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Graphical Abstract

Recent studies have closely associated exosomalmicroRNAs (miRNAs) with var-
ious human diseases, including diabetes mellitus (DM), which is a complexmul-
tifactorial metabolic disorder disease. In the diabetic condition, exosomal miR-
NAs are taken up by recipient cells, where they exert their biological function
and thereby modulate the progression of DM-associated complications, includ-
ing diabetic retinopathy (DR), diabetic macrovascular complications (DMCs),
diabetic nephropathy (DN), diabetic foot ulcer (DFU), diabetic peripheral neu-
ropathy (DPN), and diabetic cardiomyopathy (DCM).
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Abstract
Exosomes are small extracellular vesicles 40–160 nm in diameter that are
secreted by almost all cell types. Exosomes can carry diverse cargo including
RNA, DNA, lipids, proteins, and metabolites. Exosomes transfer substances and
information between cells by circulating in body fluids and are thus involved in
diverse physiological and pathological processes in the humanbody. Recent stud-
ies have closely associated exosomal microRNAs (miRNAs) with various human
diseases, including diabetes mellitus (DM), which is a complex multifactorial
metabolic disorder disease. Exosomal miRNAs are emerging as pivotal regula-
tors in the progression of DM, mainly in terms of pancreatic β-cell injury and
insulin resistance. Exosomal miRNAs are closely associated with DM-associated
complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN),
and diabetic cardiomyopathy (DCM), etc. Further investigations of the mecha-
nisms of action of exosomal miRNAs and their role in DM will be valuable for
the thorough understanding of the physiopathological process of DM. Here, we
have summarized recent findings regarding exosomal miRNAs associated with
DM to provide a new strategy for identifying potential diagnostic biomarkers and
drug targets for the early diagnosis and treatment, respectively, of DM.
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Abbreviations: EVs, extracellular vesicles; HUVECs, human umbilical
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1 INTRODUCTION

Diabetes mellitus (DM) refers to a class of metabolic dis-
orders characterized by hyperglycemia. DM results from
defective insulin secretion or insulin resistance (IR) caused
by genetic or environmental factors.1–3 With the rapid
increase in population growth, aging, and urbanization,
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and the increased prevalence of obesity and physical inac-
tivity in recent years, DMhas become a global health prob-
lem. Epidemiological studies have indicated that the global
prevalence of DM is expected to increase from 4% in 1995
to 5.4% in 2025.4 The annual health care costs for the
predicted 693 million people with DM by 2045 are esti-
mated to be approximatelyUS$850 billion.5 In recent years,
DM has become the third most common noninfective dis-
ease, following cardiovascular diseases and tumor-related
diseases.6 Although significant progress has been made in
the understanding and therapy of DM, the related morbid-
ity and mortality rates have continued to increase. Effec-
tive biomarkers for the early diagnosis, progression moni-
toring, and targeted therapy of DM are urgently needed.7
Various extracellular vesicles (EVs) that are stably

present in human fluids have recently been described.8,9
EVs can be classified, based on their size, as small EVs
(sEVs, diameter <200 nm) and large EVs (lEVs, diame-
ter >200 nm). Exosomes are a class of sEVs that have
a diameter of approximately 40–160 nm and are derived
from almost all types of human cells.10–13 Exosomes are
widely present in all types of human body fluids, such
as saliva, ascites, breast milk, cerebrospinal fluid, urine,
and semen.14 They can carry RNA, DNA, lipids, proteins,
and metabolites15 and are important for the transmission
of information between cells.16 In the era of precision
medicine, increasing attention is being paid to the accu-
rate diagnosis and treatment of diseases.17 The use of exo-
somes for the effective diagnosis and treatment of diseases
is emerging as a research focus. The potential of exosomes
in precisionmedicine is based on their ubiquity in the body
and their ease of acquisition.18,19
With the completion of the HumanGenome Project and

the beginning of the postgenomic era, noncoding RNAs
(ncRNAs) have aroused great interest in various research
areas. MicroRNAs (miRNAs) are a type of ncRNA that are
approximately 22-nucleotide (nt) long and are encoded by
endogenous genes.20 miRNAs are widely found in plants,
animals, and some viruses. They function in transcrip-
tional or posttranscriptional regulation by binding to the
untranslated regions (UTRs) of target mRNAs, which par-
ticipate in regulating the physiological and pathological
processes of the human body.21 miRNAs are more sta-
ble and specific in tissues and blood than long noncod-
ing RNAs (lncRNAs) and mRNAs because of their shorter
sequences.22 Interestingly,miRNAs can be encapsulated in
exosomes, which carry them to and release them into tar-
get cells or tissues, where their biological regulatory effects
occur. Most cells in the human body can secrete exosomes
containingmiRNAs. For example, approximately 100miR-
NAs have been detected in the exosomes secreted by mast
cells.23,24 ExosomalmiRNAsnot only participate in normal
physiological processes but are also involved in the occur-

HIGHIGHTS

∙ Exosomal miRNAs are essential regulators of
almost every aspect of human diseases.

∙ Exosomal miRNAs are emerging as pivotal reg-
ulators of DM progression, mainly in terms of
pancreatic β-cell injury and insulin resistance.

∙ Exosomal miRNAs are closely associated with
DM-associated complications, such as diabetic
nephropathy, diabetic retinopathy, and diabetic
cardiomyopathy.

∙ Exosomal miRNAs are promising biomarkers
and targets for the diagnosis and therapy of DM.

rence and development of various diseases,25–27 including
DM. Exosomal miRNAs are emerging as pivotal regula-
tors in the development and progression of DM. More-
over, because of their specificity and sensitivity, exosomal
miRNAs released into the humoral circulation have poten-
tial for use as DM markers.28,29 Further investigations of
the mechanisms of action of exosomal miRNAs and DM
will be valuable for thoroughly understanding the phys-
iopathological process of DM. This review focuses on the
latest findings regarding the roles and regulatory mecha-
nisms of action of exosomal miRNAs in the development
of DM. This information provides a theoretical basis for the
potential use of exosomal miRNAs as DM therapeutic tar-
gets.

2 BIOLOGICAL CHARACTERISTICS
OF EXOSOMALMIRNAS

Exosomes were first discovered by Trams et al. in 1981.
The authors observed small membranous vesicles in the
supernatants of tumor cells cultured in vitro and termed
them exosomes.30 At that time, it was thought that exo-
somes function only as a waste disposal system for cells.
With the increasing developments in electron microscopy
technology, Johnstone et al. isolated exosomes for the
first time during the study of reticulocyte maturation and
found a transfer receptor on the exosome membrane.31
Further research has demonstrated the involvement of
exosomes in diverse biological processes, such as antigen
presentation, immune response, tumor growth, and cell
differentiation.32
Exosomes are small vesicles secreted by various cells.

