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Abstract

Background: Adrenomedullin (AM) is highly expressed in pancreatic cancer and stimulates pancreatic cancer cells leading
to increased tumor growth and metastasis. The current study examines the role of specific AM receptors on tumor and cells
resembling the tumor microenvironment (human pancreatic stellate - HPSC, human umbilical vein – HUVEC and mouse
lung endothelial cells - MLEC).

Methods and Findings: AM receptors ADMR and CRLR were present in HPSC, HUVEC and MLECs while PDAC cells
possessed only ADMR receptors as assessed by RT-PCR and western blotting. All cell lines expressed and secreted AM as
indicated by ELISA. The growth of each of the cell lines was stimulated by exogenous AM and inhibited by the antagonist
AMA. AM also stimulated in vitro angiogenesis assessed by polygon formation of endothelial cell lines. SiRNA-mediated
silencing of ADMR, but not CRLR, reduced basal growth of all cells examined and reduced polygon formation of endothelial
cells in vitro. Orthotopic tumors developed with shADMR bearing cancer cells had dramatically reduced primary tumor
volume (.90%) and lung and liver metastasis compared to shControl bearing cells. To validate ADMR as a potential
therapeutic target, in vivo studies were conducted using neutral nanoliposomes to systemically deliver human siRNA to
ADMR to silence human cancer cells and mouse siRNA to ADMR to silence mouse tumor stromal cells. Systemic silencing of
both human and mouse ADMR had no obvious adverse effects but strongly reduced tumor development.

Conclusion: ADMR mediates the stimulatory effects of AM on cancer cells and on endothelial and stellate cells within the
tumor microenvironment. These data support the further development of ADMR as a useful target treatment of pancreatic
cancer.
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Introduction

Pancreatic cancer is the fourth leading cause of cancer-related

death in the United States and it has been estimated that in 2008

approximately 37,680 Americans were diagnosed and 34,290

died from this disease [1]. Although significant advances are

beginning to be made into the management of the disease, the 5-

year survival rate has not improved over the past 25 years [1].

The high mortality rate is due to the high incidence of metastatic

disease at initial diagnosis, the aggressive clinical course and the

failure of systemic therapies [2]. Therefore, there is an urgent

need for improved understanding of the molecular biology of the

disease that can be utilized to develop new therapies for

pancreatic cancer.

We previously showed that adrenomedullin (AM) is over-

expressed in pancreatic cancer and has a strong autocrine role in

this disease [3]. AM is a 52 amino acid peptide originally isolated

from human pheochromocytoma [4] that acts as a multifunctional

regulatory peptide [5]. One issue with AM as a target for cancer

therapy is that AM has several physiological functions whose

inhibition may be detrimental. AM is expressed in normal

pancreatic islet cells, with predominant expression in the F cells,

which also contain pancreatic polypeptide [6]. AM reduces insulin

secretion in physiological conditions [6]. AM also has important

effects in vascular cell biology where it regulates vascular tone and

permeability and promotes vasodilation [7–11]. AM is also a

potent angiogenic molecule, especially in hypoxia, which induces

AM [10]. The angiogenic effects of AM are likely mediated
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through direct stimulation of endothelial cell proliferation [12] and

protection of endothelial cells from apoptosis [13]. Adrenome-

dullin signaling is necessary for murine lymphatic vascular

development [14]. Mice in which AM has been genetically deleted

develop cutaneous edema and midgestational lethality due to

defect in lymphatic vessel growth and cardiovascular defect [15].

In cancer, AM appears to have an important role in angiogenesis

as well as an additional trophic effect directly on cancer cells

[16–18].

AM acts as a peptide ligand that activates receptors on the cell

surface. Pancreatic beta cells express receptors known to respond

to AM including the adrenomedullin receptor (ADMR, also

known as L1-R) and the calcitonin-receptor-like-receptor (CRLR)

[6,19,20]. Our previous study found that pancreatic cancer cells

express only ADMR, while both receptors are present in cells

found within the tumor microenvironment including human

pancreatic stellate cells (HPSCs) and endothelial cells. However,

the roles of the specific receptors in AM’s effects on pancreatic

cancer, HPSCs and endothelial cells are currently unknown.

The current study examines the effects of AM on human

pancreatic tumor cells, HPSCs and endothelial cells and

investigates the receptors involved in these effects. We silenced

each of the receptors in vitro using siRNA and found that ADMR

was primarily responsible for the biological effects of AM on each

of these cell types. We then examined the effects of silencing

ADMR on pancreatic cancer cells and observed a major reduction

of tumor growth in vivo. To analyze the potential of ADMR as a

target of cancer therapy, we then evaluated the effects of silencing

ADMR in both mouse cells that make up the tumor microenvi-

ronment and on human cancer cells by using DOPC nanolipo-

somes to deliver species specific siRNAs. This systemic silencing of

ADMR did not have obvious deleterious effects on healthy mice

but greatly reduced tumor development. Therefore, ADMR

should be an important target for the future development of small

molecule therapeutics.

