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Feature extraction is essential for classifying different motor imagery (MI) tasks in a brain-computer interface. To improve
classification accuracy, we propose a novel feature extraction method in which the connectivity increment rate (CIR) of the
brain function network (BFN) is extracted. First, the BFN is constructed on the basis of the threshold matrix of the Pearson
correlation coefficient of the mu rhythm among the channels. In addition, a weighted BFN is constructed and expressed by the
sum of the existing edge weights to characterize the cerebral cortex activation degree in different movement patterns. Then, on
the basis of the topological structures of seven mental tasks, three regional networks centered on the C3, C4, and Cz channels
are constructed, which are consistent with correspondence between limb movement patterns and cerebral cortex in
neurophysiology. Furthermore, the CIR of each regional functional network is calculated to form three-dimensional vectors.
Finally, we use the support vector machine to learn a classifier for multiclass MI tasks. Experimental results show a significant
improvement and demonstrate the success of the extracted feature CIR in dealing with MI classification. Specifically, the average
classification performance reaches 88.67% which is higher than other competing methods, indicating that the extracted CIR is
effective for MI classification.

1. Introduction

Motor imagery (MI) refers to a thinking activity in which one
can imagine completing a specific movement without the
help of limb movements. MI can activate the motor neurons
and network connections of damaged regions to some extent
and even generate new neural compensation functions [1].
Researchers have sufficiently demonstrated that MI can acti-
vate the motor-related cortex as effectively as actual motion
[2–4]. MI can be divided into simple imagery, which involves
a single part of limb movements, and compound imagery,
which involves not less than two parts of limb movements
[5, 6]. With the advancement of brain science in recent years,
MI training has gradually become a new rehabilitation
method for patients with limb motor dysfunction caused by
brain injury [7–9].

The functions of different brain regions are specific, and
different limbs correspond to different sensorimotor regions
of the cortex [10]. Simple limb MI involving a single limb

can activate specific regions corresponding to limb parts. As
early as the year 2000, Carlo et al. [3] found that when left-
or right-hand movement is imagined, the contralateral brain
functional region is activated. Compound limb MI allows
multiple functional regions to participate synergistically,
which is conducive to activating the damaged motor neurons
in patients with motor dysfunction [5, 11]. However, most
research focused on analyzing the changes in electroenceph-
alogram (EEG) signals caused by simple limb MI. Currently,
less work is reported about compound limb MI. [12] ana-
lyzed the feature differences between simple and compound
limb MIs in event-related desynchronization (ERD)/event-
related synchronization (ERS) and found that the ERD of
compound limb MI is more intense. In addition, they con-
ducted a separability study on simple and compound limb
MIs. Multiclass MI, especially compound limb MI, is more
realistic and instructive for patient rehabilitation training.
Moreover, the evolution from simple to compound limb MI
expands the number of identifiableMI patterns and improves
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the ability of brain-computer interface (BCI) to control
external devices.

The ERD/ERS phenomenon is caused by the resonance
of numerous neurons on physiological electrical signals, indi-
cating the interaction between neurons and local neurons in
a certain frequency band EEG, which mainly appears on the
sensory motion region corresponding to electrodes C3, C4,
and Cz. For instance, the ERD on the left side of the motor
region (C3) is observed in right-hand MI, whereas that on
the right side of the motor region (C4) is observed in left-
hand MI. For foot MI, the ERD is in the midline central
region (Cz) [12, 13]. ERD is related to the mu (8–12Hz)
and beta (13–30Hz) rhythms of EEG signals. However, some
frequencies in the beta rhythm are the harmonic waves of the
mu rhythm. Thus, mu rhythm is associated with motion or
MI. The ERD in the mu rhythm can be used as a direct indi-
cator to reflect the excitation degree of neurons in the cortical
region and assess neurodevelopment [14, 15]. [13] used the
ERD values on electrodes C3 and C4 to characterize the left-
and right-hand MIs, respectively. [16] calculated the ERD in
the mu rhythm to reflect sensorimotor cortex activation and
evaluate cortex excitability during MI. The ERD calculation
is based on the signals of the brain region under test, whereas
compound limb MI requires the collaborative participation
of multiple brain regions. Given that each brain region does
not operate independently, the cortical activity differences
between simple and compound limb MIs can only be ana-
lyzed from the ERD.

