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Aspiration dynamics generate robust predictions in
heterogeneous populations
Lei Zhou 1,2, Bin Wu 3, Jinming Du 4,5 & Long Wang 1✉

Update rules, which describe how individuals adjust their behavior over time, affect the

outcome of social interactions. Theoretical studies have shown that evolutionary outcomes

are sensitive to model details when update rules are imitation-based but are robust when

update rules are self-evaluation based. However, studies of self-evaluation based rules have

focused on homogeneous population structures where each individual has the same number

of neighbors. Here, we consider heterogeneous population structures represented by

weighted networks. Under weak selection, we analytically derive the condition for strategy

success, which coincides with the classical condition of risk-dominance. This condition holds

for all weighted networks and distributions of aspiration levels, and for individualized ways of

self-evaluation. Our findings recover previous results as special cases and demonstrate the

universality of the robustness property under self-evaluation based rules. Our work thus

sheds light on the intrinsic difference between evolutionary dynamics under self-evaluation

based and imitation-based update rules.
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Social behaviors such as cooperation are deeply rooted in the
daily interactions across all levels of organisms. In parti-
cular, humans exhibit remarkable capabilities of cooperat-

ing, coordinating, and dividing tasks with other humans. Such
social behaviors are indispensable to the survival and develop-
ment of human societies. Understanding the evolution of social
behavior is thus of great importance1,2. After decades of inves-
tigations, evolutionary game theory has been demonstrated as a
powerful tool to study the evolution of social behavior3,4.

Indeed, past decades have seen intensive investigations of
evolutionary games in structured populations5–9. One of the most
important questions is how population structure alters evolu-
tionary outcomes. It is shown that the answer to this question
strongly depends on update rules7,10–12. Update rules are explicit
behavioral rules of individuals, which specify what kind of
information they use and how they process such information to
determine future behaviors7. In evolutionary games, the infor-
mation required by update rules usually includes individuals’
strategies and payoffs. As the input for decision making, the
information used is likely to affect individuals’ behavioral
updating, resulting in changes at the population level. One kind of
information that receives particular attention is social peers’
payoff information. Recent human behavioral experiments sug-
gest that whether individuals use social peers’ payoff information
to update behavior may be crucial to the outcome of social
interactions, for example, the level of cooperation in groups13,14

or on network-structured populations15–18.
Based on the relevance of social peers’ payoffs, update rules in

theoretical models can be classified into two classes: imitation-
based (relevant) and self-evaluation based (irrelevant). Under
imitation-based rules, individuals update strategies by copying
more successful peers. When using self-evaluation based rules,
individuals self-assess performance of strategies and then switch
to strategy alternatives7. Self-evaluation can be based on aspira-
tions: individuals compare payoffs with their aspirations and then
switch based on the shortfall of payoffs19–23. Update rules of these
two classes are both common in practice and they are tailored for
different environment. For example, if individuals are not con-
fident to make decisions or uncertain about the consequences,
imitating the more successful provides valuable shortcuts for
decision-makers. Self-evaluation, instead, is efficient and superior
when social information is unavailable, regarded as unreliable, or
costs individuals too much to gather and process.

It is well known that imitation-based update rules lead to
evolutionary outcomes sensitive to model details, such as popu-
lation structures11,12,24, the way of imitating10,25, and hetero-
geneity of decision-making rules26,27. Such sensitivity makes it
difficult for researchers to generalize predictions across different
population structures (e.g., from regular to non-regular networks)
or different imitation-based rules (e.g., from death-birth28 to
pairwise comparison rules29,30). On the other hand, self-
evaluation based rules are shown to generate robust evolu-
tionary outcomes. For instance, the condition for strategy success
on unweighted regular networks is found to be the same as that in
well-mixed populations31, and such robustness is not affected by
different distributions of aspiration values32 or heterogeneous
ways of self-evaluation33. Despite the findings on unweighted
regular networks31–33, it remains unclear whether the robustness
property under self-evaluation based rules applies to hetero-
geneous population structures, where the number of neighbors
varies from one individual to another and each individual
interacts with their neighbors under different rates.