Materials and Methods

Cell Lines and AM Peptides
Pancreatic cancer BxPC3 cells and HUVEC cell lines were

obtained from the American Type Culture Collection (Manassas,

VA). MPanc96 pancreatic adenocarcinoma cell lines were

originally established by Dr. Timothy J. Eberlein (St. Louis,

MO) [21]. MLECs are microvascular endothelial cells from

primary cultures obtained from lungs of mice whose tissues harbor

a temperature-sensitive SV40 large T antigen [22]. When cultured

under permissive temperatures (33uC), cell lines displayed

doubling times consistent with endothelial cells possessing an

angiogenic phenotype. The transfer of these endothelial cells to

non-permissive temperatures (37uC) resulted in cell differentiation

and the induction of a quiescent state. MLECs were cultured in

10% FBS in DMEM. BxPC3 cells were cultured in 10% FBS in

RPMI media, MPanc96 cells were cultured in 10% FBS in

DMEM media and human endothelial cells (HUVEC) were

cultured in 15% FBS in MEM. All media contained 1% antibiotic.

Human pancreatic stellate cells (HPSCs) were isolated using the

outgrowth method from pancreatic adenocarcinoma samples from

patients undergoing surgical resection and cultured in 15% FBS in

DMEM [3,23]. All cells were maintained at 37uC in a humidified

atmosphere of 5% CO2. BxPC3 and MPanc96 cell lines stably

bearing shControl or shADMR vectors and the luciferase gene

developed in an earlier study were also used [3]. Adrenomedullin

(AM 52) and adrenomedullin antagonist (AMA (AM 22–52)) were

purchased from Sigma, (St. Louis, MO).

ELISA for AM
AM was detected in conditioned media from HPSC, HUVEC

and MLECs using a commercial ELISA. For collection of

conditioned media, cell lines were grown to 80% confluence and

washed with PBS and then cultured for 24 hrs in their respective

serum-free media. Media was collected and concentrated using

Centricon YM-3 filter devices (Millipore Corporation, Chicago,

IL). Protein concentrations were determined using Bio-Rad

reagent (Bio-Rad Laboratories, Hercules, CA). Competitive

ELISA was then conducted using an AM detection kit (Phoenix

Pharmaceuticals, Belmont, CA; cat # EK-010-01) following the

manufacturer’s suggested protocol. Respective concentrated

serum-free media served as reagent control and control OD

values were subtracted from those of all other samples.

Calculations of AM concentration utilized the standard curve

included in the kit and were conducted according to the

manufacturer’s protocol.

Transient transfection of siRNA
Silencing of ADMR and CRLR was achieved in HPSC,

HUVEC and MLECs (26104 cells) using transient transfection of

siRNAs. Human and mouse siRNAs each against control, ADMR

and CRLR (siRNAs ID # 4611, 46184, 42272, Ambion Inc.

Austin, TX and custom made mouse siRNAs ID # Control -

1129089, 1129090; ADMR - 1129085, 1129086; CRLR -

1129087, 1129088 from Sigma-Aldrich (Proligo), St.Louis, MO)

were transfected at a final concentration of 5 nM per well on 96-

well plates. We also analyzed the effects of siADMR on MPanc96

cancer cells. SiRNA transfection was carried out with Hiperfect

transfection reagent (Qiagen, Valencia, CA) as per the manufac-

turer’s protocol.

Western Blotting
MPanc96, HPSC, HUVEC and MLEC cells were transiently

transfected with control siRNA or siRNAs against ADMR or

CRLR and after 72 hours, cell lysates were prepared and protein

concentrations were measured by BioRad reagent. Protein (50 mg)

was loaded onto 10% SDS-PAGE gels and western blotting was

conducted using a primary antibody against ADMR (cat # LS-

A4048 MBL International Corporation, Woburn, MA) at a 1:

1000 dilution and using a primary antibody against CRLR (cat #
sc-30028, Santa Cruz Biotechnology, Santa Cruz, CA) at a 1: 100

dilution. The same blot was re-probed for b-Actin (1:200 dilution;

cat # A2066 Sigma, St.Louis, MO), which served as loading

control.

RT-PCR
Total RNA was extracted from HPSC, HUVEC and MLEC

cells with or without siRNA transfection and from mouse

pancreas. DNase was used to remove contaminating genomic

DNA after RNA purification. The integrity of the RNA was

confirmed by running on a denaturing gel, and observing clear

28S and 18S rRNA bands. A non-reverse transcribed control was

run to assure that no genomic DNA was amplified. RT-PCR was

conducted with human and mouse AM/ADMR/CRLR primers

to determine their expression and levels of silencing. Reverse

transcription was followed by 35 cycles of standard PCR (1-min

denaturation at 94uC, 1-min annealing at 63uC, and 1-min

extension at 72uC). Primers designed for human AM (Genebank:

NM_001124) were: forward 59CGG GAT CCA TGA AGC TGG

TTT CCG TC 39 and reverse, 59 CGG AAT TCC TAA AGA

AAG TGG GGA GC 39. Primers designed for human ADMR

(Genebank: NM_007264) were: forward 59 CAT CGC GGA
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CCT GGG CAT TGT 39 and reverse, 59 TGA GAG GGA AGG

GCA GCA GGA AGC 39. Primers designed for human CRLR

(Genebank: NM_005795) were: forward 59TGC TCT GTG AAG

GCA TTT AC 39 and reverse, 59 CAG AAT TGC TTG AAC

CTC TC 39. Primers designed for mouse AM (Genebank:

NM_009627) were:forward 59 CCA GGG TTC CCG CAG

CAA 39 and reverse, 59 CTA TAT CCT AAA GAG TCT GG 39.