The brain function network (BFN) is based on the
complex network theory, which describes the statistical func-
tional connection relationship in various regions of the brain
[17–20]. Furthermore, the BFN can construct brain func-
tional topology and integrate the connectivity strength
between different regions. In addition, the BFN not only
reflects the global activity of the cerebral cortex but also
provides a highly reliable performance for distinguishing
multiclass MI. Many studies have demonstrated that the
BFN is an effective method for describing the coordination
among different brain regions. For example, [21] used local
and global efficiency to analyze the relationship between brain
information transmission efficiency and working memory
performance in young and old people. [22] performed spec-
tral decomposition onBFNs to classify 4-class tasks. However,
the brain is a time-varying coupled chaotic nervous system.
Under different classes of movements, the BFN dynamically
changes, and the topological structure of the network varies.
Furthermore, no absolute 0–1 relationship exists between
nodes in the BFN, but a degree of connectivity does. There-
fore, BFN features are caused by changes of network location
and connection. By contrast, most studies on BFN ignored
these points, resulting in insufficient network information.

To address these drawbacks, we propose a framework for
multiclass MI classification based on the BFN theory. In our
framework, a weighted BFN is constructed, and the sum of
the existing edge weights is used to characterize the cerebral
cortex activation degree in different MIs. The main advan-
tage of the framework is that the novel feature connectivity
increment rate (CIR) is a regional network feature centered
on the functional cortex area, which reflects the changes of

network location and connectivity and reduces the loss of
network information. Thus, three regional networks centered
on the C3, C4, and Cz channels are constructed by the BFN
topological structures of seven mental tasks. The CIRs of
these networks are used as features to distinguish MI classifi-
cation via the support vector machine (SVM). In summary,
this work contributes the following:

(1) The construction of weighted BFNs facilitates the
study of cerebral cortex activation degree in different
movement patterns

(2) The feature CIR can reflect the dynamic changes of
the network and provides a new idea for feature
extraction

(3) The study of multiclass MI is conducive to expanding
the instruction set of the BCI.

The rest of this paper is organized as follows: “Methods
and Materials” discusses the construction of BFN and
feature extraction method, as well as the experimental
scheme. Experimental results are presented in “Results,”
followed by the discussion and conclusions in “Discussion
and Conclusions”.

2. Methods and Materials

2.1. Construction of BFN. The BFN describes the statistical
functional connection relationship in various regions of the
brain. It has small-world network attributes and belongs to
the undirected network in complex networks [23]. EEG
signals, functional magnetic resonance imaging, and magne-
toencephalography are commonly used as signal sources for
BFN construction. The steps are listed as follows:

(Step 1) We select the appropriate network nodes. In this
study, given that multichannel EEG signals are
used, we define each electrode on the scalp
surface as a network node

(Step 2) We quantify the functional connectivity relation-
ship between network nodes. One of the com-
monly used methods is Pearson’s correlation
coefficient [24]. The formula is shown as follows:

rij =
∑T

t=1 xi tð Þ − xi½ � xj tð Þ − xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑T

t=1 xi tð Þ − xi½ �2∑T
t=1 xj tð Þ − xj

� �2q i, j = 1, 2,⋯,N ,

ð1Þ

where xiðtÞ and xjðtÞ are the sampling values of nodes i and j
at time t, respectively; xi and xj are the average sampling
values of nodes i and j, respectively; and N is the number of
network nodes. We can obtain a N ×N connection coeffi-
cient symmetry matrix. In this case, the network is a weighted
network, and rij is the weight. A higher correlation coefficient
is proportional to a higher linear relationship
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(Step 3) We obtain BFN by thresholding the weighted
network. By selecting an appropriate threshold
value (δ) and performing threshold processing
on the connection coefficient matrix, we obtain
a 0–1 adjacency matrix, which can be expressed
as follows:

aij =
1 rij

�� �� ≥ δ

0 rij
�� �� < δ

(
: ð2Þ

aij = 1 indicates that a connection edge exists, and the
correlation between nodes i and j is strong, which otherwise
does not exist and is weak, respectively. In accordance with
the adjacency matrix, the topological structure of the BFN
can be obtained.

