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Abstract: Vitamin D deficiency and insufficiency are highly prevalent conditions worldwide due
to several factors, including poor sun exposure. Shift workers may be exposed to the risk of hy-
povitaminosis D due to fewer opportunities for sunlight exposure compared to day workers. A
systematic review of the PubMed, SCOPUS, and EMBASE databases was conducted according to
the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) statement to
investigate the effect of shift work on vitamin D levels. Mean differences (MD) and 95% confidence
intervals (CI) of serum 25-OH-D levels in shift workers and non-shift workers were calculated. A
total of 13 cross-sectional studies were included in the meta-analysis. We found significantly lower
levels of serum 25-OH-D in shift workers compared with non-shift workers (MD: −1.85, 95% CI
[−2.49 to −1.21]). Heterogeneity among included studies was high (I2 = 89%, p < 0.0001), and neither
subgroup analysis nor meta-regression were able to identify specific sources of the heterogeneity that
may be related to the different characteristics of shift work among studies. The monitoring of serum
vitamin D levels and prompt correction of any deficiencies should be considered in shift workers.
Notably, since a large part of the observations are derived from Koreans, larger epidemiological
studies are needed in other populations.

Keywords: vitamin D; shift work; night work; circadian rhythm; workers; job

1. Introduction

As shown by worldwide data, vitamin D deficiency (25-OH-D levels below 20 ng/mL)
and vitamin D insufficiency (25-OH-D levels between 21 and 29 ng/mL) are serious
global health problems [1,2]. Indeed, approximately one billion people are estimated
to be affected by vitamin D insufficiency [3]. The prevalence of this condition varies widely
by geographic area, latitude, lifestyle habits (work, sun exposure, type of clothing used),
dietary habits, gender, and genetic factors [4]. Notably, since the optimal 25-OH-D levels
are still debated, the above-mentioned definitions of hypovitaminosis D are not universally
accepted. Consequently, maintaining 25-OH-D levels > 20 ng/mL is widely accepted for
most of the population, but individual objectives may vary [5].

Approximately 90% of the vitamin D detectable in human serum is synthesized in the
skin from a cholesterol-like precursor (7-dehydrocholesterol) present in epidermal cells.
This, as a result of exposure to ultraviolet B (UV-B) radiation from sunlight, is converted to
vitamin D3 (cholecalciferol). The remaining portion (around 10%) is obtained from foods
such as oily fish, egg yolk, animal liver, and some types of mushrooms. Animal sources
contain vitamin D3, while plant sources contain vitamin D2 (ergocalciferol). Vitamin D2 and
vitamin D3 are both biologically inactive and they undergo further enzymatic conversions:
first, they undergo a 25-hydroxylation in the liver, becoming 25-(OH)-D (calcifediol), the
main circulating form of vitamin D, with a half-life of 2–3 weeks. Then, 25-(OH)-D is
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finally activated by 1-alpha-hydroxylation in the kidney, becoming 1,25(OH)2D (calcitriol)
with a half-life of 4–6 h [6,7]. Vitamin D plays a key role in the homeostasis of calcium
metabolism and in the process of bone modeling and remodeling [4]; therefore, deficiency
of this vitamin is associated with osteoporosis and a higher incidence of fractures [6,8].

Since endogenous vitamin D synthesis is highly dependent on sunlight, poor exposure
to solar radiation is the leading cause of hypovitaminosis D [9]. A systematic review of
71 studies conducted worldwide found that occupation is a major factor impacting vitamin
D levels and that indoor workers are at greater risk of developing hypovitaminosis D than
outdoor workers [10]. In addition, several studies have shown an association between low
vitamin D levels and many other diseases, such as autoimmune disorders, cardiovascular
disease, infectious diseases, type 2 diabetes mellitus, cancer, and neurological and neu-
ropsychiatric disorders, such as schizophrenia, dementia, and depression [6,11]. Shift work
refers to a work organization in which the workers have shift schedules to cover more
than the usual 8 h day, up to and including the whole 24 h [12]. Shift work—in particular,
shift work including night shifts—may be a risk factor for vitamin D deficiency, since shift
workers are likely to have fewer opportunities for sunlight exposure than day workers [13].
In addition, shift workers are more likely to consume unhealthy foods, as well as displaying
a poor tendency to take vitamin supplements [14,15].

Several studies have shown an association between shift work and overweight [16–19].
At the same time, it is known that hypovitaminosis D is common in obese individuals and
that BMI and fat mass are factors inversely related to 25-OH-D levels [1,20,21].

