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Abstract
Purpose Although genetic predisposition and exposure to dietary gluten are considered necessary triggers for the develop-
ment of coeliac disease, alterations in the gut microbial composition may also contribute towards the pathogenesis of coeliac 
disease. This review aims to provide an overview of the available data on the potential mechanisms through which the gut 
microbiota plays a role in the causation of coeliac disease and to discuss the potential therapeutic strategies that could dimin-
ish the consequences of microbial dysbiosis.
Method A search of the literature was performed using the PubMed, Embase, and JSTOR databases; relevant articles were 
included.
Results Recent studies in patients with coeliac disease have reported an increase in the relative amounts of gram negative 
bacterial genera such as Bacteroides, Prevotella, and Escherichia, and reduced amounts of protective anti-inflammatory 
bacteria such as Bifidobacteria and Lactobacilli. Dysbiotic microbiota may lead to a dysregulated immune response that may 
contribute to the pathogenesis of coeliac disease. In infancy, antibiotic use and certain infant feeding practices may lead to 
alterations in the developing gut microbiota to influence the immune maturation process and predispose to coeliac disease.
Conclusion The induction of the intestinal immune system and gluten intolerance may be influenced by the relative abun-
dance of certain microbiota. Factors such as infant feeding practices, diet, antibiotics, and infections, may be involved in the 
development of coeliac disease due to their influence on gut microbial composition. The efficacy of potential modulators of 
the gut microbiota such as probiotics, prebiotics, and fecal microbial transplant as adjunctive treatments to gluten-free diet 
in coeliac disease is unproven and requires further investigation.
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Introduction

Coeliac disease is an autoimmune disorder triggered by the 
ingestion of gluten in genetically susceptible people [1]. The 
disorder is characterized by a mucosal disease of the proxi-
mal small bowel as a result of a T-cell mediated destruction 
of mucosal epithelial cells. It is generally acknowledged that 
coeliac disease affects about 1% of the population with an 

increasing prevalence [2] that varies between countries [3]. 
Patients with coeliac disease develop a permanent loss of 
immune tolerance to gluten [4, 5], a protein found in cere-
als such as wheat, rye, and barley. Upon ingestion, gluten 
can cause a pathological injury characterized by progressive 
degrees of inflammation and loss of villi in the proximal 
small bowel leading to the development of gastrointestinal 
malabsorption along with extra-gastrointestinal manifesta-
tions [3].

Coeliac disease is a multifactorial disease, characterized 
by a complex interplay of genetic and environmental fac-
tors. While genetic factors (such as the presence of Human 
Leukocytic Antigen—mainly HLA-DQ2 or HLA DQ-8) 
and exposure to dietary gluten are considered to be nec-
essary triggers, they are not sufficient for disease develop-
ment [6]. Additional factors such as infant feeding practices, 
the amount of gluten ingested, the age at which gluten is 
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introduced, neonatal infections, rotavirus infections, and 
early life exposure to antibiotics can play a pathogenic role 
in the development of the disease possibly through modula-
tion of the gut microbiota [7–9].

The human gastrointestinal tract harbors approximately 
100 trillion micro-organisms—mainly bacteria, but also 
viruses, fungi, and protozoa [10, 11]. The gut microbiota 
provides the host with several significant benefits including 
maintaining the integrity of the mucosal barrier, providing 
nutrients such as vitamins, protecting against pathogens, and 
helping to regulate immune function [12]. Various chronic 
disorders such as inflammatory bowel disease [13], and type 
1 diabetes [14] have been shown to be associated with altera-
tions in the gut microbial composition. Recent studies have 
also suggested that intestinal dysbiosis may play a role in the 
pathogenesis of coeliac disease [15–18].

In this article, we aim to discuss the latest findings regard-
ing the intestinal microbiota composition, and its potential 
mechanisms for causing coeliac disease. We also highlight 
the current knowledge on the enteric virome and the mobile 
microbiota such as oral and blood microbiota in relation 
to coeliac disease. Finally, we discuss the therapeutic strate-
gies that could diminish the consequences of microbial dys-
biosis in coeliac disease.

Methods

A medical literature search was conducted using PubMed, 
Embase, and JSTOR databases for articles published from 
the beginning of the database until Jan 5th, 2020. The initial 
search was done using the general search terms: (coeliac 
disease OR celiac disease OR gluten-sensitive enteropathy) 
AND (gut microbiota OR gut microbiome OR intestinal 
microbiome). Additional searches were performed to collect 
specific data on the use of diet, probiotics, prebiotics, antibi-
otics, and fecal microbial transplantation in coeliac disease. 
Only articles published in English were included. No restric-
tions were placed on the study design or the type of article. 
References of the included articles were also reviewed for 
additional relevant articles.

Results

Figure 1 details the flow-chart of the literature review pro-
cess. We have included 206 studies based on their relevance 
to the review topic.

Gluten and immune system in coeliac 
disease

Several studies have highlighted the complex interplay 
between host polygenic disorder and the ingested glu-
ten proteins in disturbing the host epithelial functions in 
patients with coeliac disease [19–21], but little is known 
about the multifactorial interplay and how gluten starts 
the entire process.

The primary event of a gluten-induced inflammatory 
immune response requires that gluten peptides translo-
cate via intracellular or paracellular mechanisms through 
the intestinal epithelial barrier [22] and have access to the 
lamina propria. Glutens consists of the subunits of mono-
meric gliadins and polymeric glutenins. The high content of 
proline and glutamine-rich polypeptide residues in the gluten 
subunits makes them resistant to the proteolytic degradation 
by the gastrointestinal enzymes, thus, yielding rather large 
peptides, up to 33-mer in length [23]. Intestinal epithelia 
under normal physiological conditions are impermeable 
to macromolecules, such as gliadin. In coeliac disease, the 
integrity of the tight junction (TJ) system in the epithelial 
cells layer is compromised partly due to the upregulation of 
zonulin, an intestinal peptide involved in TJ regulation [24]. 
Nonetheless, the relatively poor digestion of these proteins 
or the resulting increased gut permeability is not sufficient 
to cause coeliac disease [25, 26]. The multifactorial patho-
genesis of coeliac disease appears to stem from genetic sus-
ceptibility which, in addition to other unknown contributing 
factors, triggers the innate and adaptive immune response. 
In a process called deamidation, tissue transglutaminase 
2 (tTG2) modifies gluten peptides to negatively charged 
glutamic acid [27]. The deamidated gluten peptides in the 
lamina propria are then taken up by the dendritic cells (DC) 
carrying human leukocyte antigen (HLA-DQ2 and HLA-
DQ8) haplotypes [21], which in turn modulate the gluten-
specific immune response by activating the gluten-reactive 
CD4 + T cells and intraepithelial-CTLs [21, 22]. Differ-
ent types of HLA complexes such as HLA-DQ2.5 (HLA-
DQA1*05/HLA-DQB1*02), HLA-DQ8 (HLA-DQA1*03/
HLA-DQB1*03:02), and HLADQ2.2 (HLA-DQA1*02:01/
HLA-DQB1*02) are associated with coeliac disease patho-
genesis [28, 29] and have been reported in more than 90% 
of coeliac disease patients [30].