They are composed of a lipid bilayer and have an approx-
imate diameter of 40–160 nm. Exosomes are multivesic-
ular bodies (MVBs) formed from endodermal buds.33,34



HE et al. 3 of 19

Exosome formation involves encounter with the cells
membrane, enzyme modification, fusion with the cell
membrane, and subsequent release from the cell. Almost
all mammalian cells can produce and release exo-
somes, including blood cells (such as T lymphocytes, B
lymphocytes, mast cells, and platelets), dendritic cells,
and other cells (including epithelial cells, neurons, and
astrocytes).35–39 Exosomes are widely present in various
body fluids, including urine, milk, saliva, and blood. They
harbor proteins, lipids, nucleic acids, and other substances.
The circulation of exosomes in body fluids allows them
to enter nearby or distant target cells and plays a role in
the delivery of their payloads via direct fusion, endocytosis,
and binding of receptor ligands.40–42 Exosomes are a con-
duit of biological signal transmission between cells. They
affect the physiological state of cells and are closely related
to the occurrence and progression of various diseases.43
The prevalence and stability of exosomes in various biolog-
ical processes as well as the development and refinement
of analytical tools and techniques to quantify and identify
the characteristics of their constituents have spurred the
recognition of exosomes as potential biomarker candidates
for disease diagnosis and prognosis.
After entering a target cell, an exosomal miRNA can

directly bind to the 3′ UTR of the target mRNA, inhibit-
ing the expression of the target gene and its downstream
molecules. Exosomal miRNAs can also be combined with
“sponges,” such as lncRNAs, to play a physiological reg-
ulatory role. Exosomal miRNAs can be transferred to tar-
get cells or target organs to regulate gene expression and
can also be stably stored in circulating fluid, protected by
their vesicle structure; thus, they can act as biomarkers to
reflect disease progress.44,45 Accumulating evidence indi-
cating that exosomal miRNAs are important in the devel-
opment of diseases has indicated their potential value as
biomarkers for disease diagnosis, prognosis, and personal-
ized treatment.

3 DYSREGULATION OF EXOSOMAL
MIRNAS IN DM

The prevalence of DM has continued to increase over
the past 50 years, with the disease having spread from
Western countries to Africa, Western Pacific, and Asia.5
In recent years, DM has quickly become a global health
problem. According to clinical characteristics, DM can be
divided into four types: type 1 DM (T1DM), type 2 DM
(T2DM), gestational DM (GDM), and other specific types.
Chronic hyperglycemia in DM is usually associated with
long-term damage, dysfunction, and failure of multiple
organ systems, especially the eyes, heart, kidneys, nerves,

and blood vessels.46,47 The consequence can be a series of
DM-associated complications, including diabetic retinopa-
thy (DR), diabetic macrovascular complications (DMCs),
diabetic nephropathy (DN), and diabetic cardiomyopathy
(DCM), and diabetic foot ulcer (DFU). DM-related mor-
bidity and mortality can be reduced by the regular screen-
ing, early detection, and appropriate treatment of chronic
complications that are known to lead to it.48,49 The iden-
tification of appropriate and effective biomarkers to pre-
vent and treat DM and its associated complications is an
urgent goal.
With the development of next-generation sequencing

technologies, increasing numbers of miRNAs are being
identified. miRNAs have thus been found to be impor-
tant regulatory molecules in the development of DM as
well. miRNAs such as let-7, miR-223, miR-29, and miR-
103 can regulate metabolic disorders, such as DM, through
multiple pathways, such as the regulation of glycol-
ipid metabolism, liver glycogen metabolism, and insulin
secretion.50–52 Exosomes also play an important role in
DM development and progression.53 miRNAs harbored in
exosomes have been implicated as being crucial in the
progression of DM and its associated complications,54–58
which mainly lead to pancreatic β-cell injury and IR
(Figure 1). However, research on exosomal miRNAs is
scant. We searched PubMed, Web of Science, and Embase
using the following search terms: “Diabetes Mellitus” or
“Diabetic” or “Diabetes” and “Exosome” or “Exosomal”
and “miRNA” or “microRNA.” Meta-analyses, reviews,
case reports, comments, letters, and duplicate publications
were excluded. A total of 106 papers published up toMarch
15, 2020were included. They addressed the relationships of
exosomal miRNAs with DM. The number of relevant stud-
ies increased markedly from 2015, reflecting the increas-
ing interest in the relationships between exosomal miR-
NAs and DM.

4 MECHANISM OF EXOSOMAL
MIRNAS IN DM PROGRESSION

4.1 Exosomal miRNAs and pancreatic
β-cell injury

Pancreatic islets are composed of hormone-releasing cells.
Approximately 70% of pancreatic cells are β-cells. Pancre-
atic β-cells play a central role inmaintaining blood glucose
homeostasis through insulin release.59 β-cell injury or dys-
function leads to the progression ofDM.60 β-cell injury typ-
ically occurs in the early pre-diabetes stage. The threemain
mechanisms underlying β-cell injury are hyperglycemia-
islet β-cell injury, free fatty acid β-cell damage, and amylin
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F IGURE 1 Exosomal miRNAs regulate the pathological process of DM. (A) Secretion of cell-derived exosomal miRNAs promotes the
destruction of pancreatic islet β-cells and β-cell apoptosis. (B) Secreted exosomal miRNAs induce insulin resistance in the main
insulin-sensitive organs (skeletal muscle, liver, adipose)

and β-cell apoptosis.59 Recent studies have demonstrated
that the enrichment of certain exosomal miRNAs can reg-
ulate related genes that have an important maintenance
effect on pancreatic β-cell homeostasis in the early stages
of DM. In contrast, long-term exposure to high concen-
trations of glucose and fatty acids negatively regulates the
expression of these exosomal miRNAs. Therefore, enrich-
ment of exosome-specificmiRNAs is involved in β-cell dys-
function or injury in DM.61–63 Fu et al.64 constructed an
ICR mouse model with a mixture of cytokines, including
tumor necrosis factor-beta (TNF-β), interleukin-1 (IL-1),
and interferon-beta (INF-β) and used streptozotocin (STZ)
in vitro to induce injury. The authors isolated pancreatic
islet tissue and performed exosomal miRNA sequencing.
The results revealed a significant change in exosomalmiR-
375-3p in the two induced injury models and implicated
miR-375-3p as a marker of islet injury. Exosomal miRNAs
derived from other cells can also act on β-cells. For exam-
ple, exosomes containing miRNAs secreted by Min6B1
pancreatic cells treated with cytokines (IFNγ, TNF-α, and
IL-1β) can be transferred to adjacent β-cells, leading to the
apoptosis of these cells.54 Tsukita et al.65 screened for miR-
NAs, the levels of which were significantly changed in
the serum exosomes of mice after bone marrow transplan-