Since several factors associated with shift work can predispose shift workers to lower
vitamin D levels, the objective of the present meta-analysis is to determine whether shift
work constitutes a risk of low levels of vitamin D.

2. Materials and Methods
2.1. Search Strategy

A systematic search was conducted through the Scopus, PubMed, and EMBASE
databases from January to February 2022. The terms “vitamin D”, “25-hydroxyvitamin-
D”, or “25-OH-D” were combined with “shift work”, “night work”, “night shift work”,
“shiftwork”, “shift schedule”, or “indoor work”. In particular, the following query strings
were used: “(vitamin D* OR 25-Hydroxyvitamin-D OR 25(OH)D OR 25-OH-D) AND
(shift work* OR night work* OR night shift work* OR shiftwork* OR nightwork* OR shift
schedule OR indoor work*)” (PubMed, EMBASE), and “TITLE-ABS-KEY ((vitamin D*
OR 25-Hydroxyvitamin-D) AND (shift work* OR night work* OR night shift work* OR
shiftwork * OR nightwork* OR shift schedule OR indoor work*))” (Scopus). The search
was conducted by two authors (M.M. and G.S.) according to the guidelines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [22]. The
study was registered on PROSPERO (CRD42022341088).

2.2. Selection Criteria

The eligible studies were selected following the PICO model: Population (adult
workers), Intervention (shift work), Comparison (non-shift work), Outcome (25-OH-D
serum levels). All the studies reporting vitamin D levels in adult workers (differentiated in
shift workers and non-shift workers) until 2021 were included. In vitro or animal studies,
case reports, and non-English papers were excluded.

2.3. Data Extraction and Quality Assessment

Three authors (M.M., G.S., and M.B.) performed data extraction. The following data
were collected: first author, year, study design, method of vitamin D measurement, number
of subjects, gender, age, body mass index (BMI), mean serum 25-OH-D levels. When the
values of 25(OH)D levels were reported in nmol/L, they were converted into ng/mL by
dividing them by 2.496. When the standard error of the mean (SEM) was reported, standard
deviation (SD) was calculated by multiplying SEM by the square root of the number of
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subjects. The quality of evidence (QoE) was assessed by one researcher (M.M.) using the
Cambridge Quality Checklists (CQCs) [23]. In brief, the CQCs were designed to identify
high-quality studies for systematic reviews and meta-analyses and provide information
on correlations (five items investigating sampling method, response and retention rates,
sample size, and correlates/outcome assessment), risk factors (definition of study design),
and causal risk factors (how the risk factor is causally related to the outcome).

2.4. Statistical Analysis

The analysis was performed using RevMan software v. 5.4 (Cochrane Collabora-
tion, Oxford, UK) and Comprehensive Meta-Analysis v. 3 (Biostat Inc., Englewood, NJ,
USA). Mean difference and 95% confidence interval (CI) were calculated to compare serum
vitamin D levels between shift workers and non-shift workers, and meta-analysis was per-
formed using a random-effect model. The I2 statistic was applied to inspect heterogeneity,
with I2 > 50% and p < 0.1 indicating high between-study heterogeneity. Publication bias
was assessed by funnel plot asymmetry as well as Egger’s test. To investigate the source
of heterogeneity, subgroup analysis (based on methods of vitamin D measurement and
gender prevalence), meta-regression (with adjustment for age and BMI), and sensitivity
analysis (omitting each single study to explore its effect on the overall meta-analysis) were
conducted. Statistical significance was set at 0.05.

3. Results
3.1. Study Selection

Using the above-mentioned search strategy, 223 abstracts were extracted. After the
removal of 48 duplicates, 161 articles were screened. Of these, 102 were identified by title
or abstract as papers on other topics, review articles, editorials, case reports, animal or
in vitro studies, or non-English articles. Of the remaining 59 full-text articles assessed for
eligibility, 46 were excluded due to non-extractable data (e.g., vitamin D values not specified,
not clearly distinguished between shift and non-shift workers, or data summarized with
different descriptive statistics to mean and SEM or SD). Finally, 13 studies [12,24–35] were
included in the present meta-analysis (Figure 1). All the included studies had a cross-
sectional design, and their main characteristics are presented in Table 1. The characteristics
of the workers and shift work in the included studies are summarized in Table 2. The
results of QoE are shown in Table 3.
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Figure 1. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-
P) flowchart. 