To fill this gap, we study evolutionary games under aspiration-
based self-evaluation rules (for short, aspiration dynamics) on
heterogeneous population structures represented by weighted
networks. Under the limit of weak selection and symmetric

aspirations, we analytically derive a condition for one strategy to
prevail over the other, which is found to coincide with the clas-
sical condition of risk-dominance. This condition holds for any
weighted network, any distribution of aspiration levels, and for
any individualized ways of self-evaluation. If aspirations are dif-
ferentiated by strategies, we find that the condition of risk-
dominance is altered and cooperation can evolve in the Prisoner’s
Dilemma game if individuals aspire more when they defect. The
intuitive interpretation of our results is as follows: one strategy
prevails over the other if the strategy on average brings more
satisfaction to individuals than the other does. Our work thus (i)
highlights that switching off from social peers’ payoff information
while updating strategies has a nontrivial impact on the evolu-
tionary outcomes, and (ii) demonstrates that the robustness
property of aspiration-based self-evaluation rules is universal in
heterogeneous populations.

Results
Population structure and games. We consider a population with
fixed size N (N ≥ 2). The population structure is depicted by a
static weighted graph (or network) with edge weights wij ≥ 0,
where vertices represent individuals, edges indicate who interacts
with whom, and weights describe the number of interactions per
unit time. Self-interactions are excluded. Individuals collect edge-
weighted average payoffs by playing games with their nearest
neighbors24. The total number of interactions each individual i
engages in is di ¼ ∑N

j¼1 wij (i= 1, 2,⋯ ,N). We assume di > 0 for
all i, which means that each individual has at least one neighbor
to interact with. Visually, the graph should have neither isolated
vertices nor self-loops, which are natural assumptions when
studying evolutionary games on graphs. In each game, individuals
play either strategy A or strategy B. The payoff matrix of the game
is given by

A B
A

B

a b

c d

� �
;

ð1Þ

where both players get payoff a if they play strategy A (A-player)
and get d if they play strategy B (B-player); if an A-player
encounters a B-player, the former obtains payoff b and the latter
c. For each individual i, we denote πi,X as its payoff when it uses
strategy X (X= A, B).

Aspiration dynamics. At each time step, an individual is ran-
domly selected and given the opportunity to revise its strategy.
We assume individuals follow self-evaluation-based rules, under
which they evaluate their strategies by comparing payoffs gar-
nered from the games with their aspirations. Aspirations are
either personalized32, which means each individual l has its own
aspiration αl (l= 1, 2,⋯ ,N), or contingent on strategies, which
means that individuals using strategy A have an aspiration αA and
those using B have αB. For simplicity, we consider fixed aspira-
tions, meaning that there is no adaptation of aspirations due to
learning. If such aspiration-driven update rules are deterministic,
the aspiration level serves as a sharp boundary between satisfac-
tion and disappointment34: if an individual’s payoff exceeds its
aspiration, the outcome is deemed satisfactory and it will repeat
its strategy; if the payoff is otherwise lower than the aspiration, it
feels disappointed and will switch to the other strategy. In real-life
situations, strategy updating involves mistakes and admits
bounded rationality, which is better captured by probabilistic
(stochastic) strategy switchings. The probability can be deter-
mined by the level of satisfaction, i.e., the difference between the
payoff and the aspiration. In our model, to be consistent with
previous work32,33,35, we use update functions g :R ! ½0; 1� to
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map the aspiration-payoff difference into the switching prob-
ability (see Methods). We allow individuals to have their own
update functions gl since they may behave differently even for the
same aspiration-payoff difference (i.e., level of dissatisfaction).
Albeit this flexibility, all update functions should ensure that
individuals have decreasing tendency to switch a strategy if it
brings more satisfaction (see Methods) (Fig. 1).

Here, we employ stochastic self-evaluation-based rules. Under
stochastic rules, the strictness of the strategy evaluation, namely,
how much the payoff-aspiration difference affects individuals’
decision-making, is controlled by the selection intensity β ≥ 036,37.
Since each individual on the network uses either strategy A or B,
the number of all possible states of the system is M= 2N.
Meanwhile, the transition probabilities between all the states can
be described by an M ×M matrix Pβ. Similar to the mutation-
selection process11,38, the resulting aspiration dynamics admit a
unique stationary distribution uβ (a column vector with M
elements), which is the unique solution to the equation uT

β Pβ ¼
uT
β (the superscript T represents vector/matrix transpose). In this

distribution, we compare the average abundance (i.e., frequency)
of strategy A, hxAi ¼ uT