Stimulated gluten-specific CD4 + T cells can result in the 
overactivation of the various immune functions—for exam-
ple activated CD4 + T cells can further stimulate B cells to 
produce autoantibodies such as anti-gluten, transglutami-
nase 2 (TG2) and anti-tissue antibodies [22, 31] that could 
induce changes in the cytoskeleton of enterocyte through 
actin redistribution and the consequent epithelial cell dam-
age [32]. The CD4 + T cells can also produce a high level of 
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pro-inflammatory cytokines and induce specific  TH1 cells 
leading to the production of excessive amounts of IL-21 and 
IFN-γ [33]. As a result, the undue amounts of IL-21 and 
IFN-γ in the lamina propria not only exacerbate intestinal 
inflammation, epithelial tissue damage and tissue junction 
disassembly, but also lead to fibroblast or lamina propria 
mononuclear cell secretion of matrix metalloproteinases. 
These are responsible for tissue remodeling resulting in vil-
lus atrophy and crypt hyperplasia, the known characteristics 
of coeliac disease (Fig. 2). Intriguingly, the increased pro-
duction of IL-15 by intestinal epithelial cells was observed 
only in coeliac disease patients with HLA-DQ allotypes, 
not only disturbing the integrity of the epithelial barrier to 
induce coeliac disease pathogenesis, but also altering the 
intestinal immune regulation [34]. For example, IL-15 has 
been found to inhibit the inducible differentiation of  TReg 
cells [35], induce cytotoxic killing of epithelial cells [36, 

37], and trigger the production of IL-21 [38] leading to 
increased epithelial transport of toxic and immunogenic 
gluten peptides in coeliac patients [39]. Furthermore, it has 
been shown that IL-15 stimulates the activation of IFN-γ 
producing CD8 + IELs (intraepithelial lymphocytes) such 
as (CD8 + TCRαβ + and TCRγδ + T cells harboring the NK 
receptor) in the lamina propria, and contributes to the selec-
tive expansion of the IEL population independently of anti-
gen presentation [30], indicating the crucial role of IL-15 in 
causing inflammation and lesions in the intestines.

It is currently unclear how gluten could have such a range 
of immunological effects (as shown above) and how it binds 
to unrelated receptors. Further studies are needed to identify 
the exact molecular mechanisms involved in the immuno-
genicity of gluten. Based on the current data, it is fair to 
conclude that in genetically susceptible individuals, gluten 
leads to the activation of cellular stress pathways and the 
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release of proinflammatory mediators promoting the devel-
opment of inflammatory T-cell responses. Clinical trials of 
drugs aimed at reducing the immune activation in response 
to gluten are currently underway with promising results [40].

Gut microbiota and coeliac disease

Approximately 30% of the general population bears the 
main susceptibility genes for coeliac disease (HLA-DQ2 
and HLA DQ-8), but only a small proportion of these indi-
viduals can develop the disease [41]. Studies have shown, 

in contrast to the original hypothesis, that coeliac disease 
can occur at any age [42] irrespective of delayed or early 
gluten introduction [9, 43], and in some cases years after the 
introduction of gluten [9]. The increasing number of patients 
experiencing the onset of coeliac disease in adult life despite 
their early exposure to gluten [44], together with the lack 
of 100% concordance of coeliac disease in monozygotic 
twins, suggests that additional factors such as infections and 
changes in the gut microbial composition may contribute to 
pathogenesis and full manifestation of the disease [45]. The 
intestinal microbiota establishes mutual relationships with 
the human host and plays a central role in the host immune 
system regulation. Healthy gut microbiota supports many 

Fig. 2  The immune response in coeliac disease pathogenesis is 
mediated by both B cell and T cell response. The intestinal micro-
biota, both commensals microbes and pathobionts, might contribute 
to the development of coeliac disease by influencing the gluten pep-
tide digestion, stimulation of DC and  TReg cells, epithelial cell stress, 
intestinal permeability modulation, and pro-inflammatory cytokines 
production. Microbial flagellin or LPS can stimulate AMPs from epi-
thelial cells and release of mucins from goblet cells. The translocated 
gluten peptides in the lumen of the small intestine are first deami-
dated by the tissue TG2 in the lamina propria and are then taken up 
by the dendritic cells to trigger the proinflammatory gluten-specific 
CD4 + T-cell response in the mesenteric lymph nodes. The activated 
CD4 + T-cell prime the B-cells to produce different types of antibod-
ies such as anti-gliadin, anti-TG2 IgA antibodies and also stimulate 
the gluten-specific TH1 cell to produce IL-21 and IFN-γ cytokines 

to cause intestinal inflammation in genetically predisposed hosts. 
Activation of the innate immune response is a key initial step in coe-
liac disease. Increased epithelial stress due to microbial dysbiosis or 
ingested gluten peptides can trigger stress molecules on epithelial 
cells (HLA-E, MICA/B) and induce IL-15 production from epithe-
lial cells. In the presence of IL-15, CD8 + IELs can induce epithe-
lial lesions via production of different cytotoxic molecules (perforin 
or granzymes). DC dendritic cells,  TReg cells T Regulatory cells, IL 
interleukin, TG2 transglutaminase 2, IgA immunoglobulin A, IFN 
interferon, LPS lipopolysaccharides, SCFAs short-chain fatty acids, 
TNF tumor necrosis factor, Th T helper, HLA human leukocyte anti-
gen, TLR toll-like receptors, IEL intraepithelial lymphocytes, NKG2C 
natural killer group 2C receptor, NKG2D natural killer group 2D 
receptor
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aspects of overall health while several complex inflamma-
tory immune-mediated diseases including IBD [46], obesity, 
and diabetes [47, 48] have been linked to dysbiosis of the 
gut microbiota.

