
compared with that for patients in supine position (24%
versus 41%, P < .001) [85]. Although prone positioning may
offer benefits in treating children with ARDS, it has to be
done cautiously as it is associated with increased frequency
of adverse events, such as airway obstruction, hypotension,
vomiting, and accidental extubation [86].

Fluid Management
Recently, the ARDS Network Fluid and Catheter Treat-

ment Trial reported that a conservative fluid management
strategy, compared with a liberal fluid strategy, increased the
mean number of ventilator-free days in adult patients with
acute lung injury (15 versus 12 days respectively, P < .001)
[87]. In addition to this beneficial effect on outcomes, the
study found that the conservative fluid strategy did not in-
crease the incidence of renal failure or the development of
shock. There is growing evidence that fluid overload in
critically ill children is associated with worse outcome. In a
large series of 297 critically ill children receiving continuous
renal replacement therapy (CRRT), children with fluid
overload �20% had a higher adjusted mortality rate of 8.5
compared with those with <20% [88]. There was a 3% in-
crease in mortality for each 1% increase in fluid overload at
CRRT initiation. Children after transplantation are at higher
risk of fluid overload. In addition, in many instances, they
manifest capillary leak that renders fluid management more
challenging. In a retrospective review of 26 children after
transplantation children with acute renal failure and fluid
overload, <10% fluid overload was associated with better
survival [89]. Early initiation of CRRT for treatment of fluid
overload when diuretic therapy fails may help to improve
oxygenation and outcome. In a retrospective review in our
institution that included 30 post-transplantation pediatric
patients with acute lung injury who underwent CRRT from
1994 to 2006, CRRT was associated with significant
improvement of oxygenation 24 and 48 hours after initiation
of this therapy. PaO2/FiO2 increased significantly with me-
dian increase of 31 and 43 in the 24- and 48-hour intervals
after initiation of CRRT compared with the 24-hour interval
before CRRT. This improvement in PaO2/FiO2 was associated
with the reduction of fluid balance after initiation of CRRT
[90]. In a cohort of 51 pediatric stem cell recipients (both
autologous and allogeneic) on CRRT, survivors had lower
mean airway pressure at the end of CRRT compared to
nonsurvivors receiving mechanical ventilation [91]. This
suggests that the etiology of underlying pulmonary
dysfunction may influence the beneficial effects of CRRT.

Corticosteroids and Surfactant Therapy in ARDS
The benefit of corticosteroids to treat acute lung injury

has been controversial with some studies showing clear
benefit, whereas other studies reporting increased mortality
when used>13 days after the onset of ARDS. Ameta-analysis
of 5 randomized trials of the use of corticosteroid in ARDS
showed that prolonged corticosteroid treatment was asso-
ciated with significant improvement in PaO2/FiO2 ratio, as
well as significant reduction in duration of mechanical
ventilation and ICU stay [92]. When mortality was adjusted
to include some of the variables that were not balanced
between this and the control groups in the meta-analysis,
60-day mortality diminished from 28% to 11% and was not
statistically significant [92].

Surfactant dysfunction likely contributes to IPS [17].
Transtracheal instillation of human surfactant protein-A
attenuated the manifestations of IPS in mice [18]. A recent
randomized, double-blinded, controlled study of the use of
calfactant in children with ARDS did not show improvement
in oxygenation, hospital-free days, or 90-day mortality rate
[93]. A post hoc analysis of immune-compromised cohort of
52 children with acute lung injury suggested a potential
benefit of calfactant in this population to reduce mortality
and improve oxygenation [94]. This is being exploredwith an
ongoing multicenter randomized trial investigating the use
of calfactant in children after transplantation
(NCT00999713).

Role of Extracorporeal Membrane Oxygenation
Extracorporeal membrane oxygenation (ECMO) is used in

children with acute respiratory or cardiac failure when other
conventional methods of treatment fail and the risk of
mortality is high. The reported survival rate of children with
respiratory failure requiring ECMO is 57% [95]. However,
children after transplantation who have undergone ECMO
have a significantly lower survival rate, ranging from 5% to
21% [96]. Factors that increase risk of mortality include
longer duration from intubation to initiation of ECMO (me-
dian of 8 days), higher PEEP at 24 hours after initiating
ECMO, as well as higher number of organ dysfunction [96].
ECMO requires anticoagulation, which can be challenging
after transplantation. In a series of 19 children after trans-
plantation who underwent ECMO, bleeding complications
occurred in 53%. ECMO can be considered early in the course
of severe respiratory failure; however, the prognosis is still
poor.