tation (BMT) using a high-throughput technique. Forty-
two miRNAs were upregulated. Of these, miR-106b-5p
and miR-222-3p were secreted by bone marrow cells and
transferred to pancreatic islet cells and induced β-cell
regeneration. CorrespondingmiRNAantagonist treatment
inhibited BMT-induced β-cell regeneration. In addition, a
tail vein injection of agomir miR-106b-5p and miR-222-3p
into mice promoted the proliferation of injured β-cells by
downregulating the Cip/Kip family and thus improving
hyperglycemia in insulin-deficient DMmice. Interestingly,
recent studies have found that exosomal miRNAs can be
secreted by β-cells and transferred to other receptor cells in
addition to regulating β-cell activity. Xu et al.66 confirmed
in mouse models that exosomal miR-26a derived from β-
cells can be transferred tomouse liver, white fat, brown fat,
and other target organs and can be absorbed by the recep-
tor hepatocyte. This transfer of exosomal miR-26a results
in improved insulin sensitivity of the receptor cells and
maintenance of metabolic homeostasis. Furthermore, Xu
et al.67 found that serum circulating miR-204 was closely
associatedwith the pancreatic β-cell injury, which could be
served as a novel biomarker for the early T1DM. The find-
ings indicate that exosomal miRNAs are closely related to
β-cell damage and dysfunction in DM.
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4.2 Exosomal miRNAs and IR

IR is the weakened response of cells to insulin. In this con-
dition, normal levels of insulin cannot maintain normal
glucose homeostasis. IR is a pathological state inwhich tar-
get tissues or cells have decreased sensitivity or reactivity
to insulin. It is a hallmark of T2DM. IR mainly occurs in
cells, such as fat cells, muscle cells, and liver cells, which
rely on insulin to absorb glucose.68 The process of IR is
associatedwith defects in insulin signaling, which involves
the insulin receptor,69 insulin receptor substrate 1/2 (IRS-
1/2),70 glucose transporter 4 (GLUT4),71 and phospho-
inositide 3-kinase (PI3K)/AKT serine/threonine kinase
(AKT).72 The mechanism underlying IR involves inflam-
mation, oxidative stress, and autophagy. Recent studies
have shown that miRNAs in exosomes participate in the
mechanism underlying IR.73–78 Katayama et al.79 found
that miR-20b-5p is highly expressed in exosomes of T2DM
patients and regulates glucosemetabolism inhuman skele-
tal muscle cells through AKT signaling, thereby regulat-
ing the occurrence of IR. Consistent with these findings,
another study showed that pancreatic cancer-derived exo-
somal miR-151-3p and miR-450b-3p enter mouse myoblast
C2C12 cells and inhibit PI3K/AKT signaling, thereby
maintaining insulin-induced FoxO1 rejection and inhibit-
ing Glut4 transport.80 In addition, studies have shown that
exosomal miR-320a and miR-27a are related to metabolic
syndrome and T2DM. ExosomalmiR-509-5p,miR-23a, and
miR-197 are potential causes of dyslipidemia in metabolic
syndrome.81 Exosomal miRNAs are closely related to
aging-related IR. Su et al.55 found that exosomal miR-29b-
3p derived from bone marrow mesenchymal stem cells
(BM-MSCs) can regulate senescence-induced IR, and may
be a potential therapeutic target for aging-related IR. Obe-
sity is another important high-risk factor for IR. In one
study, obesity altered the expression profile of plasma exo-
somal miRNAs in mice. The authors reported that com-
pared with that in lean mice, the expression of plasma
exosomal miRNAs, including miR-27b-3p miR-122, miR-
27a-3p, and miR-192, in obese mice was increased, and
that glucose tolerance and IR were induced in lean mice
treated with exosomes isolated from obese mice.82 Ying
et al.83 obtained exosomes of adipose tissue macrophages
(ATM) from obesemice and transferred them to leanmice.
This also resulted in glucose intolerance and IR in the
lean mice. Conversely, ATM exosomes obtained from lean
mice and transferred to obesemice improved glucose toler-
ance and insulin sensitivity in the obese mice. The mech-
anism is related to ATM exosomal miR-155, which reg-
ulates the occurrence of IR by targeting the expression
of the peroxisome proliferator-activated receptor gamma
gene. Collectively, these findings substantiate the impor-

tant role of exosomal miRNAs in the pathological process
of IR.

5 ROLES OF EXOSOMALMIRNAS IN
DIABETIC COMPLICATIONS

Recent studies showed that exosomal miRNAs are closely
associated with the progression of DM and its associated
complications, which are involving in a series of cell events
(Figure 2), thereby forming a complex regulatory network
(Figure 3).

5.1 Exosomal miRNAs and DN

DN is amajor complication of DM and is the leading cause
of end-stage renal disease in DM. DN is one of the leading
causes of disability and death in diabetic patients.84,85 It
is characterized by progressive renal interstitial fibrosis
that involves a series of pathological changes, includ-
ing excessive accumulation of extracellular matrix,
mesangial expansion, thickening of glomerular and tubu-
lar basement membranes, and increased production of
mesangial matrix.86
Recent studies have reported that the levels of DN-