2.2. Feature Extraction Based on BFN

2.2.1. Motivation. Neurophysiological studies have shown
that the MI for different limb movements activates the corre-
sponding limb motor regions in the cerebral cortex [25]. In
“Methods and Materials,” we obtain the BFN topological
structures of a simple limbMI. Figure 1 intuitively shows that
when imagining the left-hand motion, the network in the
vicinity of electrode C4 in the corresponding motor control
cortex region is highly agglomerated. Similarly, for the
right-hand and left-foot MI, the network in the vicinity of
electrodes C3 and Cz in the corresponding motor control
cortex region is highly agglomerated, respectively. No clus-
tering trend exists in the silent state network. Electrodes C3
and C4 correspond to the hand control region of the cerebral
cortex, and electrode Cz corresponds to the foot control
region of the cerebral cortex. Furthermore, in different move-
ment patterns, the number of connections between different
regions vary, indicating the varying cerebral cortex activation
degree. In addition, after threshold processing, only a con-
nected or unconnected state exists between the BFN nodes,
and many useful information will be lost. The functional con-
nection between nodes is not absolute but has a degree of
connectivity. Therefore, on the basis of network thresholding,
the connection coefficient is used as a weight to redescribe the
functional connectivity relationship between network nodes.
At this time, the BFN is called the weighted BFN. In this
study, we use the sum of the existing edge weights as the
function network connectivity value (C) to characterize the
cerebral cortex activation degree in different MIs.

2.2.2. Feature Calculation. As mentioned above, the function
network connectivity value (C) can be computed as

C = 〠
i,j∈V ,i<j

rijaij, ð3Þ

where rij is the connection coefficient between network
nodes i and j, aij is shown in Eq. (2), and V is the set of
network nodes.

For normalization, we take the absolute value of the
ratio of C during MI to that during the resting period before
the beginning of imagination as the CIR. The CIR is used as
a novel feature for classifying multiclass MI and calculated
as follows:

CIR =
Cimage
Crest

����
����, ð4Þ

where Crest is the average of Crest of all subjects in the
silent state.

2.2.3. Threshold Selection.The selection of the threshold value
plays a vital role in the study of brain function network
characteristics. When the value of the threshold value is
selected too large, the edge of the network will decrease, and
the network sparsity will increase, resulting in the loss of
network information. If the threshold is too small, a large
number of weakly correlated edges will be introduced, which
will increase the density of the network and increase the com-
plexity of the brain network, which is not conducive to the
analysis of effective brain information. So far, there is no con-
sistent conclusion on the selection of brain function network
threshold. The principles for selecting the threshold in this
paper are as follows: (1) The brain function network should
have significant small-world network characteristics. (2) The
brain function network should have significant connectivity.

Current research shows that the brain function network
has been proven to have the characteristics of a small-world
network. The formula for calculating the characteristics of
the small-world network is as follows:

γ = Creal
Crand

≫ 1, ð5Þ

λ = Lreal
Lrand

≈ 1, ð6Þ

σ = γ

λ
, ð7Þ

where Creal and Crand are the average clustering coefficients of
real brain function network and random network of the same
node size. Lreal and Lrand are the average path lengths of real
brain function network and random network of the same
node size. σ is a comprehensive index to measure whether
the network has the characteristics of a small-world network.
When σ > 1, it indicates that the network has small-world
attributes; otherwise, it does not, and the strength of small-
world attributes is positively correlated with the size of σ.
Different subjects have different thresholds for motor imagi-
nation when performing different actions. The article takes
one of the subjects performing the left-hand motor imagina-
tion task as an example. Figure 2 is a characteristic diagram of
comprehensive index changing with threshold.

It can be seen from Figure 2 that the size relationship
between comprehensive index σ and threshold δ is positively
correlated. However, the number of edges connected to
nodes in the network will decrease with the increase of
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threshold δ, and the average node degree K of the network
will decrease. When the threshold δ is too large, there will
bemore isolated nodes in the network, resulting in the decline
of the functional connectivity of the network, and thus, the
integrity of the brain network information cannot be guaran-
teed. Therefore, the average node degree K of network cannot
be less than the natural logarithm of the number of network
nodes N , that is, K ≥ ln N = ln ð60Þ ≈ 4:09. In this paper, the
specific steps to determine the threshold are as follows:

(1) When δ = 0:85, the value range of the average node
degree of the brain network is 4~18 and meets the
requirements K ≥ ln N

(2) When the threshold is superimposed to 0.9 according
to the step length of 0.05, the average node degree K
of the network decreases due to the increase of
threshold δ. At this time, the condition K ≥ ln N is
not satisfied

(3) When δ = 0:8, although the average node degree K
meets the requirements under this threshold, the
comprehensive index σ is smaller than the value
when δ = 0:85.