Primers designed for mouse ADMR (Genebank: NM_007412)

were: forward 59 CCG TTA CCT TCC CAA GGA 39 and

reverse, 59 TTA GCT GGC TAC AGA ATT GCA 39. Primers

designed for mouse CRLR (Genebank: NM_018782) were:

forward 59 TGG CTT TTC CCA CTC TGA T 39 and reverse,

59 TCA CAT CAC TAG ATC ATA CGT 39. 18S primers served

as loading control for the RT-PCR reactions. Amplified products

were separated on 1.5% agarose gels and visualized by ethidium

bromide.

Cell growth studies
HPSC, HUVEC and MLECs (1000 cells) were plated on 96-

well plates in 0.5% serum containing media with or without AM

(0–200 nM) or AMA (1 mM), which were refreshed daily, and cell

numbers were estimated after 48 hours for HPSC and HUVEC

cells and after 96 hours for MLECs by MTS assay. For siRNA

studies, HPSC, HUVEC and MLECs (1000 cells) were plated on

96-well plates and respective human and mouse siControl/

siADMR/siCRLR were transfected and cell numbers were

estimated after 48 hours for HPSC and HUVEC cells and after

96 hours for MLECs. Cell growth was analyzed using the MTS

reagent added one hour before taking the spectrophotometric

reading according to the manufacturer’s directions (Promega,

Madison, WI).

In vitro Angiogenesis assay
HUVEC and MLEC (16104) cells were seeded onto the surface

of the polymerized ECMatrix prepared as described by the

manufacturer (Cat # ECM625; Chemicon Intl, Millipore Corp,

Billerica, MA). Cells were treated with AM (200 nM) or AMA

(1 uM) peptides and after 6 hours tube formation was evaluated

under an inverted light microscope (Olympus, Center Valley, PA).

Images were captured using a chilled, charge-coupled device

camera (Hamamatsu, Bridgewater, NJ) and SmartCapture

software (Digital Scientific, Cambridge, UK). Images were further

processed with Adobe Photoshop software (Adobe Systems,

Mountain View, CA). To quantify the angiogenic events, the

patterns of cell growth in 10 random fields at 1006magnification

was assessed as per the manufacturer’s suggestions and graded as:

Individual cells, well separated –0; Cells migrated and aligned –1;

Capillary tubes visible, no sprouting –2; Sprouting of capillary

tubes –3; Closed polygons formed – 4; and complex mesh-like

structures developed –5.

Immunohistochemical staining - CD31/VEGF
Unstained 4 mm tissue sections from siControl or siADMR

treated mice were deparaffinized with xylene and rehydrated with

ethanol. Endogenous peroxidase activity was blocked with 3%

hydrogen peroxide in methanol and non-specific binding sites

were blocked with protein blocking solution (5% normal horse and

1% normal goat serum). Primary antibody against CD31 (1: 800

dilution; cat # 01951A; BD Pharmingen, San Diego CA)/VEGF

(1:100 dilution; cat # sc-152; Santa Cruz Biotechnology, Santa

Cruz, CA) was added and samples were incubated overnight at

4uC. Secondary antibody was added and incubated for 1 hour at

room temperature. Finally, slides were developed with 3,3-

diaminobenzidine (DAB) substrate counterstained with hematox-

ylin, dehydrated with ethanol, fixed with xylene and mounted.

Immunohistochemistry was analyzed using an inverted light

microscope (Olympus, Center Valley, PA). Images were captured

using a chilled, charge-coupled device camera (Hamamatsu,

Bridgewater, NJ) and SmartCapture software (Digital Scientific,

Cambridge, UK). Images were further processed with Adobe

Photoshop software (Adobe Systems, Mountain View, CA). Slides

were blinded and analyzed by IHC core in Dept. of Cancer

Biology, UT MDACC.

DOPC nanoliposome coupled siRNAs. For experiments to

test the efficacy of in vivo therapeutic targeting of ADMR in orthotopic

tumors in mice, neutral liposomes containing siRNAs were prepared as

previously described [24]. Briefly, siRNA oligonucleotides (without

hairpins) to ADMR target sequences (human siADMR (sense - 59

rGrCUrGrCUUrGrArCrCUrCUUrCrArArCTT 39); mouse siRNA

sense sequence – 59 rCrCUUUUrGrArArArCrGUrArCrArGrCr-

GTT 39) or control sequences (control siRNA sense sequence – 59

UUrCUrCrCrGrArArCrGUrGUrCrArCrGUTT 39) (custom made

human and mouse oligos cat # Human siADMR - 1150080, 1150081;

Mouse siADMR - 1129085-H, 1129086-H; Control - 1129089,

1129090 from Sigma-Aldrich (Proligo), St.Louis, MO) were mixed

with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) (Avanti

Polar Lipids, Alabaster, AL) at a ratio of 10:1 (w/w) DOPC/siRNA

and lyophilized. Immediately before in vivo administration, lyophilized

preparations were hydrated in 0.9% saline at a concentration of 10 mg

of siRNA per 200 ml and were purified by separating free siRNA from

liposomes with filter units with a size exclusion limit of 30,000 Daltons

(Millipore Corp, Billerica, MA).

Glucose Tolerance Test. For glucose tolerance, mice were

injected intraperitoneally with 1.5 mg of glucose/g body weight at

9:00 a.m., after a 16-h fast. Blood glucose was determined at the

indicated times with samples of tail blood obtained using the

Ascensia CONTOUR Blood glucometer (Bayer Health Care,

Tarry town, NY).