derived exosomal miRNAs are associated with the clini-
cal characteristics of DN. Exosomal miRNAs in urine have
been widely used to analyze the correlated clinical charac-
teristics of DN patients. This is because urine can be con-
veniently collected and used to assess specific constituent
molecules of interest. Diabetic proteinuria is an important
marker for the diagnosis of DN and can reflect the patho-
genesis of DN.87 Recent studies have closely related exoso-
mal miRNAs in the urine of DN patients with urinary pro-
tein content. Eissa et al.88 found that the expression ofmiR-
30a, miR-342, andmiR-133b in urine exosomes from T2DN
patients was significantly higher than that in healthy peo-
ple and that the high expression of these three miRNAs
was associated with HbA1c, systolic, diastolic, low-density
lipoprotein, serum creatinine, estimated glomerular filtra-
tion rate (eGFR), and urinary albumin creatinine ratio.
In addition, these three types of urine exosomal miRNAs
in T2DN with normal urinary albumin were significantly
changed before the appearance of proteinuria. Interest-
ingly, Jia et al.89 demonstrated that the urine exosomal
miR-192 levels in T2DM patients with microalbuminuria
were higher than those in T2DM patients with normoal-
buminuric and healthy controls, and that urine exosomal
miR-192 levels were positively correlatedwith albuminuria
levels and transforming growth factor (TGF)-β1 expres-
sion. The findings inform a strategy in which urinary
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F IGURE 2 Relationship between exosomal miRNAs and cell events of DM-associated complications. BM-MSCs, bone marrow
mesenchymal stem cells; DCs, dendritic cells; MSCs, mesenchymal stem cells

exosomalmiR-192 is used as a biomarker of early-stageDN.
In addition, urinary exosomal miRNAs can also be used as
biomarkers tomonitor the condition and therapeutic effect
of T2DM-related nephropathy. Delic et al.90 reported that
both telmisartan and lnagliptin restored the levels of uri-
nary exosomal miR-29c to normal. This miRNA plays an
antifibrotic role in nephrectomized rat models.
Exosomal miRNAs have potential as biomarkers for

the diagnosis and monitoring of therapeutic effects in
DN patients. Animal and cell models of DN also con-
firmed the important roles of exosomal miRNAs in the
pathogenesis of nephropathy. Jin et al.91 demonstrated
that adipose-derived stem cell-derived exosomal miR-215-
5p effectively inhibited the migration and apoptosis of
podocytes induced by elevated glucose by directly tar-
geting the expression of ZEB2, thereby improving DN
induced by podocyte injury. Lv et al.92 described that tubu-
lar epithelial cell-derived exosomal miR-19b-3p was inter-
nalized by macrophages, leading to M1 phenotype polar-
ization by directly targeting the expression of suppressor
of cytokine signaling 1 (SOCS-1), causing nuclear factor-
kappa B (NF-κB) signaling-associated tubulointerstitial
inflammation to induce DN progression. Delić et al.93
used high-throughput sequencing to analyze the differen-

tial expression of exosomal miRNAs between the urines
of T2DM patients with DN and healthy individuals. The
authors found that the significantly increased exosomal
miR-320c in the urine of DN patients may target throm-
bospondin 1 to affect the TGF-β signaling pathway and thus
play a regulatory role in theDNprocess. These results indi-
cate that exosomalmiRNAs are important for the diagnosis
and treatment of T2DM-related kidney diseases. They are
expected to become new candidate markers and therapeu-
tic targets for DN.

5.2 Exosomal miRNAs and DMCs

DMCs usually involve organs such as the heart and
brain, and are accompanied by pathological changes in
endothelial cells (ECs), cardiomyocytes, vascular cells, and
stem cells. DMCs are important factors in DM-related
death. DMCs usually occur early in the early stage of
DM, and high levels of glucose in the blood can lead to
endothelial dysfunction andmicrovascular sparseness.94,95
The occurrence and development of DMCs involves
various mechanisms, including autophagy,96 inflamma-
tory response,97,98 oxidative stress,99,100 and immune
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F IGURE 3 Molecular mechanisms by which exosomal miRNAs regulate the progression of DM-associated complications. In the
diabetic condition, exosomal miRNAs are taken up by recipient cells, where they exert their biological function and thereby modulate the
progression of DM-associated complications, including diabetic retinopathy (DR) (A), diabetic macrovascular complications (DMCs) (B),
diabetic nephropathy (DN) (C), diabetic foot ulcer (DFU) (D), diabetic peripheral neuropathy (DPN) (E), and diabetic cardiomyopathy (DCM)
(F). AKT3, AKT serine/threonine kinase 3; ATM, ataxia telangiectasia mutated; c-MYB, MYB proto-oncogene; DNMT3A, DNA
methyltransferase-3α; GAP43, growth-associated protein-43; Gax, mesenchyme homeobox 2; HMGB1, high-mobility group box 1; Hsp20, heat
shock protein 20; ICAM-1, intercellular adhesion molecule-1; IGF-1, insulin like growth factor 1; MMP9, matrix metalloproteinase 9; NUMB,
NUMB endocytic adaptor protein; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homolog; SEMA6A, semaphorin 6A;
SOCS-1, suppressor of cytokine signaling 1; TSP-1, thrombospondin 1; VEGF, vascular endothelial growth factor; VEGFA, vascular endothelial
growth factor-A; Wnt9b, Wnt family member 9B; ZEB2, zinc finger E-box binding homeobox 2

response.101 These mechanisms lead to vascular calcifica-
tion and vascular endothelial injury, which ultimately lead
to DMCs.
On the contrary, exosomal miRNAs play an impor-

tant role in the process of DMC-related vascular endothe-
lial disease. Mocharla et al.102 revealed that CD34(+)
peripheral blood mononuclear cell (PBMC)-derived exo-
somal miR-126 could increase the proangiogenic effects
of PBMCs, thereby inhibiting the impaired proangio-
genic effects due to elevated levels of glucose in DM.
DM is often accompanied by atherosclerosis, and DMC-

related vascular endothelial lesions are closely related to
atherosclerosis. van Balkom et al.103 demonstrated that
EC-derived exosomal miR-214 suppresses senescence and
stimulates blood vessel formation in neighboring target
ECs by directly repressing the expression of the target
gene (ataxia telangiectasiamutated), whichmay be related
to DMC endothelial lesions. Interestingly, Hergenreider
et al. found that exosomal miR-143/145 induced by the
shear-responsive transcription factor Krüppel-like factor
2 (KLF2) could mediate communication between ECs
and vascular smooth muscle cells (VSMCs). The authors
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also showed that miR-143/145 directly inhibited the
expression of target genes (e.g., CFL1, PHACTR4, and
SSH2) in VSMCs, thereby preventing the pathogenesis
of vascular ECs.104 Moreover, the increase in circulat-
ing endothelial microparticles (EMPs) was closely associ-
atedwithDM-associated atherosclerosis.105 Jansen et al.106
reported that EMPs could transfer miR-222 into recipient
ECs and promote anti-inflammatory effects in vitro and in
vivo by inhibiting the expression of its target gene, inter-
cellular adhesion molecule (ICAM)-1. However, EMPs
derived from high glucose-damaged ECs contain less miR-
222 and have weaker anti-inflammatory capacity, which
may provide a novel therapeutic strategy for DMC-related
coronary artery disease.
On the contrary, exosomal miRNAs are also associated

