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Abstract: The choice of metal and linker together define the
structure and therefore the guest accessibility of a metal-
organic framework (MOF), but the large number of possible
metal-linker combinations makes the selection of components
for synthesis challenging. We predict the guest accessibility of
a MOF with 80.5% certainty based solely on the identity of
these two components as chosen by the experimentalist, by
decomposing reported experimental three-dimensional MOF
structures in the Cambridge Structural Database into metal
and linker and then learning the connection between the
components’ chemistry and the MOF porosity. Pore dimen-
sions of the guest-accessible space are classified into four
ranges with three sequential models. Both the dataset and the
predictive models are available to download and offer simple
guidance in prioritization of the choice of the components for
exploratory MOF synthesis for separation and catalysis based
on guest accessibility considerations.

Metal–organic frameworks (MOF)[1,2] are the focus of
intense research interest because of their versatile potential
for applications[3] including gas sorption and separation,[4,5]

catalysis,[6] and drug delivery.[7] These hybrid solids, made by
assembling inorganic centres and organic linkers, build on
their reticular nature to offer a wide range of possibilities

for the design of new materials with tailored chemistries and
properties.[8] Databases of hundreds of thousands of
synthesized[9] and hypothetical[10–13] MOF structures are now
available and used for computational screening[14] in efforts
focused largely on predicting gas sorption properties of a
MOF with a given structure. The next step in maximizing
the impact of these databases is to apply data science
methods to the design of porous hybrid materials.[15]

Progress towards that goal has recently been thoroughly
reviewed.[15] In particular, a series of works[16–18] used MOF
descriptors (some, such as pore sizes, require a priori
knowledge of the MOF structure) to build a series of
machine learning (ML) models for the prediction of CO2

and CH4 adsorption either from databases of hypothetical
MOF structures[10–13] or from the Computation-Ready,
Experimental (CoRE) MOF database of reported
structures.[19] However, databases of, or based on, existing
structures only cover a limited part of the potential design
space[15] and new combinations of metal species and organic
linkers are bound to lead to new MOF structures that arise
from their coupled chemistries.

The objective of the present work is to harness the
potential of ML to help chemists prioritise the available
options from the earliest material design stage, at which
only the chemical identities of the organic ligand and the
metal species that are synthetically combined are known, in
order to identify metal-linker combinations with the highest
likelihood of affording MOF structures that are accessible to
guests. We address the specific case of three-dimensionally
connected MOF structures to ensure comparability of out-
comes over lower-dimensional counterparts such as coordi-
nation polymers with 2D and 1D networks of chemical
bonds, though extension to these is straightforward. To
achieve this objective, first, a dataset connecting 3D MOF
structures to their chemical framework components, i.e.,
metals and linkers, was derived from the Cambridge
Structural Database (CSD) MOF subset.[9] Then, various
ML models were evaluated to learn the connection between
component chemistry and MOF properties without explicitly
requiring a priori knowledge of the MOF structure. The
most accurate of these models, a random forest classifier,
predicts whether the structures produced by given metal-
linker combinations would be accessible to guests (i.e., adopt
an open-framework structure defined here as having a pore
limiting diameter >2.4 Å) with 80.5% accuracy, solely using
the chemical descriptors of those metal-linker combinations.
This allows the researcher to assess the likely guest
accessibility of a MOF based on the components without
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requiring knowledge of the structure, testing design hypoth-
eses against the predictions of machine learning trained on
all available experimental data.

The pore limiting diameter (PLD), i.e., the largest free
sphere that can diffuse through the structure or equivalently
the minimum restricting aperture along the diffusion path, is
used throughout this paper to quantify MOF porosity while
other properties of interest can be used instead to build
similar models. To make our predictions for PLD more
quantitative, we use a sequence of binary classifiers trained
on different subsets of our data set to recognise the
difference between small, medium and large pores as
defined below. These predictive models, designed to guide
the choice of MOF components for synthesis targeting
separation and catalysis applications, together with the ML-
ready dataset of the constituents for 3D MOF reported in
the CSD MOF subset, are available to download.

Recently, MOF deconstruction procedures were imple-
mented to identify secondary building units (SBU) and
linkers for computationally-focused datasets.[18,21] Here, we
derived a dataset that connects the constituent linkers and
metal atoms to the MOF structures directly from the
reference repository of experimentally determined struc-
tures, namely the MOF subset of the CSD (Data Update 3-
2019), which contains more than 96000 experimental MOF
structures.[9] The procedure illustrated in Figure 1 success-
fully decomposed 87.8% (i.e., 28994) of the identified 33011
3D frameworks, while the labelling of the linker was
ambiguous for the remaining 12.2% of entries. The protocol
successfully handles structures with disorder and is seam-
lessly transferable to 1D and 2D structures. Below we
provide the summary of the protocol with full details
available in the Supporting Information.