Therefore, this paper chooses the threshold δ = 0:85, and
the brain function network corresponding to this threshold
also guarantees significant small-world characteristics and

Silence Le� hand (C4) Right hand (C3) Le� foot (Cz)

Figure 1: BFN topological structures of simple limb MI. Note: Contents in parentheses represent the regions with the highest degree of
aggregation corresponding to the current MI.
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Figure 2: Characteristic diagram of comprehensive index changing with threshold.
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functional connectivity. The selection of thresholds for dif-
ferent motor imagination of all subjects is shown in Table 1.

2.2.4. Proposed Algorithm. To illustrate the feature extraction
method clearly, we implement the algorithm flow as follows:

(Step 1) According to different mental tasks, we
construct the corresponding BFNs

(Step 2) Based on the corresponding relationship
between the motor control cortex and the MI
movements, we divide the threshold nodes into
regions reasonably with the help of the BFN
topological structures

(Step 3) To quantify the functional connectivity between
network nodes in each region, we use the Pear-
son correlation coefficient

(Step 4) Calculate Cimage during MI and Crest during rest

(Step 5) Calculate the CIR of each region.

2.3. Experimental Scheme.We designed seven classes of men-
tal tasks using prompt words, such as “Left Hand,” “Right
Hand,” “Left Foot,” “Left Hand + Left Foot,” “Right Hand
+ Left Foot,” “Left Hand + Right Hand,” and “Silence,” to
express three tasks of simple limb MI, three tasks of com-
pound limb MI, and the silent state, respectively. The silent
state was used for comparison. The implementation
sequence of the specific experimental mode is shown in
Figure 3. The data acquisition time of each trial was 10 s.
From 0–3 s, when the screen displayed a black dot, the sub-
ject was in the preparation stage of MI. From 3–4 s, the black
dot on the screen turned into a red cross to remind the sub-
ject that mental tasks were about to begin. From 4–8 s, the
screen displayed the character indication (“Right Hand,”
“Right Hand + Left Foot,” and so on). The subject had to con-
centrate on performing the corresponding movement kines-
thetically according to the screen and avoid any action during
MI. From 8–10 s, the subject entered the rest stage when the
screen was all black.

The subjects included twelve healthy students (8 males
and 4 females, 21-25 years old) with no history of brain dis-
eases. They were right-handed and had no prior experience
with MI. They signed informed consent. The trial was con-
ducted under the condition that the subjects were conscious
and well rested. The subjects performed MI 10 times in each
mental task, with a 5 s rest between two trials. The subjects
rested for 5 mins before the next mental task. A total of 840
groups of EEG signals were recorded in the trials. One group
of EEG signals was a multichannel data recorded by a subject
in trial (a complete preparation stage, prompting stage, imag-
ination stage, and rest stage).

In the process of motor-imaging EEG signal acquisition,
blinking is unavoidable. Electrooculogram (EOG) signals
caused by eyeball or eyelid movements propagate along the
skull and merge with EEG signals, causing EEG artifacts. In
order to filter out ocular artifacts, in each round of experi-
ment, the EEG acquisition device needs to continuously
and synchronously collect the subject’s EEG and additional

independent EOG signals, so that EEG preprocessing can
eliminate artifacts.

In this study, the EEG signals were recorded by an EEG-
amplifier of Neuracle, and the Ag/AgCl scalp electrodes were
referenced to the A1 and A2 electrodes as ground. The EEG
signals were recorded at the following 60 positions of the
international 10-20 system: Fp1, Fpz, Fp2, AF7, AF3, AF4,
AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1,
Fcz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6,
T8, TP7, CP5, CP3, CP1, Cpz, CP2, CP4, CP6, TP8, P7, P5,
P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, Poz, PO4, PO8, O1,
Oz, and O2. The sampling rate of the amplifier was 250Hz,
and the notch filter was 50Hz. Moreover, the band-pass
filtering range was 0.1–100Hz. Besides, fast independent
component analysis was used in the preprocessing.

3. Results

3.1. BFN in Different Movements. We constructed a BFN
based on the denoised experimental data. First, we performed
an 8–13Hz band-pass filter on the signals of each channel
and then extracted the mu rhythm. Second, we calculated
the Pearson correlation coefficients between the mu rhythms
of any two channel signals and obtained a60 × 60 connection
coefficient matrix. Finally, the matrix was processed by the
threshold. We selected threshold δ = 0:85 and obtained a 0–
1 adjacency matrix. Figure 1 shows the BFN topological
structures of simple limb MI, whereas Figure 4 shows the
BFN topological structures of compound limb MI.