 

Figure 1. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P)
flowchart.
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Table 1. Main characteristics of the included studies.

Shift Workers Non-Shift Workers

Authors, Year Country Vitamin D
Assay Number Age (Years) BMI (kg/m2)

Vitamin D
Levels

(ng/mL)
Number Age (Years) BMI (kg/m2)

Vitamin D
Levels

(ng/mL)

Gender
Prevalence

Yang et al., 2021 [24] U.S.A. RIA 728 30.09 ± 14.18 - 16.90 ± 6.77 2297 39.67 ± 14.50 - 17.93 ± 6.67 Men

Park et al., 2020 [28] Korea - 2365 - - 15.90 ± 9.73 11,620 - - 17.30 ± 10.78 Women

Rizza et al., 2020 [29] Italy CLIA 88 44.70 ± 7.90 24.30 ± 5.40 23.10 ± 9.10 200 47.60 ± 9.80 23.20 ± 4.00 25.90 ± 11.30 Women

Lee et al., 2020 [12] Korea CLIA 412 29.02 ± 6.99 21.08 ± 2.79 13.22 ± 5.79 432 36.39 ± 11.38 21.83 ± 2.82 14.95 ± 8.37 Women

Park et al., 2019 [30] Korea - 2666 35.84 ± 6.31 - 14.64 ± 5.99 79,412 39.88 ± 6.23 - 17.02 ± 6.78 Men

Alefishat et al., 2016 [31] Jordan CLIA 82 - - 21.00 ± 12.00 58 - - 28.00 ± 14.00 Women

Erden et al., 2016 [32] Turkey CLIA 125 35.06 ± 9.60 24.46 ± 3.84 8.98 ± 4.89 30 34.30 ± 7.18 24.78 ± 2.68 8.18 ± 2.39 Women

Romano et al., 2015 [33] Italy CLIA 96 42.50 ± 7.60 26.40 ± 3.60 13.40 ± 5.30 100 51.20 ± 13.00 28.00 ± 2.20 21.90 ± 10.70 Men

Munter et al., 2015 [34] Israel CLIA 37 - - 14.80 ± 5.50 44 - - 19.30 ± 7.00 Men

Kwon et al., 2015 [35] Korea CLIA 872 - - 8.89 ± 3.23 182 - - 9.94 ± 3.25 Women

Kantermann et al., 2014 [25] Belgium LC-MS 18 43.40 ± 6.20 26.90 ± 4.90 14.90 ± 7.42 9 44.70 ± 4.80 29.30 ± 4.70 17.16 ± 4.62 Men

Jeong et al., 2014 [26] Korea - 969 - - 17.00 ± 9.84 4440 - - 18.00 ± 12.33 Men

Kim et al., 2013 [27] Korea RIA 627 33.80 ± 9.50 23.10 ± 3.50 16.30 ± 5.90 2378 37.10 ± 8.50 23.50 ± 3.40 17.60 ± 6.10 Men

BMI = body mass index; CLIA = chemiluminescence immunoassay; LC-MS = liquid chromatography tandem mass spectrometry; RIA = radioimmunoassay; continuous variables are
presented as mean ± standard deviation.
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Table 2. Characteristics of workers and shift work.

Authors, Year Type of Workers (and
Comparison) Definition of Shift Work Outdoor/Indoor Work

Yang et al., 2021 [24] Unspecified—National
survey

Working regular evening shifts, regular night
shifts, and/or rotating shifts Unspecified

Park et al., 2020 [28] Unspecified—National
survey Working night shifts or rotating shift Unspecified

Rizza et al., 2020 [29] Hospital workers Shift schedule of four to seven 12 h nights
per month, followed by 2 days off Indoor

Lee et al., 2020 [12] Hospital workers
≥6 night shifts (working hours of 6:00 p.m.

to 8:00 a.m., 7:00 p.m. to 7:00 a.m., or
10:00 p.m. to 7:00 a.m.) in a month

Indoor

Park et al., 2019 [30] Unspecified

Participants who responded to the question
“In the past year, during which time of the
day have you worked the most?” using the
option “I work during other hours” rather

than “I work mostly during the day (between
6 a.m. and 6 p.m.)”