The human gut microbiota

The human microbiota consists of a wide range of bac-
teria, viruses, fungi, and archaea that live inside and on 
our bodies. The largest population of microbes resides in 
our gut and consists of 70% of all microbes [49]. It is esti-
mated that we can bear up to 2 kg of microbes in our gut, 
and out of those trillions of microorganisms there are at 
least 500–1000 species of bacteria with more than 3 mil-
lion genes overwhelmingly exceeding the 20,000–25,000 
human genes [50–52]. Firmicutes (60–80%) and Bacteroi-
detes (15–25%) are the dominant bacterial phyla, which 
along with other less abundant phyla such as Proteobac-
teria, Actinobacteria and Verrucomicrobia make up 98% 
of the gut microbiome in healthy adults. The microbial 
species diversity and density increase distally from the 
stomach to the colon, which contains the highest micro-
bial density recorded in any habitat on Earth with over 
 1013 microbial cells [53]. The initial colonization of the 
gut by microbes is one of the most important processes in 
human life. It is generally believed that microbial coloni-
zation of the gastrointestinal tract (GIT) begins at birth 
with the maternal inoculum transferred during delivery 
and breastfeeding imprinting the early infant microbiota 
[54, 55]. Perinatal factors such as mode of delivery, diet, 
genetics, the environment, and geographical factors may 
also influence microbial composition [56]. The microbial 
diversity increases and converges in the first 2–5 years of 
life towards an adult-like microbiota, along with the devel-
opment of the intestinal epithelium and the secreted intes-
tinal mucosal barrier, which supports the mutual relation-
ship with the commensal gut microbiota and provides a 
barrier against pathogenic organisms. Gut microbes benefit 
the host by fermenting dietary fiber into short-chain fatty 
acids (SCFAs), such as acetic, propionic and butyric acids, 
which are then absorbed by the host [57], and in synthesiz-
ing vitamin B and vitamin K as well as metabolizing bile 
acids, sterols, and xenobiotics [58]. Once established, the 
composition of the gut microbiota is relatively stable, how-
ever, lifetime events such as infections, antibiotics treat-
ment, and long-term dietary changes can lead to microbial 
dysbiosis [52].

Characterization of the human intestinal microorganisms 
was performed conventionally by traditional culture-based 
methods, limiting the output range to cultivable microbes 
only. The advances in next-generation sequencing (NGS) 
technologies have enabled the intestinal microbiota genomes 
to be fully evaluated [59–61]. The most widely used method 

of microbiome research relies on the amplicon sequencing 
of the 16S rRNA gene [62].

Characteristics of the gut microbiota in coeliac 
disease

Maintaining a diverse and well-balanced (homeostatic) gut 
microbial population is essential for good health. Patho-
genic and symbiotic microbiota coexist in a healthy body, 
however, disturbance in that balance can result in dysbiosis 
due to various reasons. Several studies have suggested that 
intestinal dysbiosis drives the pathogenesis and progression 
of chronic GIT diseases such as inflammatory bowel disease 
(IBD), colorectal cancer (CRC), irritable bowel syndrome 
(IBS) among others [63]. Indeed, some recent studies have 
shown that compared to healthy subjects patients with coe-
liac disease have an altered composition of gut microbiota 
[64]. Also, although the majority of patients diagnosed with 
coeliac disease showed clinical improvement following strict 
adherence to a gluten-free diet (GFD), there is a subgroup 
of patients with coeliac disease who do not respond to GFD 
[65]. Patients with persistent symptoms of coeliac disease 
with long-term GFD have been shown to have an altered 
microbial gut composition [66] with significant differences 
between patients with classical gastrointestinal symptoms 
(such as weight loss, diarrhea, distended abdomen) and 
patients with extraintestinal manifestations (such as ane-
mia, malabsorption of iron, folate, Vitamin D, calcium, short 
stature) [65]. Although coeliac disease in the vast major-
ity of patients involves the proximal small intestine, it may 
extend distally into the ileum for a variable length [67]. It 
was confirmed that 66.6% of coeliac disease patients had an 
extension of the changes in the mucosa beyond the proximal 
small intestine [68]. Indeed, patients with extra-intestinal 
manifestations at diagnosis have a diffuse and severe grade 
of intestinal mucosal atrophy compared to patients with 
gastrointestinal symptoms only [69]. Such situations will 
significantly alter the composition of the gut microbiota that 
resides in both the small bowel and the colon.

The data characterizing the gut microbiota in coeliac 
disease patients was derived from both fecal samples and 
duodenal mucosa biopsies in studies done mostly in children 
with coeliac disease [64, 70–81] with fewer studies being 
done in adults [78, 82–85]. These studies showed differ-
ences in the microbial composition of fecal and duodenal 
samples in children and adults when comparing active coe-
liac disease with patients with treated coeliac disease, or 
healthy controls [86]. The most abundant bacterial phylum 
in adults with coeliac disease was Firmicutes, whereas Pro-
teobacteria are present mainly in children with coeliac dis-
ease [86]. Bacteroidetes and Actinobacteria were among the 
other major phyla shared by both adults and children [86]. 
Most studies were conducted using different methods such 
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as culture-based methods in combination with or without 
other technologies, denaturing gradient gel electrophoresis 
[DGGE], fluorescence hybridization [FISH], temporal tem-
perature gradient gel electrophoresis [TTGE] and real-time 
polymerase chain reaction [RT-PCR], and consequently 
failed to identify all microbial taxa. The variability in the 
sample size of the studies and the age of the participants also 
makes interpretation of the findings difficult. In this review, 
we have summarized some of the major studies including 
those using culture-based methods and PCR or 16S rRNA 
sequencing to generate microbial signatures in children 
(Table 1) and adults (Table 2) using either fecal samples or 
duodenal biopsies or both.