β x, with that of B, hxBi ¼ uT
β ð1� xÞ,

where x is the frequency of strategy A in each of the M states. If
〈xA〉 > 〈xB〉, strategy A prevails over B. Otherwise, B prevails over
A. We derive the condition for strategy success, i.e., the condition
which leads to 〈xA〉 > 〈xB〉 or 〈xB〉 > 〈xA〉. To make progress, we
consider weak selection (i.e., 0 < β≪ 1)24,36,37,39–41, under which
individuals switch strategies with a nearly constant probability.
Weak selection may arise for the following reasons: (i) individuals
have no obvious preference over different strategies42,43, (ii)
individuals are uncertain about the payoffs, aspirations, or
aspiration-payoff differences due to noise or stochastic
interactions44.

General condition for strategy success. Given our assumptions,
we calculate the average frequency difference between strategy A
and B, 〈xA− xB〉, in the stationary regime. If 〈xA− xB〉 > 0,

strategy A prevails over B; otherwise, strategy B prevails over A.
At the neutral drift β= 0, strategy A and strategy B are of equal
abundance32. Under weak selection 0 < β≪ 1, we use perturba-
tion theory and get that 〈xA− xB〉 > 0 if

uT
0 P0

0c > 0; ð2Þ

where P0
0 ¼ d

dβPβjβ¼0 and c ¼ ∑1
k¼0 P

k
0ð2x � 1Þ is the accumu-

lated average abundance difference during the whole evolution at
the neutral drift (see detailed calculations in Methods). In fact,
condition (2) holds for a large class of evolutionary dynamics
which admit a unique limiting stationary distribution and an
equal abundance of strategy A and B at the neutral drift. For
example, the death-birth, birth-death, and pairwise comparison
process with symmetric mutations all belong to this
class11,12,24,28,30,45.

For aspiration-based update rules, individuals update their
strategies independently when β= 0. This makes it possible for us
to calculate the exact formula of c even if each individual uses
distinct update functions. In a nutshell, we transform the
calculation under the original N-dimensional Markov chain with
2N states to that under N one-dimensional Markov chains with
2 states by virtue of the independence of strategy updating (see
detailed calculations in Supplementary Note 3.2). In addition, we
adapt our method for imitation-based update rules with a shared
update function, which is shown to be equivalent to that in ref. 46.
In particular, we give the condition for strategy success on any
weighted graphs under pairwise comparison rules (see Supple-
mentary Note 3.3 for detailed calculations).

In the following, we mainly focus on aspiration-based update
rules and explore how symmetric or asymmetric aspirations affect
the evolutionary outcomes.

Personalized and symmetric aspirations. Let us first consider
personalized and symmetric aspirations. Under weak selection,
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Fig. 1 Aspiration dynamics on weighted graphs. a An undirected weighted graph with edge weight wij≥ 0. b Individuals occupy vertices of the graph and
each individual l has an imaginary payoff value αl they aspire, called aspiration level. c For aspiration dynamics, at each time step, an individual is randomly
selected (here, the sixth individual, marked by the black circle). It garners an edge-weighted average payoff (π6) by playing games with its nearest
neighbors24. Then it self-evaluates the performance of the strategy in use by calculating the aspiration-payoff difference (α6− π6), which is later used by
the update function g :R ! ½0; 1� to determine its switching probability. If the payoff exceeds the aspiration, it feels satisfied and is more likely to keep its
current strategy; otherwise, it is prone to switch. As illustrated, α6− π6 > 0 (i.e., π6 < α6) and the corresponding individual switches from strategy B to A.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23548-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3250 | https://doi.org/10.1038/s41467-021-23548-4 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


we find that strategy A prevails over B if

aþ b > cþ d; ð3Þ
and strategy B prevails over A if a+ b < c+ d. This result holds
for all weighted graphs without self-loops, for all distributions of
aspirations, and for arbitrary number of update functions. Fur-
thermore, if strategy A and B are both best replies to themselves
(i.e., a > c and b < d), our result reduces to the classical concept of
risk-dominance. It indicates that under the limit of weak selec-
tion, aspiration dynamics always select the risk-dominant strat-
egy, which has a larger basin of attraction. In Fig. 2, we set payoff
values of the game with b= 0, c= 5, and d= 1. Under this game,
condition (3) predicts that for any weighted graphs without self-
loops, a > 6 indicates strategy A prevails over B (equivalently,
〈xA〉 > 1/2); a < 6 leads to 〈xA〉 < 1/2. Our simulation results in
Fig. 2 match the theoretical predictions perfectly.