Unspecified

Alefishat et al., 2016 [31] Employees Subjects working from 4:00 p.m. till 7:00 a.m.
at least 4 times per month for at least 3 years Unspecified

Erden et al., 2016 [32] Anesthesia personnel
(versus office workers) Night shifts (unspecified) Indoor

Romano et al., 2015 [33] Factory workers 2 or 3 night shifts per week Unspecified

Munter et al., 2015 [34] Physicians Night shifts (unspecified) Indoor

Kwon et al., 2015 [35] Factory workers

A night shift from 10 p.m. to the next
morning at 6.a.m. at least four times per

month on average or worked an average of
at least 60 h per month during the night shift.

Indoor

Kantermann et al.,
2014 [25] Factory workers

Slow counterclockwise shifts: 6 days night
(22–6 h), one off and 6 days morning (6–14 h),
one off and 6 days late (14–22), one day off

Unspecified

Jeong et al., 2014 [26] Unspecified—National
survey

Those who worked in the afternoon (2 p.m.
to midnight), at night (from 9 p.m. to 8 a.m.

the following day), in regular rotation of
shifts between day shifts and the night shifts,
in 24 h shifts, in segmented shifts (working

more than two shifts a day), and in
irregular shifts

Unspecified

Kim et al., 2013 [27] Unspecified—National
survey

The following categories: (1) evening
(14:00–24:00), (2) night (21:00–08:00),

(3) regular shift time (day and night or
regular 24 h), or (4) irregular shift time
(includes two times or more in a day)

Unspecified
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Table 3. Scoring of Cambridge Quality Checklists on included studies.

Authors, Year
Checklist for

Correlates
(0–5)

Checklist for Risk
Factors

(1–3)

Checklist for Causal
Risk Factors

(1–7)

Total Score
(2–15)

Yang et al., 2021 [24] 2 1 2 5
Park et al., 2020 [28] 3 1 2 6
Rizza et al., 2020 [29] 2 1 2 5
Lee et al., 2020 [12] 3 1 5 9
Park et al., 2019 [30] 2 1 2 5

Alefishat et al., 2016 [31] 2 1 2 5
Erden et al., 2016 [32] 2 1 2 5

Romano et al., 2015 [33] 2 1 2 5
Munter et al., 2015 [34] 2 1 2 5
Kwon et al., 2015 [35] 2 1 2 5

Kantermann et al., 2014 [25] 2 1 2 5
Jeong et al., 2014 [26] 2 1 2 5
Kim et al., 2013 [27] 2 1 2 5

Checklist for correlates (adequate sampling method, adequate response rates, adequate sample size, good measure
of correlate, good measure of outcome; one point each). Checklist for risk factors (cross-sectional data = 1;
retrospective data = 2; prospective data = 3). Causal risk factor (study without a comparison group, no analysis of
change = 1; inadequately controlled study, no analysis of change = 2: study without a comparison group with
analysis of change = 3; inadequately controlled study with analysis of change = 4; controlled non-experimental
study, no analysis of change = 5; controlled non-experimental study, with analysis of change = 6; randomized
experiment targeting a risk factor = 7).

3.2. Differences in Vitamin D Levels between Shift Workers and Non-Shift Workers

Based on 13 studies including a total of 110,287 subjects, a random-effects model
revealed significantly lower serum 25-OH-vitamin D levels in shift workers compared
with non-shift workers (mean difference, MD: −1.85, 95% CI [−2.49 to −1.21]) with high
heterogeneity between studies (I2 = 89%, p < 0.0001) (Figure 2). Egger’s test (p = 0.37)
and visual examination of funnel plots (Figure 3) indicated no significant publication
bias over the included studies. As far as sensitivity analysis is concerned, omitting the
study of Park et al. [30], a slight decrease in between-study heterogeneity was observed
(I2 = 83%, p < 0.0001), without substantial changes in the estimate of the effect size (MD:
−1.75, 95% CI [−2.42 to −1.09]). Some studies reported 25-OH-D mean values with high
SD. This suggests that a non-normal distribution should be carefully considered in studies
on 25-OH-D serum levels.
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It would have been interesting to evaluate the prevalence of people with insufficient
vitamin D levels among shift and non-shift workers. However, the selected studies rarely
reported these data and different cut-offs were used, making the data not analyzable. The
type of shift work and particularly the number of night shifts worked per month are likely
high related to sunlight exposure and therefore to vitamin D levels. The investigation of
this relation was not possible due to the lack of a clear definition of “shift work” in several
studies.