One of the initial studies aimed at identifying specific 
bacterial groups responsible for the gut microbiota altera-
tions in children with the active coeliac disease found that 
rod-shaped bacteria were frequently found in small bowel 
biopsies of children with active and inactive coeliac disease, 
compared to controls [87]. Using culture-based methods, 
Collado et al. concluded that the fecal samples collected 
from children with coeliac disease had significantly higher 
levels of genera Bacteroides, Clostridium, and Staphylococ-
cus when compared to healthy subjects [75]. Collado et al. 
followed up their results with PCR—based analysis, using 
both fecal samples and duodenal biopsies collected from 
pediatric patients with active and non-active coeliac disease 
and healthy controls [76, 77]. They showed that the intes-
tinal microbiota in untreated children with coeliac disease 
is unbalanced and was partially restored after long-term 
adherence to GFD [76, 77]. This imbalance was observed 
in both feces and intestinal biopsies in terms of reduction in 
the abundance of total Bifidobacterium count and species-
specific Bifidobacterium longum [76, 77]. A Swedish study 
further explored the coeliac disease-related dysbiosis and 
found higher numbers of rod-shaped bacteria (Clostridium 
spp., Prevotella spp., and Actinomyces spp.) in the small 
bowel mucosa of coeliac disease patients [88]. Other stud-
ies have reported a higher abundance of the Proteobacteria 
phylum (family Enterobacteriaceae), genera Bacteroides 
and Staphylococcus in the untreated coeliac disease when 
compared to healthy subjects [77, 80, 89]. Many studies used 
fecal samples in addition to the duodenal samples, often 
showing an imbalance between gram-negative bacteria and 
gram-positive bacteria (G-/G +) ratio marked by an increase 
in Bacteroides and Proteobacteria, and a decrease in Lacto-
bacillus and Bifidobacteria in feces of patients with coeliac 
disease compared with controls [77, 90–93].

The genus of Bacteroides is a major component of the 
human intestinal microbiota and is generally considered 
symbiont, although some species have been involved in dis-
rupting the integrity of the intestinal epithelial barrier and 
thus exhibiting pro-inflammatory effects [94–96]. Multiple 
studies in children and adults have reported an increase in 

the relative amount of gram-negative Bacteroides, Prevo-
tella species, Escherichia. coli [64, 74, 77, 79, 84] and low 
levels of the protective anti-inflammatory bacteria such as 
Bifidobacteria and Lactobacilli [78, 83, 84, 97]. This sug-
gests that gut microbiota could affect the pathogenesis and 
coeliac disease progression by activating the innate immune 
system, modulating the function of the epithelial barrier, and 
driving mucosal inflammation as discussed in more detail in 
the next section. Although the above studies have provided 
us with a general makeup of coeliac disease microbiota sig-
natures and suggested a coeliac disease-driven dysbiosis, 
there is still a long way to go in answering specific questions 
such as whether these microbial changes precede the dis-
ease, are associated with the onset of gluten-driven disease 
or are the result of inflammation or other related immune 
cell phenotypes.

Caminero et al. using mice populated with the human 
intestinal bacteria showed that the microbe-gluten-host inter-
action may modulate the autoimmune risk in genetically sus-
ceptible subjects and that the microbiome of coeliac disease 
patients processes gluten differently compared to the micro-
biome of healthy subjects [98]. Associations have also been 
established between the HLA-DQ2/DQ8 genotype and the 
gut microbiota composition, by profiling the gut microbiota 
of genetically at-risk children [99]. It has been shown that 
high-risk children carry specific microbiota compared with 
children at low genetic risk for coeliac disease [100], sug-
gesting that the microbiota may also serve as a predisposing 
factor for coeliac disease. Several studies have highlighted 
the central role of gluten intolerance and microbial dysbio-
sis in patients with coeliac disease [7, 76, 86]. Changes in 
the abundance of various Firmicutes and Bacteroidetes have 
been reported in patients with active coeliac disease. Also, 
the proportion of gluten-proteolytic bacteria such as Bifi-
dobacterium, Lactobacillus, Rothia spp is decreased [76, 
101, 102], while the abundance of Gram-negative Proteo-
bacteria (E. coli and Enterobacteriaceae) is increased [18]. 
This results in altered exposure of intestinal epithelial to 
bacterial lipopolysaccharides (LPS) and metabolites such 
as SCFAs [18]. The dysbiotic microbiota may result in 
increased amounts of bacterial LPS in the intestine resulting 
in the dysregulated immune response that is evident through 
the activation of various intraepithelial lymphocytes (IELs) 
subsets and epithelial cells that act as a trigger for increased 
production of anti-microbial peptides (AMPs) and mucin 
[103, 104]. Furthermore, altered microbial metabolites can 
induce  TReg cells and dendritic cells [105–108] which in turn 
produce IL-10 and retinoic acid which activates various cel-
lular functions within the lamina propria (Fig. 2).

The above data suggest a multifactorial etiology of coe-
liac disease in which the gut microbiota appears to be a criti-
cal player, with the overall consensus suggesting a coeliac 
disease association with over-representation of pathobionts 
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Table 1  Microbial signatures in children with active coeliac disease relative to healthy  controlsa

a This table only includes the comparison of the patients with active or untreated Coeliac disease and healthy controls
# Increase in relative abundance
$ Decrease in relative abundance

Study Sample source Subject details Methodology Conclusion (microbiota signatures 
in coeliac disease) compared to 
controls

[75] Stool 26 coeliac patients and 23 controls Culture #Bacteroides
#Staphylococcus
#Clostridium

[76] Stool and duodenal biopsies 30 Coeliac patients, 30 controls PCR Stool sample:
$Bifidobacterium count
$Bifidobacterium Longum
Duodenal biopsies:
$Bifidobacterium count
$Bifidobacterium Longum
$Bifidobacterium cantenulatum
#B. lactis

[77] Stool and duodenal biopsies 25–30 Coeliac patients, 8–30 
controls

PCR Stool sample:
#E. coli prevalence and count
$Bifidobacterium count
##Clostridium leptum counts
#Staphylococcus prevalence and 

counts
Duodenal biopsies:
$Bifidobacterium count
#Bacteroides counts
#Clostridium leptum
#E. coli count
#Staphylococcus counts
$C. coccoides prevalence

[79] Duodenal biopsies 20 Coeliac patients, 10 controls PCR #Bacteroides vulgatus prevalence
#E. coli prevalence