Outcome of ARF
Mortality from ARF is high, ranging from 42% to 84%

[79,97-108] (Table 4). We have recently reported the largest
single-institution retrospective review of outcomes for pe-
diatric oncology and post-transplantation patients requiring
invasive mechanical ventilation, documenting an encour-
aging and steady trend of improved survival over time [105].
A recent prospective multicenter study reported a 52%
mortality rate; severe impairment in oxygenation, use of
CRRT, and cytomegalovirus viremia were independent pre-
dictors of mortality [108].

Mortality in patients with ARF after transplantation who
require CRRT is high. Coordination of care between critical
care, transplantation, pulmonary, nephrology, pharmacy,
nutritional, and other services is imperative to improve
outcome, counsel HSCT patients, and their families. Per-
spectives from team members in the different services may
be at variance, albeit complimentary when put together.

Post-ICU Care and Management of Chronic Lung Disease
Patients with chronic lung disease require more frequent

monitoring of symptoms, PFT, and a 6-minute walk test at
each clinic visit to assess response to bronchodilator/steroid
therapy [109]. Cardio-pulmonary exercise testing may be
performed if indicated. Overnight pulse-oximetry may be
considered to assess need for supplemental oxygen during
sleep, as hypoxia may go unnoticed and lead to pulmonary
hypertension. Development of pulmonary hypertension has
been associated with BOS in lung transplant recipients [110].
Transthoracic echocardiography is an excellent screening
tool for pulmonary hypertension. Seasonal influenza vaccine
and protective pneumococcal titers may be beneficial, as
respiratory viral infections are not uncommon late after
allogeneic HSCT [111]. Physical therapy to build



Table 4
Overview of Studies on Outcome after ARF for Children after Transplantation Requiring Mechanical Ventilation

Study Design Enrollment
Period

Ventilated HSCT
Patients, n

PICU
Survival, %

Long-Term
Survival

Factors Associated with Mortality Reference

Retrospective 1983-1996 121 16 N/A Respiratory failure, pulmonary dysfunction, >1 organ dysfunction [97]
Retrospective 1990-1999 86 41 20% 2 yr Hepatic dysfunction, use of HFOV [98]
Retrospective 1991-2000 34 24 N/A Male gender, MOF �3, hemorrhagic cystitis, GVHD grades III-IV [99]
Prospective 1993-2001 24 21 17% 1 yr MOF [100]
Retrospective 1994-1998 31 42 13% 6 mo MV >48 hr [101]
Retrospective 1998-2001 13 15 NR MV >5 d [102]
Retrospective 1992-2004 65 *59 54% 100 d PaO2/FiO2 <300, PEEP >8 cm 24 hours, no survivor HFOV [103]
Meta-analysis 1973-2004 822 29 N/A Pulmonary infection [104]
Retrospective 1996-2004 206 45 18% 6 mo Previous intubation within 6 months, hepatic/cardiac failure [105]
Retrospective 2000-2006 36 31 25% 6 mo MV >7 d, CRRT >7 d, pressor support [106]
Retrospective 2002-2009 28 31 N/A yOxygenation index �25 associated with100% mortality [107]
Retrospective 2004-2010 88 39 N/A CRRT [108]

PICU, pediatric intensive care-unit; N/A, not available; MOF, multi-organ failure; MV, mechanical ventilation; NR, not reported.
* During the period 2000-2004.
y Oxygenation index is defined as FiO2/PaO2 x mean airway pressure.
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cardiorespiratory endurance and avoidance of active or
passive smoking is important. Repair of impaired pulmonary
function with recovery of diffusing capacity for carbon
monoxide was observed 10 years after allogeneic HSCT [112].

CONCLUSIONS
Outcome of ARF can be improved with a team approach

from both critical care and transplantation services by
identifying patients at risk, early diagnosis of IPS with BAL,
incorporating newer advances in targeted drug therapy, us-
ing noninvasive positive pressure ventilation with respira-
tory decompensation, minimizing alveolar derecruitment
with mechanical ventilation, restricting fluids, early initia-
tion of CRRT, use of HFOV and ECMO with progressive hyp-
oxemia, possibly cellular therapy in the future, and close
follow-up of the patient with chronic lung disease.
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