When imagining left-/right-hand compound motion, the
network in the vicinity of electrode C4/C3 in the correspond-
ing motor control cortex region is highly agglomerated.
Similarly, for the left-hand/-foot and right-hand/left-foot
MI, the network in the vicinity of electrodes C4/Cz and
C3/Cz in the corresponding motor control cortex region is
highly agglomerated. Combining Figures 1 and 4, we observe
that different movement patterns result in different parti-
tions. Therefore, based on the threshold network, we con-
structed three weighted BFNs with electrodes C3, C4, and
Cz as the center, which were called the C3, C4, and Cz region
BFNs. Then, we calculated the CIR of these three BFNs and
composed the three-dimensional feature vectors ½CIRC3,
CIRC4, CIRCz� to characterize EEG signals.

The C3 region BFN was constructed as follows: We took
electrode C3 as the center. Then, we selected appropriate
electrodes to reduce redundant information based on the
electrode distribution relationship of the motor control corti-
cal region that right-hand MI corresponds to. Correspond-
ingly, we used electrodes F1, F3, F5, FC1, FC3, FC5, C1, C3,
C5, CP1, CP3, CP5, P1, P3, and P5 as the network nodes.
Similarly, electrodes F2, F4, F6, FC2, FC4, FC6, C2, C4, C6,
CP2, CP4, CP6, P2, P4, and P6 were used as the network
nodes of the C4 region BFN. Electrodes F1, F2, Fz, FC1,
FC2, FCz, C1, C2, Cz, CP1, CP2, CPz, P1, P2, andPzwere used
as the network nodes of the Cz region BFN.We separately cal-
culated the CIR in the C3, C4, and Cz regions of the 840
groups of EEG signals recorded in the experiment, whichwere
composed of CIRs. Figure 5 shows the distribution of the CIRs
in seven movement patterns. CIRC3 represents the C3 region
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CIR. The mean and standard deviation of the CIRs for seven
mental tasks are shown in Table 2.

Figure 5 intuitively shows that the feature vector ½CIRC3,
CIRC4, CIRCz� can distinguish the EEG signals of sevenmental
tasks. Especially, the data points of the silence and the left-foot
movement are highly distinguished from the other movement
patterns. Although overlaps among the data points of move-
ments (except for silence and left foot) are observed, the degree
of distinction is slightly evident. Figure 4 and Table 1 indicate

that among the three features of CIRC3, CIRC4, andCIRCz , the
three eigenvalues of silence are approximately 1, which is
theoretically consistent. The CIRC4 of the left-hand MI is
larger than those of the other two. For right-hand and left-
foot movements, similar conclusions are drawn. Additionally,
for both hands, CIRC3 and CIRC4 are considerably larger than
CIRCz. The CIRC4 of the left-hand/foot MI is the largest,
followed by CIRCz . The CIRC3 of the right-hand/left-foot MI
is the largest, followed by CIRCz. These results are consistent

Table 1: The selection of thresholds for different motor imagination of different subjects.

Task subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S 0.85 0.80 0.85 0.75 0.85 0.80 0.80 0.85 0.80 0.85 0.80 0.85

LH 0.85 0.75 0.80 0.75 0.80 0.80 0.85 0.85 0.80 0.75 0.85 0.80

RH 0.80 0.80 0.80 0.70 0.80 0.85 0.80 0.80 0.80 0.80 0.80 0.75

LF 0.85 0.85 0.80 0.75 0.85 0.80 0.80 0.80 0.75 0.85 0.80 0.85

LH&RH 0.75 0.70 0.75 0.70 0.75 0.75 0.70 0.80 0.75 0.75 0.75 0.75

LH&LF 0.70 0.80 0.70 0.80 0.70 0.70 0.75 0.75 0.70 0.80 0.70 0.80

RH&LF 0.75 0.75 0.80 0.70 0.80 0.75 0.70 0.75 0.80 0.75 0.75 0.70

Notes: Silence is abbreviated as S, left hand is abbreviated as LH, right hand is abbreviated RH, left foot is abbreviated LF, left hand and right hand is abbreviated
as LH&RH, left hand and left foot are abbreviated as LH&LF, and right hand and left foot are abbreviated as RH&LF.