with DMC-related angiogenesis deficiencies, while insuf-
ficient neovascularization is the main factor in ischemic
diseases caused by DM. Spinetti et al.107 demonstrated that
exosomal miR-15a and miR-16 were absorbed in circulat-
ing proangiogenic cells, resulting in an impaired migra-
tory capacity of PACs by directly inhibiting the expres-
sion of AKT-3 and vascular endothelial growth factor-
A (VEGFA), thereby increasing the risk of critical limb
ischemia in T2DM patients.107 Loss of skeletal muscle cap-
illarization (also known as capillary rarefaction) is a com-
mon symptom of T2DM. Nie et al.108 found that skele-
tal muscle-derived exosomes contain angiogenic miR-130a
and that their transfer to human umbilical vein endothe-
lial cells (HUVECs) enhances the production of reactive
oxygen species and angiogenesis of HUVECs by inhibit-
ing the expression of target gene mesenchyme homeobox
2 (Gax). These events relieve the T2DM-induced loss of
skeletal muscle capillarization. Collectively, these findings
indicate that exosomalmiRNAs can provide effective treat-
ment for DMC-related endothelial injury and insufficient
neovascularization.

5.3 Exosomal miRNAs and DR

DR is a common complication of DM and is the lead-
ing cause of catastrophic vision loss in industrialized
nations.109,110 Persistent hyperglycemia can damage retinal
microvessels, leading to increased permeability, reduced
retinal blood flow, and even microvessel closure, which
ultimately leads to retinopathy.111,112 DR-induced visual
deterioration is usually accompanied by neovasculariza-
tion, vascular hyperpermeability, inflammation, and vas-
cular cell dysfunction.113,114 DR has obvious pathological
and clinical characteristics. Nonetheless, it is important to
search for more effective biomarkers for the monitoring
and therapy of DR, because DR has a complex pathogene-
sis and ambiguous risk factors.115,116

Recent studies reported the important role of exosomal
miRNAs in the development of DR, especially in retinal
cell dysfunction. For example, Kamalden et al.117 demon-
strated that the pancreatic β-cell-derived exosomal miR-
15a can enter the bloodstream and promote the apopto-
sis of retinal Müller cells by targeting Akt3, which may
lead to retinal injury. In addition, Maisto et al.118 reported
that elevated levels of glucose decreased the levels of
antiangiogenic miRNAs (e.g., miR-106a-5p, miR-20a-5p,
and miR-20a-3p) in exosomes released by primary retinal
cells to regulate the expression of VEGF, thereby promot-
ing damage to retinal photoreceptors. Interestingly, other
studies have shown that exosomal miRNAs secreted by
MSCs can effectively alleviate the relevant characteriza-
tion of DR, which may provide a novel strategy for the
prevention and treatment of DR. Zhang et al.119 reported
that miR-126 could be encapsulated in MSC-derived exo-
somes and transferred to human retinal ECs (HRECs).
MSC-exosome-derivedmiR-126 significantly decreased the
HMGB1 expression induced by elevated glucose and
restricted the inflammatory response inHRECs.Moreover,
Safwat et al.120 revealed that MSC-derived exosomal miR-
222was closely associatedwith regenerative changes in the
retina in a rabbit model of DR, which suggests that exoso-
malmiR-222 plays a vital role in the process of retinal tissue
repair. In future DR treatment, exogenously increasing the
content of certain exosomal miRNAs in the human body
could improve the state of retina-related cells.

5.4 Exosomal miRNAs and DFU

DM can affect blood vessels throughout the body. When
it involves the skin, it can manifest as poor wound heal-
ing in the form of DM-related ulcers, which mainly occur
in the feet of diabetic patients. DFU is a severe complica-
tion of DM,which affects 15% of diabetic patients and leads
to a risk of amputation, and even high mortality rates.121
Epidemiological findings indicate that the 5-year mortality
rates of patients with DFU are 2.5 times higher than those
of patients without DFU.122 Peripheral arterial disease is
one of the major causes of DFU, leading to foot ulcerations
and resulting in nonhealing ulcerations.123
Recently, increasing evidence suggests that exosomal

miRNAs function critically in regulating the progress of
DFU. Xiong et al.124 used high-throughput sequencing
analysis to demonstrate the upregulation of circulating
exosomal miR-20b-5p in the peripheral blood of T2DM
patients compared to that of healthy controls. The authors
also revealed that exosomal miR-20b-5p derived from
T2DMsuppressedwoundhealing in amousemodel in vivo
by inhibiting the Wnt9b/β-catenin signaling pathway. In
addition, the occurrence and development of DFU is often
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accompanied by an inflammatory response and abnor-
mal expression of inflammatory factors. Geiger et al.125
revealed that human circulating fibrocyte-derived exo-
somes contain large amounts of angiogenicmiRNAs (miR-
132, miR-130a, and miR-126), anti-inflammatory miRNAs
(miR-125b and miR124a), and miR-21, which regulate col-
lagen deposition. These miRNAs can accelerate wound
closure by activating diabetic dermal fibroblasts and pro-
moting the migration and proliferation of diabetic ker-
atinocytes in diabetic mice, thereby accelerating DM-
associated wound healing. Exosomal miRNAs are also
important in the treatment of DFU. For example, exo-
somes secreted by MSCs can promote the healing of dia-
betic wounds caused by autotransplantation.126,127 Ding
et al.128 found that exosomes from bone marrow-derived
MSCs preconditioned by deferoxamine could stimulate
angiogenesis in HUVECs and promote wound healing and
angiogenesis in STZ-induced diabetic rats by affecting exo-
somal miR-126/PTEN/PI3K/AKT signaling. Henriques-
Antunes et al.129 used a light-triggerable hydrogel contain-
ing exosomes to treat diabetic and nondiabetic wounds
with one dose, and demonstrated that the kinetics of
exosome delivery affect skin neovascularization and re-
epithelization in a mouse model of T1DM by altering the
expression of exosomal miR-150-5p. These results suggest
that exosomal miRNA has the potential to treat diabetic
ulcers. By artificially encapsulating miRNA agonists or
inhibitors into exosomes or other nanomaterials, followed
by local injection into the diabetic ulcer tissue or intra-
venous injection, exosomes can be used as a potential drug
delivery system to treat diabetes-related DFU.