The above condition significantly generalizes previous results:
the selection of risk-dominant strategy on unweighted regular
graphs (where all the individuals have the same number of
neighbors and each individual interacts with their neighbors
under identical rates)31–33 is generalized to non-regular and
weighted graphs with individualized update functions and
personalized aspirations.

For an intuitive understanding of our result, we offer the
following explanations. Under weak selection, the expected
payoffs of playing strategy A and B are evaluated at the neutral
(β= 0) stationary distribution of the aspiration dynamics (see
Methods for details). In this distribution, individuals update
strategies independently, which makes their strategies uncorre-
lated. Individual l thus on average interacts with neighbors using
strategy A as many times as those using B. This means that the
expected payoffs of l are πl,A= (1/2)(a+ b) and πl,B= (1/2)(c+ d)
when it plays strategy A and B, respectively. If πl,A > πl,B,
individual l is more satisfied when it uses strategy A and the
switching rate from A to B is less than that from B to A. Note that
πl,A > πl,B is equivalent to a+ b > c+ d. Therefore, individual l is
more likely to be an A-player if a+ b > c+ d. Since the above
logic applies to any individual, the condition a+ b > c+ d
actually makes all the individuals feel more satisfied when they
play strategy A. As a consequence, the average frequency of A-
players in the population is greater than that of B-players.
Similarly, a+ b < c+ d results in more satisfaction when

individuals play strategy B, which makes the average frequency
of A-players less than that of B-players.

Comparing our result with that in well-mixed populations
(equivalent to a complete graph in our model)31, we show that
population structure does not alter the condition for strategy
success. In other words, the condition for strategy success under
aspiration dynamics is robust to the underlying population
structure. The robustness property has practical advantages on
strategy selection11: (i) for a fixed game, the predictions are the
same for a large class of population structures; (ii) to tell which
strategy succeeds, the population can be assumed to be well-
mixed.

Besides, by generalizing the main Theorem in ref. 32 to non-
regular graphs, our result is related to the structure coefficient
σ8,11 derived for weak selection. It is shown that σ depends on the
update rule and the population structure (including the
population size N). But it does not depend on the payoff entries.
It summarizes the effect of population structure on the condition
for strategy success. Intuitively, for strategy A to be favored over
strategy B, σ quantifies the required degree of assortment among
individuals who use the same strategy11, and σ > 1 implies that
individuals with the same strategy are more likely to interact with
each other than those with different strategies. For aspiration
dynamics, we prove that σ= 1 for a large class of population
structures and there is no dependence on the population size.
This contrasts with the result obtained under imitation-based
rules, which are shown to sensitively depend on the population
structure and the population size11,24. To better illustrate the
difference between aspiration-based and imitation-based rules, we
plot Fig. 3 to compare the structure coefficients on three common
graphs. Here, σ= 1 indicates that self-evaluation-based rules do
not lead to assortment of strategies for the purpose of strategy
selection.

In the meanwhile, we show that the results under imitation-
based rules are also sensitive to the heterogeneity of update
functions, even if we consider minimum heterogeneity (see
Fig. 4b and Supplementary Fig. 1). In contrast, maximum
heterogeneity of update functions does not alter the evolutionary
outcomes induced by aspiration-based rules (see Fig. 4a). Such
results demonstrate that aspiration-based rules lead to evolu-
tionary outcomes robust to individual heterogeneities while
imitation-based rules show great sensitivity.
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exponent equal to 3). Each data point is obtained by averaging 〈xA〉 in 200 independent runs. For each run, we calculate 〈xA〉 by averaging the frequency of
strategy A in the last 1 × 107 time steps after a transient time of 1 × 107 time steps. Other parameters: N= 1000, �k ¼ 6, αl= 2.0 (l= 1, 2,⋯ ,N), and β= 0.01.
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Asymmetric aspirations contingent on strategies. When indi-
viduals’ aspirations are contingent on their strategy in use
(and thereby asymmetric), we find that the condition for
strategy A to be favored over B under weak selection is
aþ b > cþ d � 2 αB � αA

� �
, where αX is the aspiration of X-

players (X= A, B). Note that the condition now depends on
aspirations. Nonetheless, it is still robust to population structures,
which generates invariant predictions for a large class of popu-
lation structures. Intuitively, the symmetry breaking of aspiration
levels leads to additional asymmetry between strategy A and B:

Aspiration-based

Pairwise 
comparison

Death-birth
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− 2

− 2

− 2

+ 1 −
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Fig. 3 The structure coefficients σ for aspiration-based and imitation-based update rules. The two imitation-based rules shown here are pairwise
comparison29,30 and death-birth update rule28. Here, the parameter N represents the population size and k the degree of the regular graph (i.e., the
number of neighbors each individual has). For strategy A to be favored over strategy B, the structure coefficient σ can be interpreted as the required degree
of assortment among individuals who use the same strategy11. All the σs in the table are obtained under the limit of weak selection. In addition, the limit of
rare mutation is assumed under imitation-based rules. We also derive a general formula under pairwise comparison update rules for any weighted graphs
in Supplementary Note 3.3.
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�
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of a�Heter � a�Homo. The larger the size of the symbol, the more sensitive the evolutionary outcome to individual heterogeneity. In panel a, we consider
maximum heterogeneity of decision-making functions (i.e., for any i≠ j, gi≠ gj) under both aspiration-based (red squares) and imitation-based (blue
circles) rules. In panel b, we consider the minimum heterogeneity under imitation-based rules, where all the individuals share the same decision-making
function g(u) except one. Here, the blue circles are the results obtained when g6≠ g, and the red triangles are the results when g5≠ g. In all the calculations,
we set gðuÞ ¼ g1ðuÞ ¼ 1=ð1þ expð�uÞÞ, g2ðuÞ ¼ ð1þ erfðuÞÞ=2, g3ðuÞ ¼ ð1þ tanhðuÞÞ=2, g4ðuÞ ¼ 1=ð1þ expð�u=2ÞÞ, g5ðuÞ ¼ 1=ð1þ 10 expð�uÞÞ, and
g6ðuÞ ¼ 10=ð10þ expð�uÞÞ. Other parameters: b= 0, c= 5, d= 1, αl= 1.0 (l= 1, 2,⋯ , N), β= 0.01, and μ→ 0 (see Supplementary Note 3.3 for definitions).
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A-players not only gain a different payoff but also have a different
benchmark for satisfaction from B-players. The expected level of
satisfaction is now modified as (1/2)(a+ b)− αA and (1/2)(c+ d)
− αB for A-players and B-players, respectively. This modification
alters the condition of risk-dominance derived under persona-
lized aspirations and results in the dependence on aspiration
levels.

So far, we only consider average payoffs. Our framework also
applies to accumulated payoffs (see Supplementary Note 3.2.4 for
the condition for strategy success). We show that the condition of
risk-dominance is invariant under accumulated payoffs, provided
that aspirations are not contingent on strategies and the selection
intensity is weak. In addition, we also verify the condition for
strategy success (i.e., inequality (3)) under the classical payoff
scheme of R= 1, S, T, P= 0 (see Supplementary Fig. 2), and
confirm the robustness of aspiration dynamics as well as the
sensitivity of imitative dynamics to the heterogeneity of decision-
making functions on large networks (see Supplementary Fig. 3).

Discussion
In this work, we present a general framework to study aspiration
dynamics in heterogeneous populations, which makes it possible
to study the joint effect of heterogeneous population structure,
personalized aspiration values, and individualized update rules on
the evolutionary outcomes. Previous studies23,31–33, due to the
limitation of their methodology, can only handle regular graphs.
Under our framework, we show that under weak selection, the
condition for one strategy to be selected over the other is invar-
iant on different population structures and under various kinds of
individual heterogeneities. Moreover, this condition coincides
with the condition of risk-dominance. It indicates that aspiration
dynamics always select the risk-dominant strategy. When indi-
viduals’ aspirations are contingent on strategies and thus asym-
metric, the condition for strategy success is altered and
determined by the difference between the aspirations of distinct
strategies. In this case, cooperation can evolve in the Prisoner’s
Dilemma if individuals aspire more when they defect.

Our framework can also be used to study imitation-based
update rules. We demonstrate that our approach is equivalent to
that in refs. 24,46 when all the individuals share the same
imitation-based update function (see Supplementary Note 3.3 for
details). Moreover, our results for the pairwise comparison rule
show that cooperation can never evolve on any weighted net-
works since the critical benefit-to-cost ratio is negative and the
evolutionary outcomes are greatly affected by the heterogeneity of
update functions. This confirms that evolutionary outcomes
induced by imitation-based rules are very sensitive to model
details. Compared with the results under aspiration dynamics, it
highlights the advantage of aspiration-based update rules, which
generates robust evolutionary outcomes.