Prepare MI
1 2 3 4 5 6 7 8 9 10 sec0

MIBegin Rest

Cue

(a) Experimental paradigm of one trial
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F6F4F2FzF1F3

AF3
AF7

F5
F7

FT7 FC5

C5T7

P7

PO7
PO3

O1 Oz O2
POz PO4 PO8

P5
P3

P1 Pz P2 P4 P6 P8

FC3

C3

FC1

C1

FCz

Cz

FC2

C2

FC4

C4

FC6

C6

FC8

TP7
CP5 CP3 CP1 CPz CP2 CP4 CP6

TP8

T8

(b) Electrode positions

Figure 3: Experimental paradigm and electrode positions.
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with the division of the limb motor control function in the
cerebral cortex. The CIR distribution of 7 mental tasks are
be further plotted in each individual subject (see Figure S1
for details).

3.2. Classification. To evaluate the significant difference
among the seven mental tasks of each subject, the article pairs
different mental tasks in pairs. 21 comparison groups were
constructed according to 7 groups of tasks, and the differ-
ences of the feature vector ½CIRC3, CIRC4, CIRCz� among each
comparison group were analyzed by the multifactor analysis

of variance. The comparison results are shown in Table 3.
This result reveals that there are significant differences in
these mental tasks.

To evaluate our method, we chose SVM to classify seven
mental tasks. To evaluate the classification performance of
feature vector, the 5-fold cross-validation technique was
selected. To train a multiclass classifier, we used the one-
versus-rest strategy. We randomly divided each MI task data
set into 5 parts and took turns to take 4 parts as training set
and 1 part as testing set. Since there were seven kinds of MI
tasks, there were 28 sets of samples were used as the training
set, and 7 sets of samples were used as the testing set. In order
to make the classification results more accurate, this process
was repeated 10 times.

Table 4 shows that the average classification accuracy of
the CIR in each mental task. Except for silence, the highest
accuracy reaches 91.88%. The average accuracy of the CIR
for seven mental tasks is 86.44%. This result indicates that
our proposed feature extraction method is promising for
the BCI research.

Besides, for motor imagery-based BCI system, a large
number of algorithms have been applied to extract EEG
features of different mental tasks such as band power (BP),
autoregressive (AR), power spectral density (PSD), and com-
mon spatial patterns (CSP) [26–29]. However, the above

Le� hand+right hand (C4/C3) Le� hand+le� foot (C4/Cz) Right hand+le� foot (C3/Cz)

Figure 4: BFN topological structures of compound limb MI.

0

6

5

4

3

1

2

0
1 2 3 4 5 6

CIRC3

CI
R CZ

CIRC4

7 8 9 0
2

4
6

8
10

Silence
Le� hand

Le� hand+right hand
Le� hand+le� foot
Right hand+le� footRight hand

Le� foot

Figure 5: CIR distribution of seven mental tasks.

Table 2: Mean and standard deviation of CIRs in seven mental
tasks.

CIRC3 CIRC4 CIRCz

Silence 1:46 ± 0:13 1:28 ± 0:14 1:07 ± 0:19
Left Hand 3:11 ± 0:78 5:71 ± 0:96 2:02 ± 0:49
Right Hand 5:87 ± 0:94 3:22 ± 0:71 2:01 ± 0:63
Left Foot 2:32 ± 0:49 2:16 ± 0:49 4:22 ± 0:59
Left Hand + Right Hand 6:11 ± 0:99 6:21 ± 1:00 2:09 ± 0:59
Left Hand + Left Foot 3:24 ± 0:55 5:98 ± 0:87 4:21 ± 0:51
Right Hand + Left Foot 5:95 ± 0:87 3:42 ± 0:65 3:89 ± 0:57
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feature extraction method is widely used only in the pattern
recognition of 2-class mental tasks, and there is a clear
deficiency in the recognition of multiclass MI [30]. CSP is a
method for multichannel spatial filtering of binary data and
has become the mainstream method of EEG signal process-
ing. Since the nature of CSP is a binary case, the literature
[12] uses a one-versus-rest scheme to modify the CSP algo-
rithm and proposes multiclass CSP (multi-CSP), multiclass
CSP based on generalized eigenvector (multi-GECSP), and
multiclass stationary Tikhonov-regularized CSP (multi-
sTRCSP) to solve multiclass MI classification. The classifica-
tion results are satisfactory. The interested readers for
detailed information should refer to the literature [12]. In
order to better highlight the effectiveness of CIR, in this
study, we use multi-CSP, multi-GECSP, and multi-sTRCSP
algorithms to extract features and classify and compare the
results with those of CIR, as shown in Table 5.