3.3. Differences in Vitamin D Levels between Shift Workers and Non-Shift
Workers—Subgroup Analysis
3.3.1. Methods of Measurement

In order to explore the source of heterogeneity, a subgroup analysis according to the
methods of serum 25-OH-D level measurement was performed. The test for subgroup
differences indicated that there was no statistically significant subgroup effect (p = 0.17),
suggesting that the method of measurement does not modify the effect of shift work on
serum vitamin D levels. However, most of studies reported vitamin D levels measured by
chemiluminescent immunoassay (CLIA), whereas other methods were used in a smaller
number of studies (Figure 4). In addition, in three large studies [26,28,30], the method of
measurement was not specified.
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in heterogeneity (MD: −0.33, 95% CI [−0.45 to −0.20]; I2 = 78%, p < 0.0001) (Figure 5).
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Figure 5. Forest plots showing mean differences in serum 25-hydroxyvitamin D (25-OH-D) lev-
els (ng/mL) in shift workers and non-shift workers (omitting unspecified methods of vitamin D
measurement) [12,24,25,27,29,31–35].
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3.3.2. Sex Differences

The subgroup analysis showed a lower effect of shift work on serum vitamin D levels
in studies where female workers were >50%, with lower heterogeneity (MD: −1.27, 95% CI
[−2.08 to −0.46]; I2 = 76%, p = 0.0008) compared with studies where women were < 50%
(MD: −2.37, 95% CI [−3.33 to −1.41]; I2 = 91%, p < 0.0001), but the subgroup effect was
not statistically significant (p = 0.08) (Figure 6). However, a far smaller number of subjects
contributed to the female prevalence subgroup (16,466 vs. 93,821), and the analysis may
not have been able to detect subgroup differences.
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3.3.3. Meta-Regression Analysis

Among the included studies, data on mean age and mean BMI were provided in
eight [12,24,25,27,29,30,32,33] and six papers [12,25,27,29,32,33], respectively. Random-
effect meta-regression analysis did not show any relationship between age (β = 0.075; 95%
CI [−0.323 to 0.472]; p = 0.7) or BMI (β = 0.977; 95% CI [−0.187 to 2.141]; p = 0.1) and mean
differences in vitamin D levels (Figure 7).
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4. Discussion

The present metanalysis shows significantly lower serum vitamin D levels in shift
workers compared with non-shift workers. The main cause of this result may be that shift
workers are exposed to lower levels of sunlight than other categories of workers [12]. In
addition, the tendency of shift workers to eat meals at irregular times and their tendency
to eat a diet rich in fatty and junk food could lead to a reduced dietary intake of vitamin
D [13,14]. It is also known that shift workers tend to have a BMI higher than the general
population [15,36,37], a factor that could lead to the increased sequestration of vitamin D
in adipose tissue and, consequently, lower values of circulating vitamin D [38,39].

In shift workers, the health risks posed by vitamin D deficiency can be combined with
the risks of altered circadian rhythms. The expression of vitamin D receptors in areas of the
brain that regulate the sleep–wake cycle has been shown [40]. Some studies highlighted an
association between vitamin D deficiency and sleep disturbances [41–43]. Sleep disorders
commonly afflict shift workers; in fact, we can speak of Shift Work Disorder, a sleep–wake
cycle disorder characterized by symptoms such as insomnia and excessive sleepiness, due
to the deregulation of the circadian rhythm that affects this category of workers [44,45].

Hypovitaminosis D has been extensively studied in bone metabolism disorders and
particularly in osteoporosis [2]. Fracture risk in shift workers has never been evaluated
in the past, but a recent study by Bukowska-Damska et al. showed a higher rate of bone
turnover in female night shift workers, suggesting a potential link between osteoporosis
and shift work [46]. Prospective longitudinal studies instead of cross-sectional studies may
be more appropriate in assessing the incidence of fractures in shift workers. Accordingly,
shift workers should be followed over time for vitamin D deficiency and fracture risk in
periodic health surveillance.

Vitamin D deficiency has also been correlated with the occurrence of cardiovascular
disease. In particular, several meta-analyses have demonstrated an inverse correlation
between vitamin D concentration and cardiovascular mortality [47–49]. In addition, vitamin
D deficiency has been associated with reduced HDL levels and increased LDL levels [50].
In shift workers, the low serum levels of vitamin D could contribute to the increased
cardiovascular risk found in this category of workers [45]. This should be taken into
account in the health surveillance of these workers.