In a nutshell, the primary contribution of our work is three-
fold: (i) we derive a general condition for strategy success that
applies to a large class of evolutionary dynamics (see Supple-
mentary Note 3 for details); (ii) we prove that for aspiration
dynamics, the condition for strategy success is invariant on any
weighted networks, which reveals the remarkable robustness of
aspiration dynamics to the underlying population structure; (iii)
the robustness property of aspiration dynamics is shown to be
universal with respect to various kinds of heterogeneities and
their aggregations, including heterogeneity of aspiration values,
heterogeneity of update functions, and heterogeneity of social ties.

Although our work provides a general framework to study
evolutionary dynamics in heterogeneous populations, theoretical
results are obtained under the limit of weak selection. In this
selection regime, the payoffs garnered by individuals affect

minimally their probability of changing strategies. If the selection
intensity becomes strong, individuals’ strategy updating will be
strongly affected by payoffs and aspirations. In this case, our
theoretical results may no longer apply. Despite this limitation, it
is still necessary and useful to conduct theoretical analysis under
weak selection since (i) it may be by far the only way to obtain
analytical results for evolutionary dynamics on heterogeneous
networks24,47, and (ii) the theoretical predictions obtained can
provide guidance for future studies (e.g., testing such predictions
experimentally15–18).

For self-evaluation-based update rules we focus on in this
paper, in addition to the irrelevance of social information, they
also have other features: self-evaluation-based rules are
innovative7, which means they can revive strategies absent in the
neighborhood without additional mechanisms such as random
exploration or mutation; they prescribe increasing tendency to
cooperate when more cooperators are present in the neighbor-
hood for the Prisoner’s Dilemma (similar to conditional
cooperators48). These features seem to be consistent with the
recent findings on the possible features of human strategy
updating15–18. This suggests that self-evaluation-based rules may
be a good candidate for human strategy updating, which needs
further empirical test.

In addition, aspiration-based self-evaluation rules are related to
reinforcement learning. The rationale behind reinforcement
learning is the law of effect stated by Thorndike in 1898: actions
bringing satisfactory effect will be more likely to be repeated and
those leading to discomfort will be less likely to occur. This is
similar to our stochastic update rules, except the reinforcement of
actions49,50. In practice, aspiration can also evolve based on past
experience22. Although these features are not considered in our
models, our work provides an important step towards multi-agent
learning in heterogeneous populations, whereas literature on
reinforcement learning usually focuses on the simplest two-
person repeated games (see a few recent exceptions on regular
graphs51,52). Extending our model to incorporate aspiration
adaptation and reinforcement of actions is a future direction.

For the evolution of human cooperation, our work suggests the
investigations of which update rules human actually uses for
strategy updating. A promising direction is to conduct experi-
ments explicitly manipulating the information availability or
monitoring the information request during the game14,53. Then,
based on the distinct informational requirements of self-
evaluation-based and imitation-based rules, we may infer under
what conditions human subjects tend to use these two classes of
update rules and how they implement them. For theoretical
studies, our work reveals a class of update rules which generate
robust predictions for strategy success on a large class of popu-
lation structures. The reason may lie in the irrelevance of social
peers’ payoffs for strategy updating. It remains unclear what other
assumptions in update rules crucially affect evolutionary out-
comes. Future work along this line may lead to a deeper under-
standing of how update rules alter the evolutionary outcomes,
which may help design the optimal decision-making rules for
cooperation.

Methods
Notation. The population consists of N individuals. Each individual either uses
strategy A or strategy B. We use si to denote the strategy of individual i: si= 1 if
individual i uses strategy A, otherwise si= 0. The state of the population is
represented by a column vector s ¼ ðs1; s2; s3; � � � ; sN ÞT and s= 1 means all the
individuals in the population use strategy A. At state s, we denote the frequency
(i.e., abundance) of strategy A as xAðsÞ ¼ ∑N

l¼1 sl=N and that of strategy B as xB(s)
= 1− xA(s). Since each individual can use strategy A or strategy B, the number of
all possible states of the population is M= 2N. A convenient way of indexing the
state is to convert the binary vector s to a decimal number and plus one, which
makes the index of states range from 1 to M. Here, we use the column vector
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x ¼ xAðs1Þ; xAðs2Þ; � � � ; xAðsMÞ
� �

to represent the frequency of strategy A at
each state.