t-test was used to analyze the difference between the pro-
posed method and other methods, and the results show that
the proposed method is significantly different from the
multi-CSP (p < 0:01) and multi-GECSP (p < 0:01) but not
significantly different from the multi-sTRCSP (p = 0:065).
Although the proposed method and the multi-sTRCSP are

not significantly different, the classification accuracy of CIR
proposed in this study is higher than that of multi-sTRCSP,
which exceeds 2.37% gain. Therefore, we can draw a conclu-
sion that the CIR can use an MI feature to improve the
classification performance.

4. Discussion and Conclusions

In this study, we proposed CIR as a novel BFN feature and
applied it to multiclass MI classification research. The CIR
was proposed for the dynamic changes of BFN connection
characteristics under different movement patterns to reflect
the changes of network location and connection well.
Additionally, the CIR was fully considered in the network
topology features of single and compound limb MIs, thereby
improving the effectiveness of network measurement.
Compared with the traditional network measures, the CIR
has the characteristic of a regional network centered on the
functional cortex region, which reduces the loss of network
information and includes more functional connectivity infor-
mation among brain regions. At the same time, CIR compares
with multi-CSP, multi-GECSP, and multi-sTRCSP algo-
rithms in dealing withmulticlassMI. The classification results

Table 3: p values of the feature vector.

Task
CIRC3, CIRC4, CIRCz½ �

S LH RH LF LH&RH LH&LF RH&LF

S ≫0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
LH <0.01 ≫0.05 0.013 <0.01 0.012 0.021 0.017

RH <0.01 0.013 ≫0.05 <0.01 0.015 <0.01 <0.01
LF <0.01 <0.01 <0.01 ≫0.05 <0.01 <0.01 <0.01
LH&RH <0.01 0.012 0.015 <0.01 ≫0.05 0.018 0.026

LH&LF <0.01 0.021 <0.01 <0.01 0.018 ≫0.05 <0.01
RH&LF <0.01 0.017 <0.01 <0.01 0.026 <0.01 ≫0.05

Table 4: Average classification accuracies for feature (%).

Testing set
CIRC3, CIRC4, CIRCz½ �

S LH RH LF LH&RH LH&LF RH&LF

Fold-1 98.60 86.95 88.60 90.55 83.56 82.56 82.63

Fold-2 97.56 81.37 85.67 88.56 86.68 80.89 85.59

Fold-3 96.80 85.49 81.02 91.88 84.23 79.55 84.54

Fold-4 97.90 82.56 82.54 88.15 80.79 85.23 79.16

Fold-5 95.42 82.89 84.56 86.96 83.21 86.01 86.72

Average 97.26± 1.21 83.85± 2.29 84.48± 2.92 89.22± 1.97 83.69± 2.11 82.84± 2.76 83.73± 2.96

Table 5: The average classification accuracy of the seven mental tasks under different methods of each subject.

Method
Subject

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Mean

Multi-CSP 77.61 73.23 82.23 75.63 78.98 83.33 70.55 82.23 78.56 77.37 79.93 81.11 78.40

Multi-GECSP 77.64 70.23 79.28 81.13 69.95 75.56 76.79 77.21 72.89 75.32 78.21 73.59 75.65

Multi-sTRCSP 79.16 85.32 83.32 80.23 86.66 77.96 83.56 81.18 82.77 84.34 82.58 84.14 82.60

Proposed method 82.51 83.76 89.82 87.76 84.33 87.36 82.17 86.69 79.95 88.93 79.86 86.54 84.97
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verify that the multi-sTRCSP algorithm is superior to the
multi-CSP and multi-GECSP. However, the classification
accuracy of CIR proposed in this study is higher than that of
multi-sTRCSP, which further demonstrates the effectiveness
of CIR.

However, our method still has some drawbacks and
deserves further study. (1) For the more complex movements
in MI, the BFN has a denser topology and a more obvious
degree of clustering. Further research can expand the func-
tional regions appropriately and increase the dimensions of
feature vector to improve classification performance. (2)
Computational complexity is a concern for real-time BCI.
Hence, a topic worth considering is to reduce the computa-
tional complexity of our method, which will achieve general-
ization in practical applications.
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