5.5 Exosomal miRNAs and DCM

DCM is a condition in which myocardial function is
impaired due to DM. DCM is defined as myocardial dys-
function occurring in patients with DM in the absence of
coronary artery disease, hypertension, or valvular heart
disease.130,131 DCM usually carries a substantial risk for
subsequent heart failure and increased mortality.132 The
pathogenesis of DCMmay involve oxidative stress, inflam-
mation, impaired calcium handling, cardiomyocyte apop-
tosis, mitochondrial dysfunction, and renin-angiotensin
system activation.133
Recently, increasing evidence has demonstrated that

exosomal miRNAs in cardiomyocytes are closely related
to DCM-related myocardial injury and myocardial angio-
genesis disorders.134–136 Wang et al.137 separated car-
diomyocytes from adult Goto–Kakizaki (GK) rats, a com-
monly used animal model of T2DM, and found that GK
cardiomyocyte-derived exosomalmiR-320 inhibits the pro-
liferation andmigration ofmouse cardiac ECs (MCECs) by

targeting the expression of Ets2, Hsp20, and IGF-1, thereby
causing DM-induced myocardial vascular deficiency. Gar-
cia et al.138 demonstrated that glucose starvation increases
the secretion of cardiomyocyte-derived exosomes contain-
ing miRNAs (e.g., miR-126-3p and miR-23a), thereby pro-
moting the angiogenesis of HUVECs. The communication
between cardiomyocytes and HUVECs may affect DCM-
associated cardiac injury and repair. Chaturvedi et al.139
demonstrated that exercise could increase the levels of
cardiomyocyte-derived exosomal miR-455 and miR-29b
in a db/db mouse model and reduce the expression of
the miR-455 and miR-29b target gene matrix metallopro-
teinase 9 (MMP9). This gene plays a role inmatrix degrada-
tion and leads to fibrosis andmyocyte uncoupling, thereby
relieving diabetic heart complications. Exosomal miRNAs
secreted by stem cells and other types of cells (including
cardiomyocytes) play an important role in heart cell regen-
eration and cardiac function regulation.140–142 Xiao et al.143
found that cardiac progenitor cell-derived exosomal miR-
21 could suppress H9C2 cardiac cell apoptosis induced by
oxidative stress by inhibiting the expression of the tar-
get gene, programed cell death 4 (PDCD4). This inhibi-
tion protected themyocardial cells against oxidative stress-
related apoptosis. These findings indicate that exosomes
containing miR-21 may be used as a new therapeutic vehi-
cle for DCM-associated ischemic cardiac disease. The use
of exosome secretion inhibitors (e.g., GW4869) may also
be a potential therapeutic strategy to alleviate exosome-
mediated diabetic cardiac dysfunction.144,145 These find-
ings collectively indicate that exosomal miRNAs may be
potentially valuable in the treatment of DCM.

5.6 Exosomal miRNAs and diabetic
peripheral neuropathy (DPN)

DPN is one of the most common chronic complications
of T2DM. It is estimated that nearly 50 million people
worldwide will develop DPN by 2030.146,147 DPN has typ-
ical symptoms of nerve pathological pain, including spon-
taneous pain, allodynia (pain to normally innocuous stim-
uli), and hyperalgesia (increased pain perception to nox-
ious stimuli).148 Clinical studies of T2DM have revealed
that glucose control has little or no effect in alleviating
DPN and that DPN has become a substantial problem in
the intractable pain therapy of DM.149–151 Effective thera-
pies to improve neurological function and alleviate DPN-
associated damage to the peripheral nervous system are
urgently needed.
Several recent studies have indicated that exosomal

miRNAs play an important role in a diabetic DPN rat
model, which is closely related to the occurrence and
development of DPN. Jia et al.152 reported exosomal
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miRNAs (e.g., miR-28, miR-31a, and miR-130a) derived
from Schwann cells stimulated by elevated glucose
could communicate with axons of dorsal root ganglia
(DRG). These exosomal miRNAs were locally injected
into the sciatic nerves of diabetic db/db mice, where
they could promote the occurrence and development
of peripheral neuropathy by regulating the expression
of DNA methyltransferase-3α (DNMT3A), synaptosome-
associated protein 25 (SNAP25), NUMB, and growth-
associated protein-43 (GAP43). Interestingly,Wang et al.153
demonstrated that healthy Schwann cell-derived exosomal
miRNAs (e.g., miR-21, miR-27a, andmiR-146a) could ame-
liorate DPN in type II diabetic db/db mice by promot-
ing the neurite outgrowth of diabetic DRG neurons. In
addition, exosomes secreted by MSCs can repair damaged
neurons and astrocytes and reverse neurological dysfunc-
tion. Fan et al.56 reported that exosomes derived frommes-
enchymal stromal cells (e.g., miR-17, miR-23a, miR-125b)
markedly decrease the threshold for thermal and mechan-
ical stimuli and increase the nerve conduction velocity
in diabetic mice. These events specifically alleviated neu-
rovascular dysfunction inmice with DPN by inhibiting the
toll-like receptor (TLR) 4/NF-κB signaling pathway and
suppressing the expression of proinflammatory proteins.
These results suggest that exosomal miRNAs are an effec-
tive treatment tool for diabetic nerve injury.

6 POTENTIAL CLINICAL
APPLICATIONS OF EXOSOMALMIRNAS
IN DM

Because DM is a class of chronic metabolic disorder dis-
eases, the therapeutic effect of exosomal miRNAs in DM
patients can be improved via its early detection by timely
intervention, with particular attention to glycemic con-
trol, blood pressure control (thus limiting proteinuria), and
accentuation of cardiovascular risk.7 Therefore, there is
great urgency for identifying novel molecular markers and
drug targets of DM. Recently, an increasing number of
studies have shown that the expression of exosomal miR-
NAs changes during the progression of DM and its asso-
ciated complications. Because of their unique structure,
exosomal miRNAs are more stable in tissues and cells and
are development phase-specific.154 Exosomal miRNAs are
easier to extract and can be detected with higher speci-
ficity compared with proteins. Detecting exosomal miR-
NAs using qRT-PCR and in situ hybridization assays is
also more specific and sensitive than detecting proteins
using an antigen–antibody reaction.155 Recently, substan-
tial evidence has indicated that the expression profiles of
many exosomal miRNAs vary between the sera and urines
of healthy individuals and those with DM. Therefore, exo-