Meanwhile, individuals play game (1) with their neighbors and obtain edge-
weighted average payoffs. For instance, at state s, individual l gets a payoff
πlðsÞ ¼ ∑N

k¼1 wlk½aslsk þ bslð1� skÞ þ cð1� slÞsk þ dð1� slÞð1� skÞ�=dl .

General condition for strategy success. For evolutionary dynamics which can be
modeled by an irreducible and aperiodic Markov chain, a unique limiting sta-
tionary distribution u ¼ ðu1; u2; � � � ; uj; � � � ; uMÞT is guaranteed, where uj means
the probability to occur at state j in the stationary distribution. We denote the
average frequency of strategy A in the stationary distribution as 〈xA〉= uTx and
that of B as 〈xB〉= uT(1− x). In addition, a transition matrix P is constructed
where its (i, j)-th element pij represents the probability to transit from state i to
state j. Since the stationary distribution u, transition matrix P, and average fre-
quency of strategies 〈xA〉, 〈xB〉 are determined by the selection intensity β, we
rewrite them explicitly as uβ, Pβ, hxAiβ , and hxBiβ . By the definition of stationary

distribution, uTβPβ ¼ uTβ . Differentiating both sides with respect to β at β= 0 and
rearranging the items, we have

ðu00ÞT ¼ uT
0 P0

0 I� P0 þ 1uT0
� ��1

: ð4Þ
where I is the identity matrix of dimension M, u00 ¼ d

dβ uβjβ¼0, and P0
0 ¼ d

dβPβjβ¼0.

Under weak selection β→ 0,

hxAiβ � hxBiβ ¼ uT
0 2x � 1ð Þ þ u00

� �T
2x � 1ð Þβþ Oðβ2Þ: ð5Þ

Here, we assume that for the evolutionary dynamics we are focusing on, the
average frequency of strategy A equals to that of strategy B at the neutral drift β=
0, which means that uT

0 2x � 1ð Þ ¼ 0. Therefore, under weak selection, strategy A
prevails over B (i.e., hxAiβ>hxBiβ) if

uT
0 P0

0 ∑
1

k¼0
Pk
0ð2x � 1Þ > 0; ð6Þ

and strategy B prevails over A if uT
0 P0

0 ∑
1
k¼0 P

k
0ð2x � 1Þ < 0. Let

c ¼ ∑1
k¼0 P

k
0ð2x � 1Þ ¼ ðc1; c2; � � � ; cMÞT, which represents the accumulated

average abundance difference between strategy A and B during the whole
evolution. Then, we get condition (2) in the main text.

Condition for strategy success under aspiration dynamics. For aspiration-based
update rules, we first define individual l’s update function as gl(u) (l= 1, 2,⋯ ,N)
and these functions represent the tendency to switch strategies. Here, u= β(αl−
πl), where αl is individual l’s aspiration level, πl is its payoff, and β > 0 is the
intensity of selection24,36. Weak selection means β≪ 1 and β= 0 is the neutral
drift11. In addition, each function gl(u) should satisfy (i) it is a probability, i.e.,
gl(u)∈ [0, 1] for u 2 R; (ii) it is a strictly increasing function of u, i.e., g 0lðuÞ ¼
dglðuÞ=du > 0 for all u, which indicates that individuals with higher payoffs should
have a lower tendency to switch; (iii) gl(0) > 0, which avoids frozen dynamics at the
neutral drift.

The population dynamics governed by aspiration-based update rules can be
described by an irreducible and aperiodic Markov chain32. Meanwhile, such
dynamics also lead to an equal average abundance of strategy A and B at the
neutral drift. Therefore, the general condition (2) applies to aspiration-based
update rules.