[74] Stool sample and duodenal 
biopsies

19 Coeliac patients, 15 controls PCR/Culture Stool sample and duodenal Biopsies:
#Eubacteria diversity
$Lactobacillus counts
$Enterococcus counts
$Bifidobacterium counts
#Bacteroides
#Porphyromonas
#Prevotella
#Staphylococcus

[193] Stool sample 20 Coeliac patients, 20 controls PCR/Culture #Staphylococcus epidermidis
#Staphylococcus haemolyticus
$Enterococcus faecium

[89] Duodenal biopsies 32 Coeliac patients, 8 controls Culture/ 16S rRNA sequencing $Streptococcus mutans
$Streptococcus anginosus
$Firmicutes
#Staphylococcacea
#Staphylococcus epidermidis
#Staphylococcus pasteuri
$Streptococcaceae
#Proteobacteria
#Enterobacteriaceae
#Klebsiella oxytoca

[64] Duodenal biopsies 10 Coeliac patients, 9 controls 16S rRNA sequencing #Prevotella melaninogenica
#Haemphilus
#Serratia
$Prevotella oralis
$Proteus
$Clostridium stercorarium
$Ruminococcus bromii
$Papllibacter cinnamivorans

[78] Duodenal biopsies 8 Coeliac Disease, 5 controls 16S rRNA gene sequencing $Streptococcus
$Prevotella
#Neisseria
#Haemophilus
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and a decrease in protective symbionts and/or commensals 
numbers. However, further complicating this scenario is the 
complexity of the microbiota and its dependence on envi-
ronmental and individual genetic factors. It is difficult to 
conclude, based on current evidence, whether changes in 
the composition and function of the microbial community 
in patients with coeliac disease are the cause or effect of the 
disease. Most studies of gut microbiota profiling use fecal 
samples as a proxy because of the noninvasiveness and the 
convenience of stool sampling, and the same seems to be 
the case with many studies of coeliac disease. However, it 
is important to remember that fecal samples are unlikely to 
represent the actual microbial composition which resides in 
the duodenum or along the surface of the duodenal mucosa. 
Therefore, it is advisable to analyze tissue biopsies in addi-
tion to fecal samples to build a comprehensive picture of the 
microbial diversity in coeliac disease research. Furthermore, 
prospective, multicenter, longitudinal studies mixing basic 
and applied research using “omics” approaches are required 
to explain the role of the gut microbiota as an additional 
factor involved in the onset of autoimmune diseases such as 
coeliac disease.

Virome in coeliac disease

The involvement of bacterial dysbiosis in modulating the 
intestinal homeostasis has been well described in various 
human diseases, however, the role of the virome, which 
is also an integral part of the human microbiota, is often 

overlooked. The human virome comprises a diverse collec-
tion of endogenous retroviruses, eukaryotic viruses, and bac-
teriophages [109] and is progressively recognized as orches-
trater of the intestinal barrier integrity and gut homeostasis. 
Changes in the enteric virome composition and their role in 
modulating the intestinal microbial diversity and functional-
ity have been emphasized in several recent studies including 
in coeliac disease [110–114]. Many common viral infections 
play a role in disrupting the intestinal functions of the host 
and thereby causing various human diseases. Yet their role in 
causing coeliac disease is still debatable. The potential role 
of early viral infections, in particular adenovirus, enterovi-
rus, rotavirus, and reovirus, in coeliac disease pathogenesis 
has been suggested primarily based on cross-sectional or 
epidemiological studies [115–118]. However, the evidence 
remains inconclusive due to the retrospective nature of the 
study, reverse casuality, and in some cases inconsistensy 
of later studies [119, 120]. Bouziat et al. observed a trend 
in higher levels of anti-reovirus antibodies in patients with 
coeliac disease, suggesting a link between reovirus infec-
tion and pathogenesis of coeliac disease [121]. In this study, 
reovirus-infected mice developed a protective immunity to 
reovirus post-infection, though they suffered a loss of toler-
ance to dietary gluten [121]. Two prospective longitudinal 
birth cohort studies have recently pointed in the same direc-
tion; the first concluded that a higher prevalence of entero-
virus, but not adenovirus, was associated with a later onset 
of coeliac disease during early childhood [122]. A nested 
case–control cohort from the TEDDY study showed that the 

Table 2  Microbial signatures in adults with active coeliac disease relative to healthy  controlsa

This table only includes the comparison of the microbial profiles in patients with active or untreated Coeliac disease and healthy controls. How-
ever, since very few studies are available in adults, we included one  studya that allowed us to compare the treated coeliac patients (with persistent 
symptoms) with symptoms free treated Coeliac patients
# Increase in relative abundance
$ Decrease in relative abundance

Study Sample source Subject details Methodology Conclusion (microbiota signatures in 
coeliac disease) compared to controls

[78] Stool sample 10 Coeliac patients, 11 controls PCR $Lactobacillus diversity
$Lactobacillus sakei
$Bifidobacterium

[84] Duodenal biopsy* 10 Treated Coeliac patients with per-
sistent symptoms, 10 treated Coeliac 
patients’ symptoms free

16 S rRNA sequencing #Proteobacteria
$Bacteroidetes
$Firmicutes

[85] Duodenal biopsy 6 Coeliac patients, 11 controls 16 S rRNA sequencing $Bacteroidetes
$Fusobacteria

[82] Stool sample 
and Duodenal 
biopsy

23 Coeliac patients, 24 controls 16S rRNA gene sequencing Stool sample:
$Akkermanisia
$Dorea
Duodenal biopsy:
#Helicobacter
#Megasphaera

[78] Duodenal biopsy 5 Coeliac Disease, 5 controls 16S rRNA gene sequencing #Mycobacterium spp
#Methylobacterium spp
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cumulative number of enteroviral stool exposures between 
1 and 2 years of age along with a higher gluten intake was 
associated with coeliac disease autoimmunity [123]. These 
results indicate that in genetically predisposed children, 
enteroviral exposure increased by a higher intake of gluten 
could act as triggers of coeliac disease. Collectively, these 
results proposed a mechanism by which viral infections early 
in life, when the gut microbiota evolves, may probably lead 
to an altered microbial state, affecting the intestinal immune 
responses. These in turn disrupt the mucosal barrier result-
ing in increased translocation of gluten peptides into the 
mucosa leading to the loss of immune tolerance. Experimen-
tal studies are required to confirm the validity of enterovi-
rus as a trigger factor and also the option of vaccination in 
reducing the risk of development of coeliac disease.