somal miRNAs may serve as novel diagnostic biomarkers
of DM (Table 1). Using miR-1 and miR-133a as diagnos-
tic biomarkers,158 receiver operating characteristic (ROC)
curve analysis showed that miR-1 and miR-133a expres-
sion levels are good candidates to distinguish between dia-
betic and nondiabetic serum samples (sensitivity 78.9%
and 78.9%, specificity 71.0% and 74.2%, respectively). The
area under the ROC curve (AUC) values were 0.886 (95%
confidence interval [CI]: 0.765–0.967, p < .001) and 0.825
(95% CI: 0.710–0.940, p < .001), respectively. Moreover,
urinary exosomal miRNAs displayed similar diagnostic
values. Eissa et al.88 described an ROC curve analysis
indicating that implicated miR-30a, miR-342, and miR-
133b expression levels were good candidates to distinguish
between diabetic and nondiabetic serum samples (sensi-
tivity 86.4%, 81.8%, and 76.4%, specificity 72.7%, 80.9%, and
90.9%, respectively). The AUC values were 0.867 (95% CI:
0.820–0.914, p< .001), 0.910 (95%CI: 0.873–0.948, p< .001),
and 0.897 (95% CI: 0.858–0.936, p< .001), respectively. Fur-
thermore, Sidorkiewicz et al.162 demonstrated that exoso-
mal miR-491-5p, miR-1307-3p, and miR-298 can be used
as novel biomarkers for predicting the progression from
prediabetes to T2DM, and the AUC values were 0.940,
0.880, and 0.840, respectively. Interestingly, exosomalmiR-
NAs are closely associated with the gender difference of
DM. Deng et al.163 found that serum exosomal miR-29a
and miR-29b displayed the diagnostic values for the preg-
nant womenwith GDM, and ROC curve analysis indicated
that miR-29a combined with miR-29b (the AUC value was
0.944 [95% CI: 0.907–0.982]) for the diagnosis was prior
than the single indicator (the AUC values of miR-29a and
miR-29b were 0.829 [95% CI: 0.755–0.903] and 0.857 [95%
CI: 0.787–0.926]). Thus, exosomal miRNAs are promising
molecular biomarkers for the screening and monitoring of
DM.
Exosomal miRNAs cannot only be used as biomarkers

to gauge the progress of DM, but can also be used as thera-
peutic targets for DM. Exosomes can be served as a new
type of nanomaterial and can deliver miRNA inhibitors
and agonists for DM treatment. The widespread applica-
tion of nanotechnology has prompted the use of exosomal
miRNAs in animal experiments. Lv et al.164 used electro-
poration to mimic the loading of miR-21-5p mimics into
human adipose stem cell (hASC)-derived exosomes. The
authors showed that engineered exosomalmiR-21-5p could
increase re-epithelization, vessel maturation, angiogene-
sis, and collagen remodeling to accelerate wound healing
in diabetic rats with full-thickness wounds. These find-
ings indicate the possibility of cell-free therapy for dia-
betic wounds using hASC exosomes to deliver drugs. Li
et al.165 used synovialMSC (SMSC)-derived exosomalmiR-
126-3p encapsulated in hydroxyapatite/chitosan compos-
ite hydrogels as wound dressings for a mouse model of
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TABLE 1 Diagnostic index of exosomal miRNAs in DM

Exosomal
miRNAs Types

Sample numbers
(nondiabetic/diabetic) AUC

Sensitivity
(%)

Specificity
(%) OR (95% CI) Ref.

miR-133b T2DN 56/110 0.867 86.4 72.7 0.820–0.914 88

miR-342 T2DN 56/110 0.910 81.8 80.9 0.873–0.948 88

miR-30a T2DN 56/110 0.897 76.4 90.9 0.858–0.936 88

miR-15b T2DM 44/136 0.883 97.8 82.2 0.824–0.942 156

miR-34a T2DM 44/136 0.917 93.3 86.7 0.874–0.96 156

miR-636 T2DM 44/136 0.984 97.8 93.3 0.971–0.997 156

miR-7 T2DM 74/76 0.75 — — 0.670–0.830 157

miR-7 T2DMC 74/76 0.77 — — 0.690–0.85 157

miR-133a T2DM 12/78 0.825 78.9 74.2 0.710–0.940 158

miR-1 T2DM 12/78 0.886 78.9 71.0 0.765–0.967 158

miR-21-5p T2DN 15/22 0.830 – – 0.673–0.986 159

miR-30b-5p T2DN 15/22 0.714 – – 0.517–0.911 159

let-7c-5p T2DN 15/28 0.818 96 53.4 0.718–0.919 160

miR-424 T1DM 30/30 0.803 – – – 161

miR-218 T1DM 30/30 0.817 – – – 161

miR-491-5p Prediabetes 42/24 0.940 – – – 162

miR-1307-3p Prediabetes 42/24 0.880 – – – 162

miR-298 Prediabetes 42/24 0.840 – – – 162

miR-29a GDM 55/68 0.829 76.47 78.18 0.755–0.903 163

miR-29b GDM 55/68 0.857 85.29 81.82 0.787–0.926 163

Note: GDM, gestational diabetesmellitus; T1DM, type 1 diabetesmellitus; T2DM, type 2 diabetesmellitus; T2DMC, T2DM-associatedmicrovascular complications;
T2DN, type 2 diabetic nephropathy.

diabetic wounds. The authors reported that the released
SMSC exosomal miR-126-3p nanoparticles could promote
wound surface re-epithelialization, accelerate angiogene-
sis, and expedite collagen maturity in vivo. These find-
ings could inform the development of a novel therapeutic
strategy for diabetic chronic wound healing. Shi et al.166
used diabetic pregnant mouse models to demonstrate that
fluorescently labeled exosomes in blood can carry miR-
NAs across the placental barrier andmay penetrate embry-
onic organs and tissues, including the heart, during embry-
onic development. This could increase the risk of coronary
heart disease in normal recipient pregnant mice. These
findings may inform a new strategy for the prevention
and treatment of coronary heart disease. Studies of corre-
sponding specific exosome inhibitors or agonists indicate
a potential therapeutic strategy for alleviating exosome-
mediated diabetes and related complications. However,
the path from basic scientific research to clinical applica-
tion remains lengthy, and the use of exosomal miRNAs for
DM treatment remains challenging. Further research in
the development of biomedical materials technology will
clarify the function and mechanism of exosomal miRNAs
and should lead to novel strategies for the screening, early
diagnosis, and therapy of DM.