To calculate the exact formula of c in condition (2), we utilize the fact that
individuals update their strategies independently when β= 0 for aspiration-based
update rules. This makes it possible to calculate c by summing up all the individual
contributions. For each individual, its dynamics can be modeled by a one-
dimensional Markov chain with 2 states. For instance, the transition matrix for
individual l is

1 0

1

0

1� 1
N glð0Þ 1

N glð0Þ
1
N glð0Þ 1� 1

N glð0Þ

 !
:

ð7Þ

and its individual contribution to the accumulated average abundance difference
during the whole evolution is 2siðlÞ � 1

� �
= 2glð0Þ
� �

where si(l) is the strategy of
individual l at state i. Based on these, we have

ci ¼ ∑
N

l¼1

2siðlÞ � 1
2glð0Þ

: ð8Þ

Denote hðsiÞ ¼ ∑M
j¼1 p

0
ijcj ¼ ∑M

j¼1 p
0
ij ∑

N
l¼1

2sjðlÞ�1
2gl ð0Þ . Condition (2) in the main text

implies that strategy A prevails over B if

hhðsÞi0 > 0; ð9Þ
where the bracket 〈⋅〉0 means to take the average over the neutral stationary
distribution (i.e., when β= 0). To evaluate 〈h(s)〉0, we need to know the correlation
of strategies in the neutral stationary distribution, i.e., hslski0 for any l, k. Under
aspiration dynamics, at the neutral drift β= 0, individuals’ strategy updating does

not depend on the aspiration level, the payoff, and the population structure. This
implies that the transition probabilities between any two states are thus the same in
both directions, which indicates P0 ¼ PT

0 . By the uniqueness of the stationary
distribution u0 and the property of the transition (stochastic) matrix P01= 1, we
have u0= 2−N1. This leads to that at the neutral stationary distribution, each
individual plays strategy A with probability one-half, i.e., hsli0 ¼ 1=2 for all l.
Furthermore, due to the independence of individuals’ strategy updating, hslski0 ¼
hsli0hski0 ¼ 1=4 when l ≠ k. Based on these, we have that the correlations of
strategies at the neutral stationary distribution are

hslski0 ¼
1þ δlk

4
; ð10Þ

where δlk= 0 if l ≠ k and δlk= 1 if l= k. Equation (10) indicates that aspiration
dynamics do not lead to assortment of strategies in the neutral stationary
distribution.

Personalized and symmetric aspirations. For personalized and symmetric
aspirations, each individual l has its own aspiration αl (l= 1, 2,⋯ ,N) and this
aspiration does not depend on the strategy of individual l. In this case, we have

hðsÞ ¼ 1
N

∑
N

l¼1

g 0lð0Þ
glð0Þ

ð1� 2slÞαl þ ð1� 2slÞπlðsÞ
� �

; ð11Þ

and

hhðsÞi0 ¼
1
4N

∑
N

l¼1

g 0lð0Þ
glð0Þ

� �
ðaþ b� c� dÞ: ð12Þ

Since g 0lð0Þ > 0 and gl(0) > 0 for any l, equation (12) implies that for symmetric
aspirations, strategy A prevails over B if a+ b > c+ d and strategy B prevails over A
if a+ b < c+ d. Note that the condition for strategy success does not depend on the
population structure at all, which highlights the intrinsic difference between the
evolutionary dynamics induced by aspiration-based and imitation-based
update rules.

Asymmetric aspirations contingent on strategies. For aspirations contingent on
the strategy in use, individuals playing strategy A have aspiration level αA while
those using B have αB. Since coefficients c is evaluated at β= 0, the asymmetry of
aspirations thus does not affect c. However, h(s) now depends on both αA and αB,
and it is modified as

hðsÞ ¼ 1
N

∑
N

l¼1

g 0lð0Þ
glð0Þ

ð1� slÞαB � slαA þ ð1� 2slÞπlðsÞ
� �

: ð13Þ

Meanwhile, at the neutral stationary distribution, strategy correlations hslski0 are
also independent of aspirations. Based on these, we have

hhðsÞi0 ¼
1
4N

∑
N

l¼1

g 0lð0Þ
glð0Þ

� �
ðaþ b� c� d þ 2αB � 2αAÞ; ð14Þ

which implies under asymmetric aspirations, strategy A prevails over B if

aþ b > cþ d � 2ðαB � αAÞ;
and strategy B prevails over A if a+ b < c+ d− 2(αB− αA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included within the paper and its
supplementary information files.

Code availability
We use Microsoft Visual Studio Community 2019 and Matlab 2020a to write the custom
Fortran code and analyze the data, respectively. The computer codes for Monte Carlo
simulations used in this work are available in Zenodo with the identifier https://doi.org/
10.5281/zenodo.4723407.
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