Oral and blood microbiome in Coeliac disease

Despite the role of oral microbes in gluten degradation 
[124], coeliac microbiome research has focused mostly on 
the intestinal microbiota. The gastrointestinal system begins 
with the oral cavity and leads to the esophagus and extends 
to the anus via the stomach, small and large intestines. The 
oral cavity is one of the most diverse body sites harboring 
more than 700 different bacterial species that are quite dis-
tinct from the gut microbiota [125], daily salivary secretions 
and subsequent swallowing carry 8 × 1010 bacteria (that shed 
from the oral mucosal surfaces per day) to the GI tract [126]. 
Thus, the salivary, duodenal, and fecal microbial analysis 
could capture comprehensive disease-specific microbial 
changes along the entire gastrointestinal tract that could be 
highly useful for understanding food-sensitive enteropathy 
diseases such as coeliac disease.

Gluten, consisting of glutenins and gliadins, con-
tains structurally relatively high concentrations of  glu-
tamine  and  proline  residues [127], rendering it highly 
resistant to degradation by human gastrointestinal proteases. 
Examples of these protease-resistant peptides of particular 
concern are a 33-mer derived from α-gliadins and a 26-mer 
derived from γ-gliadins [128] that apart from being resist-
ant to proteolysis, contain multiple copies of the highly 
immunogenic epitopes which stimulate  CD4+ T cells in 
the lamina propria of HLA-DQ2-positive patients with coe-
liac disease [129]. A mixture of naturally occurring bacteria 
in the human dental plaque may, however, cleave gliadins, 
including the immunogenic 33-mer and 26-mer domains 
[130]. Few studies that have analyzed coeliac disease-related 
oral microbiome, reported that the salivary microbiota and 
metabolome are associated with coeliac disease [131]. Oral 
microbiota showed an increased number of salivary Lacto-
bacillus sp. in patients with active and refractory coeliac 
disease compared with healthy controls. This suggests 
its possible role in increased salivary gluten-degrading 

activity in patients with coeliac disease [132]. Comparison 
of oropharyngeal samples from coeliac disease patients and 
control subjects showed a higher abundance of phyla Pro-
teobacteria at the cost of Bacteroidetes in coeliac disease 
patients than in control subjects [133]. The above studies 
pointed towards a possible relationship between gluten and 
the coeliac disease-associated dysbiosis, in the oral cavity 
with a continuum to the intestinal mucosa, but this needs to 
be clarified with further investigation.

Though debatable, the concept of a blood microbiome 
emerges with cumulative evidence [134, 135]. Blood has 
long been considered a sterile environment with no pro-
liferative microbes [136], but it has now been shown to 
harbor numerous species of dormant bacteria that are not 
readily culturable and that may constitute a healthy human 
blood microbiome (HBM) [137]. It has been suggested that 
aberrant blood microbiota plays a role in various diseases 
such as type II diabetes and cardiovascular disease [138, 
139]. The concept of “Atopobiosis” was put forward to 
describe the migration of the gut or oral microbes to the 
bloodstream which can lead to the dynamics of many inflam-
matory diseases [135]. In a recent study, the alteration in 
blood microbiome composition and taxonomic diversity was 
observed in adult coeliac disease patients compared with 
healthy subjects [140]. Damaged, inflamed intestines with 
increased permeability are typical of patients with coeliac 
disease, so is the likelihood of developing a unique blood 
microbiome that could indicate intestinal damage and influ-
ence the response to gluten. The above hypothesis remains 
speculative and further studies involving larger cohorts are 
required to better define the role of the blood microbiome 
as a biomarker for patient classification, diagnosis and for 
therapeutic stratifications.

Environmental factors in coeliac disease

Birth mode

The human GIT is continuously exposed to numerous 
external stimuli, including food antigens, pathogenic, and 
commensal microbes, providing the largest interfaces in the 
human body for host–pathogen interactions. According to 
the widely accepted hypothesis, the incoherent nature of 
external factors, including eating habit, diet, exposure to 
broad-spectrum antibiotics or other toxic chemicals can lead 
to a breakdown in the intestinal homeostasis by influencing 
the composition of the gut microbiota as well as the epi-
thelial immune and barrier functions [141–143]. The birth 
mode is considered the critical determinant of early colo-
nization of the neonatal gut microbiome [144]. The Cesar-
ean section commonly thought to have a permanent impact 
on the intestinal microbiota of infants, due to the lack of 
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exposure to the maternal vaginal and gut microbiota [145]. 
Studies have indicated that there is an association between 
cesarean section and an increased risk of coeliac disease 
[146–148]. Differences in elective cesarean section where 
babies are not exposed to the maternal microbiota have been 
observed [149]. In the case of an emergency Cesarean sec-
tion, the risk of amniotic sac rupture exists, which exposes 
the baby to the vaginal microbes, such alterations in the 
intestinal microbiota during the first year of life can result 
in immune dysregulation and increase the risk of coeliac dis-
ease. However, other studies have found inconsistent conclu-
sions and limited or no evidence to support any association 
between the birth mode and coeliac disease [147, 150]. We 
have summarized the finding of the major studies in Table 3.

Use of antibiotic

Several studies have shown that exposure to antibiotics can 
have a significant impact on the composition and function-
ality of the human gut microbiota [151]. Antibiotics can 
modulate the gut microbial composition and influence the 
development of chronic diseases [152]. Children exposed 
to antibiotics displayed a delayed maturation of microbiota 
compared with those not exposed to antibiotics [153].