In vivo studies. All animals were handled in strict

accordance with good animal practice as defined by the relevant

national and/or local animal welfare bodies, and all animal work

was approved by the appropriate committee (IACUC - 09-04-

08832). Orthotopic tumor model. MPanc96 and BxPC3 cells

bearing shADMR or shControl were developed as mentioned in a

previous publication [3]. These pancreatic cancer cells were

further modified to stably express the firefly luciferase gene by

lentivirus transfection to facilitate in vivo monitoring of tumor

development [25]. These cells were grown to 80% confluence,

harvested by trypsinization, washed twice in PBS, and

resuspended to a final concentration of 16106 cells/50 ul of

MPanc96 cells and 26106 cells/50 ul of BxPC3 cells in sterile PBS

and injected into the pancreas of four-week old male athymic nude

mice (n = 5). Tumor growth was assessed by bioluminescence

imaging at the end of four weeks. Lung and liver metastasis
models. Comparisons were made between lung and liver

metastasis in MPanc96 cells bearing shADMR or shControl cells

using well established metastasis models. Lung metastases were

developed by tail vein injection of 16106 cells/100 ul (n = 9) and

liver metastases by splenic injection of 16106 cells/50 ul (n = 7) to

athymic nude mice and evaluated by bioluminescence imaging. After

six weeks, mice were sacrificed and organs were excised and stored

in Bouin’s fixative solution. Delivery of DOPC nanoliposome
coupled siRNAs. For evaluation of potential toxicity,

experiments were conducted delivering DOPC nanoliposome

coupled siControl or siADMR (mouse) to athymic nude mice (10 ug

per animal i.p. twice a week for four weeks). Water and food

intake, body weight and blood glucose levels were measured.

Animals were sacrificed after four weeks, the pancreas was isolated
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and total RNA was extracted. RT-PCR was used to evaluate the

silencing of ADMR, while 18S served as internal control.

Orthotopic tumors were developed in athymic nude mice with

MPanc96 cells bearing the luciferase gene (16106 cells/50 ul of

sterile PBS) and two weeks later, DOPC nanoliposome coupled

siControl and siADMRs (human and mouse in combination) were

delivered 10 ug per animal i.p. twice a week for six weeks.

Bioluminescence imaging. Bioluminescence imaging was

conducted using a cryogenically cooled imaging system coupled

to a data acquisition computer running LivingImage software

(Xenogen Corp., Alameda, CA). Before imaging, animals were

anesthetized in an acrylic chamber with 1.5% isofluorane/air

mixture and injected i.p. with 40 mg/ml of luciferin potassium salt

in PBS at a dose of 150 mg/kg body weight. A digital grayscale

animal image was acquired followed by acquisition and overlay of

a pseudocolor image representing the spatial distribution of

detected photons emerging from active luciferase within the

animal. Signal intensity was quantified as the sum of all detected

photons within the region of interest per second. After the final

tumor imaging, the tissues were removed and the animals were re-

imaged to visualize and count cancer cell dissemination and

metastases. Tissues were also fixed with formaldehyde and

histology was evaluated to verify the accuracy of the

bioluminescence data.

Statistical Analysis
All in vitro experiments were conducted in triplicate and carried

out on three or more separate occasions. Data presented are

means of the three or more independent experiments6Standard

Error of the Mean (SEM). Statistically significant differences

between controls and treated samples were determined by two-

tailed unpaired Student’s T-test and were defined as *p,0.05.

Results were compared using GraphPad Prism 4 software

(GraphPad Software, http://www.graphpad.com).

Results

AM has autocrine effects on HPSC, HUVEC and MLEC cells
Previously we observed that AM served as an autocrine

regulator of proliferation, survival, and motility of pancreatic

cancer cells [3]. To determine whether AM also influenced

HPSC, HUVEC and MLECs, we first examined whether they

expressed AM and its receptors ADMR and CRLR as measured

by RT-PCR. All three cell lines expressed AM, ADMR and

CRLR (Fig. 1A). Further, we assessed whether these cells

secreted AM into tissue culture media using an ELISA. All these

cell types secreted AM (Fig. 1B), supporting the role of this

molecule as an autocrine regulator in multiple cell types. To

examine the effects of AM on the biology of these cells,

exogenous AM was added to HPSC (Fig. 1C), HUVEC (Fig. 1D)

and MLEC (Fig. 1E) cells and proliferation was assessed by the

MTS assay. Previous studies indicated that the optimal

concentration of AM was 50 nM for HPSC and 200 nM for

HUVEC and MLEC cells (data not shown). Addition of AM at

the optimal concentrations stimulated the growth of HPSCs by

2961.8% (p,0.05), HUVECs by 2563.7% (p,0.05) and

MLECs by 3364.5% (p,0.05). Furthermore, addition of the

AM antagonist, AMA (1 uM), reduced the basal growth of

HPSCs by 2165.3% (p,0.05), HUVECs by 2160.4% (p,0.05)

and MLECs by 2565.1% (p,0.05) further supporting an

autocrine role of AM on these cells. To further examine the

effects of AM and we conducted in vitro angiogenesis assays. AM

stimulated polygon formation in HUVECs (Fig. 1F) and in

MLECs (Fig. 1G) at 6 hours compared to control cultures, and

AMA blocked the AM mediated effects of polygon formation.