The formula unit of experimental MOF structures
accessible via the CSD can be written as {M}{X}{Y} · [Z],
where {M} is the list of metal atoms, {X} is the list of metal-
bound non-bridging moieties, {Y} is the list of framework-

forming organic linkers and [Z] represent species, such as
solvents or guests, that are located in the pores and are not
bound to any metal atoms. After these non-bonded species,
[Z], are identified and removed using the CSD Python
API,[9] the resulting empty-pore {M}{X}{Y} structures serve
to define guest-free structures. Their PLD is calculated with
Zeo+ + ,[22] even though in some cases {X} includes solvent
molecules coordinated to metal atoms that might be
removed upon MOF activation. The retention of such
species makes the estimate of porosity a lower bound but
limits the risks of compromising framework integrity.[9]

Having removed all species [Z] not bonded to the MOF, still
within the framework of the CSD Python API, a standard
simplification algorithm[23] is applied to separate the frame-
work-forming organic constituents {Y} from the metals {M}
and non-bridging moieties {X} bound to them, primarily
cluster-forming oxo and hydroxo species. Since the knowl-
edge of moieties {X} is often not available before the MOF
is synthesised, only the metal identity {M} and the linker
identity {Y} will be used as the input for our predictive
models.

To maximise the use of the data available in CSD, we
adapted the decomposition procedure to deal with disor-
dered MOF structures because they often contain at least
one complete linker {Y} that can be recovered and included
in the list (Figure S1). Once the structures of all physically
sensible and unique linkers were identified, they were
reduced to SMILES (Simplified Molecular Input Line Entry
System)[24] that we used to calculate 2D molecular descrip-
tors and to generate representative 3D linker conformations
using a series of Open Babel[25] and RDKit[26] scripts. This
was done to avoid using any features of linker conforma-
tions extracted from CSD, as this information is not
available without a priori knowledge of the MOF structure.
This reflects the aim, which is to predict whether a MOF
from a specific metal-linker combination will be guest-
accessible without knowing which specific structure they will

Figure 1. Classification of the 3D MOF component (organic linkers and metal species) dataset from the Cambridge Structural Database 3D MOF
subset. Once the MOF structures are cleaned by removing species not bound to metal atoms, their porosity is evaluated by calculating their pore
limiting diameter (PLD) with Zeo+ + . UiO-66 (refcode RUBTAK)[20] is shown here as an illustrative example and its Connolly surface, highlighting
its porosity, is displayed for a probe diameter of 2.4 Å.
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form: using information that is not available for the test set
but is available for the structures that are used to train the
model would constitute data leakage[27] and is avoided by
this protocol.

Following steps 1 and 2 in Figure 2, outlined above and
depicted in Figure 1, we arrived at the database of metal and
linker constituents for 28994 3D MOF. 14296 of these MOF
had exactly one metal and a single linker and formed the

dataset hereafter referred to as the “1M1L3D dataset” that
was used to train our ML models. The other successfully
decomposed MOF split over non-mutually exclusive sets of
11147 mixed-linker and 5248 mixed-metal structures (Ta-
ble S1). Each entry in the 1M1L3D dataset (step 3 in
Figure 2) contains metal identity, linker SMILES string,
PLD and the corresponding CSD refcode. Using this data-
set, we developed the ML approach (steps 4 to 6 in Figure 2)

Figure 2. Workflow of creating the 1M1L3D dataset and using it to develop machine learning tools. The starting point is the information contained
in the MOF subset of the experimental structures in the CSD that is used to select 3D MOF structures (step 1). These structures are decomposed
into metal and linker (step 2) to produce the 1M1L3D dataset containing materials with a single metal and single linker (step 3). The evaluation of
this dataset then takes place (step 4) to produce both the features (shown in blue for the linker and grey for the metal) and the porosity target
(shown in green for one of the models as an example) on which the ML models are trained (step 5) to predict MOF guest accessibility (step 6).
MOF are considered guest-accessible when their pore limiting diameter is larger than 2.4 Å. The model is 80.5% accurate in predicting guest
accessibility based on the nature of the metal and the linker.
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to predict MOF porosity from metal and linker chemistry.
For researchers interested in separation and catalysis
applications requiring guest access to the pores, this
approach would allow the prioritization of metal-linker
combinations that have a higher likelihood of forming a
guest-accessible MOF in synthetic exploration.

Following the convention adopted in the CoRE MOF
database, we considered as porous the MOF structures with
a PLD larger than 2.4 Å (approximately the van der Waals
diameter of H2). Where several CSD structures corre-
sponded to the same metal-linker combination, we used the
median PLD of these structures to represent the most likely
outcome for the given metal-linker pair (Figure S2).