Such alterations in the developing gut microbiota influ-
ence the immune maturation process and predispose to 
coeliac disease [15]. Several studies have pointed towards a 
link between early intestinal infection and antibiotic usage 
with intestinal dysbiosis, alteration in the population of sub-
lymphocytes [154], and coeliac disease onset [150]. Recent 
observational studies that found that subjects treated with 
antibiotics are more likely to develop coeliac disease later 
in life, further support this theory. In a nationwide registry-
based cohort study, Sander and colleagues collected data on 
more than 1.7 million children born in Denmark and Norway 
including 3346 diagnosed with coeliac disease. They found 
that exposure to antibiotics in the first year of life was posi-
tively associated with a later diagnosis of coeliac disease 
[155]. Interestingly, a dose-dependent association was also 
found between the increasing number of antibiotics used and 
the risk of coeliac disease [155]. Antibiotic use has also been 
shown to be significantly associated with the development 
of coeliac disease in Swedish [156] Italian [150], and North 
American children [157]. The dysbiosis induced by antibi-
otics was characterized by a decrease in the Bifidobacteria 
longum counts and an increase in the counts of Bacteroides 
fragilis [154]. Several previous studies have identified the 
decrease in Bifidobacterium as a characteristic of dysbiosis 
in patients with coeliac disease [83, 90, 91]. Collectively, 
these data suggest that dysbiosis resulting from antibiot-
ics use can influence the development of coeliac disease. 
An overview of the studies that have linked the use of the 

antibiotics with the development of coeliac disease is shown 
in (Table 4.)

Diet

“Let food be thy medicine” is the concept that was first pro-
posed by Hippocrates in 400 BC, to emphasize the impor-
tance of dietary nutrients in preventing or curing diseases. 
Therapeutic utility of diet, dietary modulation experiments 
have become a method of choice for both understanding 
disease etiology [158] and devising personalized treatment 
strategies [159–161]. Studies have highlighted the impor-
tance of dietary interventions in modulating the gut micro-
biota and eliciting specific effects [162]. As discussed in 
the previous sections, the intestinal microbiota is exposed 
to a highly dynamic environment that can be influenced by 
different co-variants [141–143]. For example, the micro-
biota is routinely challenged by a complex mix of millions 
of dietary compounds and common medicinal products 
[163]. Antibiotics and even non-antibiotic medicines such 
as metformin are widely recognized to have a side effect on 
the microbiota composition [164–166]. Similarly, several 
dietary components, such as vitamins, hormones, and other 
micronutrients, have been reported to impact the gut micro-
biota, which may influence the intestinal homeostasis and 
host health [52, 167]. Of the multiple exogenous and endog-
enous host co-variant factors, diet and its contents appear 
to be the most dominant factors in affecting the microbial 
composition. Sudden and abrupt dietary changes, such as 
switching to animal-based or plant-based diets, have been 
shown to modify the microbial composition in just 24 h of 
experimental initiation, but the discontinuation of such diet 
resulted in the reversion to baseline within 48 h [162, 168]. 
Among the common bacteria that are affected by diet, are 
Bifidobacterium spp., Lactobacillus spp., Bacteroides spp., 
Clostridium spp., Eubacterium spp., Enterococcus spp., 
Escherichia coli, and Streptococcus spp. [162, 169]. Many 
of these microbes are associated with coeliac disease pathol-
ogy as discussed. Considering the profound contribution of 
diet in the regulation of microbiota and its crucial role in 
the orchestration of human health, different health organiza-
tions across the world have set guidelines for a “healthy diet” 
that specifies the defined intake of micro and macronutri-
ents and addresses common diseases such as IBD, IBS, and 
coeliac disease, although such recommendations are often 
conflicting [170]. GFD, the key therapy for coeliac disease, 
has been shown to only partially restore the unbalanced 
gut microbiota of coeliac disease patients even after long-
term treatment [77, 91]. This may be because a GFD is not 
always completely gluten-free. There is a debate over what 
a GFD should be, but a diet of up to 20 parts per million 
gluten is usually taken into account [171]. Strict adherence 
to the GFD in coeliac patients has been reported to heal the 
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damaged intestine rapidly and improve the symptoms of the 
disease [172]. However, patient compliance with the therapy 
is highly variable, as many patients face difficulties follow-
ing GFD, and eating gluten again may trigger disease relapse 
[173] and in some patients, GFD was found to worsen the 
overall microbiota diversity [70]. De Palma et al. studied the 
effects of a GFD on the composition of the gut microbiota in 
ten healthy subjects where they found that GFD was associ-
ated with a reduction of beneficial gut bacteria [174]. The 
possible reason for this may be the fact that gluten exerts a 
prebiotic action [175]. Therefore, the development of novel 
therapeutic approaches such as supplementation of GFD 
with pre- or probiotics is a promising approach to improve 
the clinical management of coeliac disease patients under 
GFD.

Microbiota as a potential therapeutic target 
for coeliac disease

The aim of therapeutic modulation of the gut microbiota 
composition is to establish and maintain eubiosis. There are 
various methods which can be usually used. Those include 
dietary regulation, prebiotics, probiotics, and faecal micro-
bial transplantation [163, 176, 177].

Probiotics and prebiotics as strategies to modulate 
microbiota in coeliac disease

Recent studies have suggested that a diet with a low content 
of fermentable oligosaccharides, disaccharides, monosac-
charides, and polyols (FODMAPs) could be beneficial for 
patients with coeliac disease. In a small randomized con-
trolled trial, Roncoroni et al. showed that a low FODMAP 
GFD improves the psychological health and gastrointestinal 
symptoms of adults with coeliac disease after 21 days com-
pared to standard GFD [178]. Whilst the long-term effect 
of such a diet in coeliac disease is not clear, low FODMAP 
diets have recently been reported to be associated with alter-
ations in the gut microbiota [179, 180].

The fact that microbial imbalances persist despite of 
a GFD has led to the consideration of other therapeutic 
approaches, such as the introduction of probiotics to the 
GFD. Probiotics are live microorganisms that when con-
sumed in sufficient quantities confer health benefits. There 
are several reasons why probiotics might be useful in coe-
liac disease. Certain probiotic strains can safely activate an 
immune response, without inducing inflammation [181]. 
Lactobacilli-made Bacteriocins result in the formation of 
pores in the plasma membrane of the pathogenic bacteria 
and promoting cell lysis [181]. Probiotics also mediate 
increased expression of occlusion zone proteins, allowing 
the proper functioning of the tight junctions [181]. In an 
animal model of coeliac disease, the administration of Bifi-
dobacteria led to the downregulation of mRNA expression 

Table 4  Overview of studies included in this review that have linked antibiotic use with the development of coeliac disease