7 OPPORTUNITIES AND
CHALLENGES OF EXOSOMALMIRNAS
IN DM

With the development of next-generation sequencing
technologies,167 an increasing number of exosomal miR-
NAs have been discovered and identified. Compared with
exosomal proteins, miRNA extraction and detection have
higher specificity and sensitivity. Recently, a few databases
have been developed as convenient tools for identifying
and predicting exosomal components (proteins, miRNAs,
mRNAs, and lipids) (Table 2). Among them, CMEP, Xeno-
miRNet, miRandola, and other databases can be used
to mine disease-related exosomal miRNAs. In the recent
years, with the development of biological sciences and
materials technology, the nanotechnology is widely used
in the field of disease treatment,178,179 including DM.180
Different from taking the agomir or antagomir directly
injecting into target tissues, nanocarrier-derived miRNAs
displayed more high efficiency and target specificity,181
whichmaymerit for being developed as a therapeutic strat-
egy for DM. Exosomes as endogenous nanocarriers can
be used in target therapy via delivering drug cargos to
the disease-associated targeted cells, which has advantages
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TABLE 2 Exosomal miRNA-associated databases

Database Functions of database Website Ref.
EVpedia It is a community web portal for systematic

analyses of prokaryotic and eukaryotic
EV-related research

http://evpedia.info 168

ExoCarta It catalogs information on the exosomal isolation
and purification procedures, samples used,
investigator details, and exosomal molecular
components such as proteins, mRNA, and
miRNA

http://www.exocarta.org/ 169

Vesiclepedia A manual search tool library of extracellular
vesicle molecular data. It can also browse and
search by species, vesicle, molecule, and sample
type

http://www.microvesicles.org 170

EVmiRNA It provides the miRNA expression profiles and the
sample information of EVs from different
sources, the specifically expressed miRNAs in
different EVs and miRNA annotations

http://bioinfo.life.hust.edu.cn/EVmiRNA 171

BoMiProt It is a manually curated, comprehensive
repository of published information of bovine
milk proteins, and focus efforts to consolidate
the existing information of different milk
proteins

http://bomiprot.org 172

CMEP It contains large-scale circulating miRNA datasets
from diverse platforms and provides miRNA
expression profiling, pathway enrichment
analysis with miRNA target genes, and
feature-selection methods

http://syslab5.nchu.edu.tw/CMEP 173

Xeno-miRNet Search and explore xeno-miRNAs and their
potential targets within different host species

http://xeno.mirnet.ca 174

exoRBase Aims to collect and characterize all long RNA
species in human blood exosomes

http://www.exoRBase.org 175

NONCODEv5 Constructing human lncRNA-disease
relationships and single nucleotide
polymorphism-lncRNA-disease relationships;
displaying human exosome lncRNA expression
profiles; predicting the RNA secondary
structures of NONCODE human transcripts

http://www.noncode.org/ 176

miRandola To infer the potential biological functions of
circulating miRNAs and their connections with
phenotypes.

http://atlas.dmi.unict.it/mirandola/index.html 177

such as multiple drug loading, lack of toxicity, harbor-
ing a high payload of drugs, and protecting contents from
drug degradation.182In view of the important role of exoso-
mal miRNAs in the progression of DM and DM-associated
complications, the approach has great potential as a bio-
logical tool for the diagnosis or treatment of DM. How-
ever, much remains to be done before the research findings
become clinical reality.
Research on exosomal miRNAs faces a series of chal-

lenges and limitations. First, the technology for isola-
tion and purification of exosomes is not yet mature.

At present, EVs can be separated and purified using
ultrahigh-speed centrifugation, filtration, precipitation,
and immunoenrichment.183,184 These purification meth-
ods cannot easily distinguish exosomes from nonvesicular
compartments, which may affect the subsequent experi-
ment of exosomal miRNAs in vivo and in vitro. Second,
due to the low abundance of the exosomal miRNAs con-
tent in patients’ serum,185 there is lack of high-efficiency
method to collect exosomes in clinical application, which
restricts the potential clinically relevant application of exo-
somal miRNAs as diagnostic and therapeutic markers.

http://evpedia.info
http://www.exocarta.org/
http://www.microvesicles.org
http://bioinfo.life.hust.edu.cn/EVmiRNA
http://bomiprot.org
http://syslab5.nchu.edu.tw/CMEP
http://xeno.mirnet.ca
http://www.exoRBase.org
http://www.noncode.org/
http://atlas.dmi.unict.it/mirandola/index.html
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F IGURE 4 Relationship between exosomal miRNAs and DM-associated complications. In the diabetic condition, exosomal miRNAs are
taken up by recipient cells, where they exert their biological function and thereby modulate the progression of DM-associated complications,
including diabetic nephropathy (DN) (A), diabetic macrovascular complications (DMCs) (B), diabetic retinopathy (DR) (C), diabetic foot
ulcer (DFU) (D), diabetic cardiomyopathy (DCM) (E), and diabetic peripheral neuropathy (DPN) (F)

Third, exosomal miRNAs need to be further investigated
to determine whether they are specifically related to one
or more diseases, and to explore the underlying molecu-
lar mechanisms of exosomal miRNAs in diseases. Fourth,
the exact mechanism and specific role of exosomal miR-
NAs in the regulation of DM need to be further clari-
fied. Interestingly, Chevillet et al.186 posed a challenge to
the hypothesis that all the presentation is about the nat-
ural transfer of miRNAs through exosomes. Fifth, it is
difficult to develop an exosome-based drug delivery sys-
tem and introduce it into the body to target specific cells
to play a functional role. Last, although exosomal miR-
NAs play a role in the treatment of DM and its compli-
cations in many animal models, there remains a lack of
clinical trials to confirm the accuracy and safety of these
findings.

8 CONCLUSIONS

Exosomal miRNAs are closely associated with the progres-
sion of DM and its associated complications (Figure 4).
Therefore, exosomal miRNAs have been recognized as
novel and potentially valuable molecules in DM research.
As a class of novel regulatorymolecules, they participate in
multiple steps of DM by modulating the expression levels
of a series of related genes.We can silence or activate exoso-
malmiRNAs inDMpatients exogenously, such as by incor-
porating agomir or antagomir into exosomes in vitro, fol-
lowed by their injection into target tissues. This approach
has merit for being developed as a therapeutic strategy for
DM. Although our current understanding of the develop-
ment of exosome-based drug delivery systems is only the
tip of the iceberg, with further research and technological
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advances, exosomal miRNAs are expected to lead to new
strategies for the prevention, diagnosis, and treatment of
DM.
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