The effects of AM on HPSC, HUVEC and MLEC cells are
mediated via the ADMR receptor

There are two potential receptors that respond to AM,

ADMR and CRLR. We previously reported that human

pancreatic cancer cells express exclusively ADMR while HPSC

and HUVEC cells expressed both AM receptors [3]. In the

current study, we observed that MLECs also express both

receptors. To determine the relative importance of these

receptors we silenced them independently on these three cell

lines using siRNA techniques. Transfection with siRNA

significantly reduced the levels of either ADMR or CRLR on

HPSC (Fig. 2A), HUVEC (Fig. 2B) and MLECs (Fig. 2C) as

compared to control siRNAs. HPSC, HUVEC and MLECs

silenced with siRNA for either ADMR or CRLR were examined

in growth assays where cell numbers were estimated using the

MTS method. Silencing of ADMR, but not CRLR, significantly

reduced the growth of all of these cell types. Silencing of ADMR

reduced the growth of HPSC by 2163.4% (p,0.05) (Fig. 2D),

HUVECs by 2461.8% (p,0.05) (Fig. 2E) and MLECs by

2664.3% (p,0.05) (Fig. 2F). Silencing of ADMR on HUVECs

(Fig. 2G) and MLECs (Fig. 2H) completely abolished AM

mediated tube formation, while silencing of CRLR partially

reduced tube formation. These data collectively suggest that the

autocrine effects of AM on HPSC, HUVEC and MLEC cells are

mediated primarily via the receptor ADMR although CRLR

may also have some effects.

Silencing of ADMR on pancreatic cancer cells reduced
tumor growth and metastasis in vivo

To examine the effects of ADMR silencing on cancer cells, we

observed the growth of orthotopic tumors formed from two

different pancreatic cancer cell lines transfected with either

shADMR or shControl. Tumor volumes were measured after 4

weeks by bioluminescence imaging. The tumor volume was

reduced by 9260.5% in ADMR silenced MPanc96 tumors when

compared to control vector bearing tumors (p,0.05) (Fig. 3A).

Likewise, BxPC3 tumor volume was significantly reduced by

8360.6% after ADMR silencing compared to control tumors

(p,0.05) (Fig. 3B). In both cases, there was also a reduction in lung

and liver metastasis and a reduction in peritoneal dissemination.

However, because ADMR silencing reduced the tumor volume;

any reduction in metastasis may have been due to the general

reduction in tumor volume.

Silencing of ADMR on pancreatic cancer cells reduced
metastasis in vivo

To directly evaluate the role of ADMR in pancreatic cancer

lung and liver metastasis, we conducted separate studies in nude

mice by tail vein and splenic injection, respectively. ADMR

silencing reduced the incidence of lung metastasis (ShControl -

67% Vs ShADMR – 22%) as measured by bioluminescence

imaging (Fig. 4A). Furthermore, the presence of metastasis

detectable using bioluminescence imaging was postponed from

the 2nd week in control animals to 5th week in shADMR bearing

cells. Excised lungs after fixation in Bouin’s solution showed

reduction in the number of lung metastatic foci as shown in the

representative image (Fig. 4C). The effects of ADMR silencing on

liver metastasis were similar to those on lung metastasis. ADMR

silencing reduced the incidence of liver metastasis (ShControl -

100% Vs ShADMR – 43%) (Fig. 4B). The presence of detectable

ADMR Role in Pancreatic Cancer
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Figure 1. Autocrine effects of AM on HPSC and endothelial cells. (A) RT-PCR showing the expression of AM, ADMR, and CRLR on HPSC, HUVEC
and MLECs. (B) ELISA assay showing the secretion of AM from HPSC, HUVEC and MLEC cells. Serum-free media bathing these cells were collected and
concentrated and assayed for the presence of AM. Levels were calculated as per manufacturer’s instruction. (C) HPSC, (D) HUVEC, or (E) MLEC cells (1000
cells) were plated on 96-well plates and AM (50 nM for HPSC and 200 nM for HUVEC and MLEC) or AMA (1 uM) were added to the plates daily and cell
numbers were estimated after 48 hours for HPSC and HUVEC cells and after 96 hours for MLECs by MTS assay. When compared to the WT control group,
AM stimulated the proliferation of all three cell types. Likewise, AMA treatment inhibited basal proliferation of all of the cells. Data shown are means +/2
SEM (*p,0.05). In vitro angiogenesis assays were conducted with (F) HUVEC and (G) MLEC cells. Cells were plated on EC matrix along with AM (200 nM)
alone or in combination with AMA (1 uM). After 6 hours tube formation was evaluated microscopically as per manufacturer’s instruction. Shown are
representative micrographs. AM consistently stimulated HUVEC and MLEC cells to form tubes, while AMA reversed the effects of AM.
doi:10.1371/journal.pone.0007502.g001
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Figure 2. Autocrine effects of AM on HPSC and endothelial cells are mediated via ADMR but not CRLR. (A) HPSC and (B) HUVEC cells
were transiently transfected with human siRNAs and (C) MLEC cells were transfected with mouse siRNAs (siControl, siADMR, or siCRLR). After 72 hours
cells were harvested and protein or RNA was extracted. Western blotting using human antibodies shows the extent of silencing of human ADMR and
CRLR in HPSC and HUVEC cells, and RT-PCR using mouse primers shows the effects of mouse siADMR and siCRLR on MLECs. b-Actin served as a
loading control for western blotting and 18S primers served as a loading control for RT-PCR. Full length gels are presented in Figure S1. The effects on
proliferation of siRNA mediated silencing of receptors are shown on (D) HPSC, (E) HUVEC, and (F) MLEC cells. Cells were transfected with their
respective human or mouse siRNAs (siControl, siADMR, or siCRLR) for 24 hours then proliferation was estimated by MTS assay after an additional
48 hours for HPSC and HUVEC cells and 96 hours for MLECs. Silencing of ADMR but not CRLR caused a significant reduction of the proliferation of
these cells. Data shown are means +/2 SEM (*p,0.05). In vitro angiogenesis assay with (G) HUVEC and (H) MLEC cells. Cells were plated on matrix gel
24 hours after transfection with their respective human or mouse siRNAs (siControl, siADMR, or siCRLR). Cells were then treated with AM (200 nM) for
6 hours and examined microscopically. The extent of tube formation was evaluated as per the manufacturer’s instruction. Representative
micrographs are shown. ADMR silencing completely blocked tube formation, while CRLR silencing only partially reduced tube formation.
doi:10.1371/journal.pone.0007502.g002
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metastases was postponed from the 2nd week until the 5th week.