The most accurate ML algorithm and feature set for our
classification problem was identified through 3-repeated
stratified 10-fold cross validation comparisons of nine
classification algorithms (Figure S3), of five different feature
sets each with different numbers of features (Figure S4), and
manual adjustment of hyperparameters. The choice of

learning algorithm weakly affected the accuracy here, as
found in a study predicting shape persistence from a data-
base of hypothetical porous cages.[28] Testing details and
hyperparameters used are available in Supporting Informa-
tion. In summary, working with an 80/20 train/test split of
the 1M1L3D dataset, a random forest classifier gave the
highest accuracy (80.5%) prediction of whether the combi-
nation of a given linker and a given metal would yield a
guest-accessible MOF of all the ML models evaluated. This
random forest model, which we refer to as model 1, was
trained on molecular descriptors from linkers SMILES
codes, which rely only on two-dimensional (2D) structural
information, calculated via the free software Mordred,[29] as
linker features. The following six elemental descriptors were
chosen as metal features: atomic number, atomic weight,
atomic radius, polarizability, electron affinity and Mulliken
electronegativity. Among the more than 1610 2D molecular
descriptors provided by Mordred, the best performance
(Table S2) was obtained with the set of 50 features selected

Figure 3. Sequence of three binary classifier models that predict the range of the pore limiting diameter (PLD) of a candidate MOF based on its
linker and metal components. The four ranges are defined as non-porous (PLD<2.4 Å, red), small pores (2.4 Å<PLD<4.4 Å, green), medium
pores (4.4 Å<PLD<5.9 Å, blue) and large pores (5.9 Å<PLD, grey) and for each of the porosity ranges are illustrated by examples: UiO-66
(refcode RUBTAK)[20] for small pores, PURJES[31] for medium pores and MOF-5 (refcode EDUSIF)[32] for large pores. The histogram shows the
number of reported 3D MOF within each range for bin size 0.1 Å and finishes at 12.0 Å, which corresponds to 98.6% of the 1M1L3D dataset, for
clarity (otherwise the tail extends up to 71.51 Å). The confusion matrix for each model shows true negative (TN), true positive (TP), false negative
(FN), false positive (FP) coloured according to their magnitude.
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via a SelectKBest procedure. All ML models were imple-
mented using scikit-learn library version 0.22.1.[30]

For some catalysis, separation and storage applications,
beyond knowing whether or not a MOF will be accessible to
guests, it is attractive to gain further insights on the pore size
beyond the 2.4 Å cutoff in PLD dealt with by model 1, to be
able to estimate whether a guest of interest can access the
pores. With that objective in mind, we have analysed the
distribution of PLD in the 1M1L3D dataset in order to
determine two other PLD cutoff values, designed to maintain
balanced datasets (Figure 3). Specifically, for the 7190 porous
MOF with PLD>2.4 Å, by using a PLD cutoff of 4.4 Å we
separate a subset of 3596 “small pores” MOF, i.e., 2.4 Å<

PLD<4.4 Å, from a subset of 3594 MOF with PLD>4.4 Å.
Additionally, a 5.9 Å cutoff splits this later subset between
1813 “medium pores” MOF, i.e., 4.4 Å<PLD<5.9 Å, and
1781 “large pores” MOF, i.e., PLD>5.9 Å. Using the param-
eters from the initial ML model, i.e., same random forest
classifier with same hyperparameters and features, we adopted
a sequential learning approach to train a second ML model
(model 2) to predict whether a porous MOF would have a
PLD between 2.4 Å and 4.4 Å, i.e., small pores, or a PLD
larger than 4.4 Å. Then, we trained a third ML model
(model 3) to predict whether a porous MOF with PLD>4.4 Å
would have medium or large pores, i.e., respectively a PLD
between 4.4 Å and 5.9 Å or a PLD>5.9 Å. These two ML
models had accuracies of 76.4% (model 2) and 68.5%
(model 3) since they were trained on respectively approxi-
mately a half (7190 MOF for model 2) and a quarter (3594
MOF for model 3) of the 1M1L3D dataset. The three
sequential models allow us to quantify the PLD within
predefined ranges and are provided ready for use in the
evaluation of candidate metal-linker pairs for new MOF
synthesis.

We have implemented a procedure that separates CSD-
deposited experimental MOF structures into metal and
framework-forming organic linker to produce a dataset that
connects these synthetic constituents of MOF to the porosity
of the reported experimental structures, specifically to their
accessibility to guests. As an illustrative example, the
1M1L3D dataset is built from 3D-connected MOF networks
made of a single metal and a single linker species and used
to train a random forest classifier that successfully predicts
whether a MOF of this type, produced by a given metal-
linker combination, would be guest-accessible, with an
accuracy of 80.5%. Two additional ML models are gener-
ated for use in sequence to predict whether the pores will be
small, medium or large.

These ML approaches offer simple guidance to inform
prioritisation of candidate metal-linker combinations for
synthetic exploration based on the likelihood of generating
guest-accessible MOF, and the match of potential pore
dimensions to those required for sorption, separation and
catalysis applications, with the aim of accelerating the
discovery of open-framework MOF structures beyond
current structural databases.
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