Study Type of study Subjects Main findings

[157] Case control from USA 332 cases, 241 controls Early life exposure to antibiotics associated 
with coeliac disease (adjusted or 1.133, 
95% CI 1.032–1.244; P = 0.007)

[155] Register-based cohort study from Denmark 
and Norway

1.7 million Exposure to systemic antibiotics in the first 
year of life was associated with coeliac 
disease (pooled OR 1.26, 95% confidence 
interval 1.16–1.36)

[156] Nationwide case–control study from Sweden 2933 cases, 14,571 controls Antibiotic use was associated with coeliac 
disease (OR = 1.40; 95% CI [1.27–1.53),

[150] Population-based birth cohort study from 
Italy

203,000 babies Antibiotic use was significantly associated 
with coeliac disease onset (incidence rate 
ratio IRR = 1.24, 95% CI 1.07, 1.43)

[117] Population-based incident case-referent study (n = 97) treated with antibiotic during 
the first 6 months of life. (n = 134) 
untreated

No significantly increased risk for coeliac 
disease was seen regarding antibiotic treat-
ment (OR 1.2; 95% CI 0.87–1.6; P = 0.27)

[118] Multinational prospective birth cohort 8495 children Cumulative use of any antibiotic during 
the first 4 years of life was not associ-
ated with the appearance of any coeliac 
disease autoantibody (hazard ratio [HR], 
0.98; 95% CI 0.95–1.01) or the transglu-
taminase autoantibody (HR, 1.00; 95% CI 
0.98–1.02)
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of pro-inflammatory markers and reduced production of 
NF-kB, TNF-alpha, and IL-1beta [182]. Lindfors et  al. 
studied the effects of two probiotic strains (Lactobacillus 
fermentum and Bifidobacterium lactis) on gliadin toxicity 
in intestinal epithelial cells [183]. They found that B. lactis 
reduces intestinal permeability induced by gliadin, while 
L. fermentum did not affect this parameter. The authors 
emphasized the usefulness of this probiotic in coeliac dis-
ease patients who do not respond to the GFD [183].

Nonetheless, there have been contradictory reports 
from clinical studies examining the efficacy of probiotics 
in patients with coeliac disease. Data from a small rand-
omized trial showed that a strain of Bifidobacterium infan-
tis improved gastrointestinal symptoms in adults with the 
untreated coeliac disease such as indigestion, bowel con-
stipation, and reflux but did not improve intestinal perme-
ability [184]. In another trial, Olivares et al. showed that a 
strain of Bifidobacterium longum improved the height per-
centile of children with coeliac disease but did not improve 
the gastrointestinal symptoms [185]. We have summarized 
the human studies that have examined the role of probiotics 
in coeliac patients in (Table 5). The inconsistencies in the 
findings of these studies may be due to the differences in 
the cohort selection and size of the sample, study length, 
type, and dosage of probiotics used. In addition to the direct 
administration of probiotics to patients with coeliac disease, 
some researchers have also examined the use of microorgan-
isms as components of the food products. Di Cagno et al. 
reported that patients with coeliac disease who consumed 
Sourdough wheat bread containing probiotic strains L. ali-
mentarius, L. brevis, L. sanfranciscensis, and L. hilgardii, 
showed reduced symptoms with improved gluten tolerance 
[186]. Similar studies done with the pretreatment of wheat 
flour with probiotic bacterial strains have shown promising 
results [187, 188].

To promote the growth of ‘beneficial’ bacteria, specific 
prebiotics have been added to the GFD and were evaluated 
in clinical trials. A recent study found that when added to the 
GFD, oligofructose-enriched inulin (Synergy 1), a prebiotic, 
increased Bifidobacterium counts, and the levels of acetate 
and butyrate in the gut, with no side effects [189]. Finally, 
the above studies have demonstrated the safety of using pre 
and probiotic in coeliac disease patients, additional stud-
ies are required to confirm the efficacy of probiotics and/
or prebiotics as a potential adjunct in the treatment coeliac 
disease.

Fecal microbiota transplantation for coeliac disease

Another approach that has been considered is the use of fecal 
microbiota transplantation (FMT). FMT is a mechanism by 
which feces from a healthy donor are infused into a recipi-
ent’s GI tract to treat a particluar disease associated with gut Ta
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microbiota alteration [190]. FMT is an effective treatment 
for Clostridium difficle infections [191]. Formal studies on 
the use of FMT in coeliac disease are lacking, but Beurden 
et al. recently reported a 68-year-old with refractory coeliac 
disease who received FMT as a treatment for Clostridium 
difficile infection [192]. Interestingly, the patient’s symp-
toms also resolved following FMT and duodenal biopsies 
obtained 6 months after FMT showed complete recovery of 
villous atrophy.

Conclusions

Although genetic factors such as the presence of HLA-DQ2 
or HLA DQ-8, and dietary gluten exposure are necessary 
for coeliac disease development, they are not sufficient. Sev-
eral studies have demonstrated that alterations in the gut 
microbial composition, such as reduced Bifidobacteria and 
Lactobacilli levels and increased levels of Proteobacteria 
can contribute towards the pathogenesis of the disease. How-
ever, these studies were unable to determine the cause vs 
consequence of the altered microbiome in Coeliac disease, 
as well as the mechanistic analysis on how different bacterial 
strains may influence the intestinal health. Multi-omics data 
from ongoing longitudinal cohort studies such as CDGEMM 
(Coeliac Disease, Genomic, Environmental, Microbiome, 
and Metabolomic Study) are expected to clarify some of 
the above questions. The role of fungi and viruses in coeliac 
disease pathogenesis has received little attention and war-
rants further investigations. The dynamic interplay between 
genetic, microbial, and environmental factors such as infant 
feeding practices, diet, antibiotics, and infections, that con-
tribute to the development of coeliac disease will be a major 
focus of future research. To develop precise epidemiological 
modeling and clinical path, prospective studies on preva-
lence, risk group screening, disease classification, interven-
tion time point analysis are needed. GFD, the key treatment 
for coeliac disease has been shown to only partially restore 
the unbalanced gut microbiota in coeliac patients even after 
long-term treatment while GFD itself may contribute to 
dysbiosis. The efficacy of potential gut microbiota modula-
tors such as probiotics, prebiotics, and FMT as adjunctive 
therapies in coeliac disease is largely unproven and requires 
further investigation.
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