Reduction in the number of liver metastatic foci is shown as a

representative image (Fig. 4D). These data indicate that AM can

act as a metastasis inducer of pancreatic cancer cells and these

effects of AM on cancer cells are mediated via the receptor

ADMR.

In vivo targeting of ADMR using systemic delivery of
siRNAs is highly effective at reducing tumor growth

Our data support a role for ADMR in the effects of AM on

pancreatic cancer cells. However, AM has physiologic functions

such that inhibition of one of its receptors might cause harmful

effects on overall health. To analyze the effects of targeting these

receptors systemically in vivo, we silenced ADMR on both human

cancer cells and on mouse tissue using in vivo delivery of siRNA in

DOPC nanoliposomes. We first examined the efficiency of using

targeted siRNAs to reduce ADMR levels in human pancreatic

cancer cells by western blot analysis of ADMR levels in MPanc96

cells. Transient transfection of siADMR completely silenced the

ADMR expression in MPanc96 cells (Fig. 5A). Silencing of

ADMR did not influence the cellular levels of AM as measured by

ELISA (data not shown). Therefore, this siRNA was highly

effective at silencing ADMR expression in human cells. However,

these siRNAs had no effect on ADMR expression in NIH3T3

mouse cells (data not shown).

To silence ADMR in the mouse, we developed DOPC

nanoliposome coupled siControl and siADMR (mouse specific).

We examined the effectiveness and the potential toxicity of

delivering these siRNA (10 ug per animal i.p. twice a week for four

weeks). We observed that delivery of DOPC nanoliposome

coupled mouse siADMR for a period of four weeks led to a

complete silencing of ADMR in the pancreas as analyzed by RT-

PCR (Fig. 5B). In contrast, there was no decrease in ADMR

expression in animals treated with DOPC nanoliposome coupled

siControl. Importantly, silencing of ADMR in the mouse by i.p.

delivery of DOPC nanoliposomes did not have any noticeable

effect on the body weight (Fig. 5C), water intake or physical

activity of the mice. Since AM is said to have inhibitory effects on

insulin secretion [6], blood glucose levels were measured to see if

any changes occurs on systemic silencing of ADMR in mouse.

GTT showed no changes on DOPC nanoliposome coupled mouse

siADMR injected animals when compared to DOPC nanolipo-

some coupled siControl animals (Fig. 5D). These observations

suggest that silencing of ADMR, at least for four weeks, was not

toxic or overtly deleterious.

Next we examined the effectiveness of delivering a combination

of DOPC nanoliposome coupled siRNAs against human and

mouse ADMR to simulate systemic therapies that might be

utilized in humans. The DOPC nanoliposome coupled siRNAs

were delivered to animals with orthotopic tumors formed from

human MPanc96 cells and tumor growth was monitored by

bioluminescence imaging for a period of six weeks (Fig. 6A).

Silencing of ADMR in both cancer cells and the tumor

microenvironment in combination resulted in a significant

reduction in tumor volume by 8860.4% (p,0.05) at the end of

six weeks when compared to its control. Analysis of the effects of

ADMR silencing on endothelial cells in vivo was done using CD31

staining on tissue sections from mice bearing DOPC nanoliposome

coupled siControl or siADMR. Silencing of ADMR resulted in

significant reduction in open blood vessels when compared to their

control tissues (Fig. 6B). We also analyzed the effects of silencing

ADMR on VEGF production on these sections. Silencing of

ADMR did not alter VEGF production (Fig. 6C).

Discussion

In the current study, we evaluated the role of AM receptors in

tumor cells and cells in the tumor microenvironment and

examined the effectiveness of inhibiting ADMR as a potential

therapeutic target. We previously reported that AM is over-

expressed in pancreatic cancer and stimulates cancer cells via an

autocrine loop resulting in increased tumor growth [3]. Other

studies have indicated that AM also promotes tumor growth by

stimulation of angiogenesis through effects on endothelial cells

within the tumor microenvironment [10]. Taken together, these

observations suggested that AM might be a useful target for cancer

Figure 3. Effect of ADMR on tumor growth in vivo. Orthotopic tumors were developed with MPanc96 (A) or BxPC3 (B) cells stably silenced with
shADMR and expressing the luciferase gene. After 4 weeks, the tumor volume was estimated by bioluminescence imaging and showed a significant
reduction between ADMR and shControl vector bearing tumors from both cell types. Data shown are means +/2 SEM for 10 animals per group.
(*p,0.05) Bioluminescence images of representative mice are also provided.
doi:10.1371/journal.pone.0007502.g003
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Figure 4. Effects of ADMR on metastasis. MPanc96 cells bearing luciferase gene stably transfected with shControl or shADMR cells were injected
into the tail vein to measure lung metastasis and into the spleen to measure liver metastasis. Animals bearing ADMR silenced cells showed reduction
in the incidence of lung (A) and liver metastases (B) as measured by bioluminescence imaging. After 6 weeks mice were sacrificed and lung and liver
were also excised and examined grossly and histologically. Stable silencing of ADMR reduced the number of metastatic foci on lung and liver when
compared to shControl. Representative pictures show the reduction in number of metastatic foci in lungs (C) and livers (D).
doi:10.1371/journal.pone.0007502.g004
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therapy. However, AM has complex physiological roles mediated