Vitamin D metabolism involves several biochemical reactions and metabolites; 25(OH)D
is the most represented in the bloodstream due to its long half-life and thus represents
the gold standard for estimating the body’s reserves of vitamin D [51]. Different assays
for the measurement of 25-OH-D levels are available and this may constitute a possible
source of heterogeneity among studies. A subgroup analysis was performed to investigate
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whether the 25-OH-D measurement method influenced the results of the meta-analysis.
However, in three studies [26,28,30], two of which were very large [28,30], the measure-
ment methods were not reported. In addition, CLIA was the method of choice in most
of the studies, whereas alternative techniques, including radioimmunoassay (RIA) and
liquid chromatography–mass spectrometry (LC-MS), had been used only in three stud-
ies [24,25,27]. This is in line with current clinical practice. Indeed, immunoassays (IAs) are
currently the method of choice for vitamin D measurement in most laboratories, given their
automation and rapidity. However, cross-reactivity between similar vitamin D metabolites
is the main drawback of these methods, whose specificity is strictly dependent on the qual-
ity of the antibody used [52]. Indeed, despite relatively low intralaboratory variability [53],
a recent interlaboratory comparison study showed an acceptable coefficient of variation
(lower than 10%) in only 50% of IAs, differently from the LC-MS assays, which provided
comparable results in most cases [54]. As evidence of this, removal of studies that had used
measurement methods other than IAs did not lead to a reduction in heterogeneity in our
meta-analysis.

In the present meta-analysis, a lower effect of shift work on low levels of vitamin D
was seen in female-dominated studies. In the literature, there is no consensus on how
gender affects vitamin D levels; in fact, some studies report higher average levels in males,
and some others in females [55–57]. These aspects should be explored further in the
future, taking into account possible gender-related bias, such as increased awareness of
osteoporosis in women, which could lead to more frequent vitamin D supplementation in
female workers.

Ageing is a well-established risk factor for hypovitaminosis D [58] and several epidemi-
ological studies have shown that the prevalence of hypovitaminosis D increases linearly
with BMI, with lower vitamin D in overweight and obese subjects [59]. In order to explore
whether age or BMI could modify the effect size of shift work on serum vitamin D levels,
we performed a meta-regression including age and BMI as covariates. Surprisingly, neither
age nor BMI seems to affect vitamin D levels in shift workers. This may be related to the
specific population examined, including a working population with a limited age range
(18–65 years) and subjects with BMI values contained within the limits of normal weight or
slight overweight.

The present meta-analysis has the strength that it is currently the only meta-analysis
investigating vitamin D levels in shift workers. In addition, strict adherence to validated
investigation methods (PICO criteria and Cambridge Quality Checklists) ensures the
transparency and reproducibility of the results. However, our study also presents some
limitations. First, all the included studies had a cross-sectional design with low–moderate
quality. Second, interstudy heterogeneity was high, and neither subgroup analysis nor meta-
regression were able to identify specific sources of the heterogeneity. Several definitions
of “shift work” were used in the studies analyzed in this meta-analysis. This is a known
problem of epidemiological studies investigating the association between shift work and
cancer, and it led the IARC to convene a working group to establish a uniform definition
of shift and night work [12]. Similarly, the problem concerns the studies analyzing the
relation between shift work and vitamin D levels. The same recommendations of the
IARC working group report should be extended in future studies about shift workers and
vitamin D levels [12]. Since the displacement from the solar day caused by shift schedules
(particularly during non-day shifts) may have a strong influence on sunlight exposure and
consequently on vitamin D levels, the different characteristics of shift work may be the
cause of the high interstudy heterogeneity observed. Third, most of the studies included
random evaluations of serum vitamin D levels, not considering the season. Since vitamin
D levels are higher in the spring–summer and lower in the fall–winter periods, some of the
heterogeneity could depend on this factor, which needs clarification. Finally, since most of
the subjects studied (96.5%) were Korean, the generalizability of our observations may be
questionable and larger epidemiological studies are needed in other populations.
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5. Conclusions

Our study is the first meta-analysis showing that shift workers have lower levels
of vitamin D compared with non-shift workers. Interstudy heterogeneity was high, not
explained by age, sex, BMI, and methods of serum 25-OH-D level measurement. It is likely
that the characteristics of the shift work, particularly the number of nights worked per
month, play a critical role. According to our results, the monitoring of vitamin D levels
and the prompt correction of deficiencies to prevent fracture risk should be considered in
the periodic health surveillance of this category of workers. It should be noted that since a
large part of the observations derive from Koreans, the generalizability of our observations
may be questionable and larger epidemiological studies are needed in other populations.
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