by its actions on at least two types of G-protein-coupled receptors,

CRLR [26] and ADMR [19]. For this reason, there is a concern

that systemic inhibition of AM may have significant and possibly

harmful effects on normal physiology. Therefore, rather than

targeting AM itself, we were interested in the possibility of

targeting one of its receptors. Currently little is known about the

relative contributions of ADMR or CRLR to the physiological or

pathophysiological actions of AM. In the current study, we found

that ADMR is the primary receptor responsible for the growth

stimulatory effects of AM on pancreatic cancer, HPSCs and

endothelial cells and that ADMR silencing by systemic delivery of

siRNA was feasible and effective against pancreatic cancer without

obvious detrimental effects to overall health.

In this study, we showed for the first time that both HPSC and

endothelial cells secreted AM, similar to what we previously

observed for cancer cells [3]. Also in this study, treatment with a

short peptide of AM, which acts as an antagonist, reduced basal

proliferation of each of these cell types. These data suggest the

presence of an autocrine loop. We also observed that exogenous

addition of AM stimulated the growth of each of these cell types

and stimulated in vitro angiogenesis in cultures of endothelial cells.

It has previously been reported that AM treatment stimulates

endothelial cell proliferation and in vitro angiogenesis [12,27]. It

has also previously been observed that AM is secreted by human

hepatic stellate cells, which are similar to pancreatic stellate cells,

and acts in an autocrine manner to regulate contractility of these

cells [28]. Therefore, AM is present and likely secreted by several

cell types that constitute the tumor microenvironment.

AM has two potential receptors, ADMR and CRLR. We were

interested to determine whether both receptors were important for

the ability of AM to stimulate pancreatic tumor growth or whether

one receptor might be more important. We previously observed

that pancreatic cancer cells express exclusively ADMR [3].

However, in that study we did not determine whether this

receptor was required for the effects of AM on the cancer cells.

Figure 5. Effect of ADMR silencing in tumor microenvironment cells in vivo. (A) MPanc96 cells were transfected with siControl or siADMR
and after 72 hours western blotting was conducted. SiADMR significantly reduced expression of ADMR on MPanc96 cells. The same blot was probed
for b-Actin, which served as loading control. (B) Athymic nude mice were treated with DOPC nanoliposome coupled siControl or siADMR (mouse)
(10 ug per animal i.p. twice a week for four weeks), then sacrificed and the pancreas was analyzed ADMR by RT-PCR using the mouse ADMR primers.
ADMR was almost completely silenced by siADMR treatments. 18S served as loading control. Full length gels are presented in Figure S2. (C) Body
weight of mice treated with DOPC nanoliposome coupled siControl or siADMR did not show any difference after a period of four weeks. (D) Glucose
tolerance test (GTT) was performed on these mice by injecting 1.5 mg glucose/g body weight i.p. Systemic silencing of ADMR did not affect glucose
levels when compared to DOPC nanoliposome coupled siControls.
doi:10.1371/journal.pone.0007502.g005
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Furthermore, currently the receptor involved in the effects of AM

on endothelial cells or stellate cells is unknown. It has been

reported that endothelial cells express CRLR [27] and it has been

suggested that CRLR is the main mediator of the effects of AM on

the vasculature [29]. Therefore, we examined the importance of

the different receptors by silencing them individually on each of

Figure 6. Effects of systemic delivery of DOPC nanoliposome coupled human and mouse siADMR in vivo. (A) In vivo targeting of ADMR
using DOPC nanoliposome coupled human and mouse siADMR in combination. SiRNAs were delivered (each 10 ug per animal i.p. twice a week) to
athymic nude mice bearing human pancreatic cancer cells (MPanc96 with luciferase gene) and monitored for a period of six weeks. These treatments
caused a significant reduction in tumor volume as measured by bioluminescence imaging. Representative pictures of mice show the
bioluminescence images of treated and untreated pancreatic cancer. (B) Tissues from orthotopic tumors developed with MPanc96 cells and treated
with siControl or siADMR (human and mouse in combination) were processed immunohistochemically for CD31 staining. SiControl treated cells
showed open blood vessels, while siADMR treated cells showed constricted or collapsed blood vessels. Shown are representative micrographs. (C)
Immunohistochemical staining of VEGF showed no differences between siControl or siADMR treated tumors.
doi:10.1371/journal.pone.0007502.g006
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the cell types. We found that silencing ADMR reduced the

proliferation of HPSC, HUVEC and MLEC cells in vitro while

silencing of CRLR had no effect. ADMR was also primarily

responsible for the angiogenic effects of AM on HUVECS and

MLECs, while CRLR had lesser effects. Previously it was reported

that an anti-CRLR antibody reduced the angiogenic functions of

AM on endothelial cells [27,30]. However, in that study they did

not evaluate the effects of ADMR. Our data clearly indicate the

primary importance of ADMR on pancreatic cancer cells and cells

resembling the stellate and endothelial cells found in the

pancreatic tumor microenvironment.

Having identified ADMR as a critical AM receptor for pancreatic

tumors, we tested the effect of silencing ADMR in vivo as a potential

approach to pancreatic cancer therapy. We first examined the effect

of silencing ADMR specifically in cancer cells by stably silencing

ADMR in human pancreatic cancer cells in vitro and then using

them to develop orthotopic tumors. We observed a dramatic

reduction on tumor volume after silencing ADMR in two different

pancreatic cancer cell lines. These dramatic effects emphasized the

importance of the ADMR receptor and the AM autocrine loop in

pancreatic cancer cells.

We also observed a reduction in metastasis after silencing ADMR.

However, because of the large effect of ADMR silencing on primary

tumor growth, it was difficult to determine if this involved more than

simply reduced cancer cell growth. To determine whether the

reduction in metastasis was independent of the reduced tumor

growth, we examined the behaviour of the ADMR silenced cells in

lung and liver metastasis studies. By injection of cancer cells into the

tail vein, the cells are carried to various organs but tend to form

colonies in the lung. Similarly, injection of cancer cells into the spleen

leads to the development of metastases in the liver. The number of

colonies formed in these assays does not depend on the growth rate of

the cells. Using sensitive bioluminescence imaging we observed a

highly significant reduction in the incidence of metastases as well

postponement on the presence of detectable metastases in both lung

and liver using ADMR silenced cells. Reduction in number of lung

and liver metastatic foci were also seen on silencing ADMR in vivo.

These studies supported AM as a metastatic factor apart from also

being a growth inducer and potent angiogenic factor.

To develop the idea of targeting ADMR therapeutically, we

investigated the effects of systemic delivery of siRNA using

liposomes. Initially we were concerned that the silencing of this

receptor might prove deleterious. Previously it was reported that

CRLR knock-out mice were embryonically lethal [31]. However,

when we silenced ADMR by systemic delivery of DOPC

nanoliposome coupled siRNA to mouse ADMR we did not

observe any effects on body weight, feeding behavior, activity or

blood glucose levels of the animals, despite highly effective

silencing of ADMR in the pancreas. Thus, tentatively it appears

that systemic ADMR silencing is not overtly harmful. Clearly, full

toxicology studies will be required before moving this treatment

forward to human trials. Notably, unlike typical siRNA studies, in

the current study ADMR was silenced on both the cancer cells and

systemically by using siRNAs of both human and mouse ADMR.

Silencing of only the human form does not test the systemic effects

of siRNA treatment as would occur if this treatment was translated

to the clinic. We observed that treatment of the mice with the

combination of both human and mouse siRNA to ADMR greatly

inhibited tumor growth and angiogenesis in vivo without obvious

harmful effects.

The reduction of angiogenesis associated with ADMR silencing

was not associated with a reduction in VEGF production. This is

in keeping with previous observations suggesting that AM does not

act through VEGF stimulation in the process of angiogenesis. It

was previously shown that down regulation of VEGF or its

receptor, VEGFR-2, could not suppress AM induced angiogenesis

[30]. Interestingly, an AM antagonist was able to inhibit VEGF

induced blood flow [32]. Our data suggests that AM acts as an

VEGF-independent angiogenic factor and a reduction in AM’s

function in cancer cells and the adjacent tumor microenvironment

cells results in reduced neoangiogenesis.

Thus, this study collectively delineated the autocrine effects of

AM in pancreatic cancer and identified ADMR as the critical

receptor through which these effects are mediated on both tumor

cells and cells within the tumor microenvironment. Because the

effects of ADMR silencing on pancreatic cancer cells were so

dramatic, we expect that this is the major site of action of the in vivo

silencing experiments. Importantly, we showed that silencing

ADMR in vivo greatly reduced tumor growth without overt

deleterious effects. These data generally support the suggestion

that ADMR may be a potent therapeutic target in pancreatic

cancer.

Supporting Information

Figure S1 Silencing of ADMR or CRLR on HPSCs, HUVECs,

or MLECs. (A) HPSC and (B) HUVEC cells were silenced with

respective human siRNAs (5nM) for 72 hours. Western blotting

was conducted for either ADMR or CRLR using human

antibodies and the same blots were probed for b-Actin, which

served as loading control. (C) MLEC cells were transfected with

mouse siRNAs against ADMR and CRLR and after 72 hours

total RNA was isolated and RT-PCR was conducted with

respective mouse primers and with 18S, which served as loading

control.

Found at: doi:10.1371/journal.pone.0007502.s001 (0.73 MB TIF)

Figure S2 Western blot of MPanc96 cells showing the silencing

effect of siADMR. MPanc96 cells transfected with siRNAs (5nM)

(siControl, siADMR or siCRLR) showed a significant silencing of

ADMR after 72 hours. The same blot was probed for b-Actin

which served as loading control (In vitro silencing). Athymic nude

were treated with DOPC nanoliposomes coupled with siControl or

siADMR (mouse) (10 ug per animal i.p. twice a week for four

weeks) and were sacrificed and the level of endogenous ADMR

was evaluated. RT-PCR using mouse ADMR primers showed the

complete silencing of ADMR after delivery of DOPC nanolipo-

some coupled mouse siADMR as compared to siControl delivered

animals. 18S served as loading control (In vivo silencing).

Found at: doi:10.1371/journal.pone.0007502.s002 (0.24 MB TIF)
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