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Abstract Bacteria of the genus Methylobacillus are

methanotrophs, a metabolic feature that is widespread in

the phylum Proteobacteria. The study demonstrates the

isolation and characterization of a newly isolated Methy-

lobacillus sp. V29b. which grows on methanol, protocate-

chuate, monobutyl phthalate, dibutyl phthalate, diethyl

phthalate, benzyl butyl phthalate, dioctyl phthalate and

diisodecyl phthalate. Methylobacillus sp. V29b was char-

acterized with scanning electron microscopy, transmission

electron microscopy, Gram staining, antibiotics sensitivity

tests and biochemical characterization. It degrades 70 % of

the initial DBP in minimal salt medium and 65 % of the

initial DBP in samples contaminated with DBP. DBP

biodegradation kinetics was explained by the Monod

growth inhibition model. Values for maximum specific

growth rate (lmax) and half-velocity constant (Ks) are

0.07 h-1 and 998.2 mg/l, respectively. Stoichiometry for

DBP degradation was calculated for Methylobacillus sp.

V29b. Four metabolic intermediates, dibutyl phthalate

(DBP), monobutyl phthalate, phthalic acid and pyrocate-

chol, were identified. Based on the metabolic intermediates

identified, a chemical pathway for DBP degradation was

proposed. Six genes for phthalic acid degradation were

identified from the genome of Methylobacillus sp. V29b.

Keywords Endocrine disruptor � Degradation kinetics �
Stoichiometry � Gene identification � Phthalate ester

degradation pathway

Introduction

Phthalic acid esters (PAEs) are a class of compounds

widely used as plasticizers to provide mechanical strength

and flexibility to the resins (Cartwright et al. 2000; Staples

et al. 1997). They are ingredients of paints, adhesives,

house-building materials, defoaming agents, PVC pipes,

food packing materials, toys, plastics, solubilizers of cos-

metic products, medical devices, photography films, textile

fabrics, pesticide carriers, lubricating oils and are used in

aerospace technology (Gesler 1973; Gross and Colony

1973; Hauser et al. 2007; Ito et al. 2005; Krauskopf 1973;

Marcel 1973; Teil et al. 2006; Tepper 1973; Wang et al.

1995b; Wilkinson and Lamb 1999). They have low solu-

bility in water; therefore, they are stable in the environment

over a longer period of time (Huang et al. 2008; Vikelsøe

et al. 2002; Wang et al. 2008; Yuan et al. 2002). They have

been detected in various environments including landfill

leachates (Schwarzbauer et al. 2002; Zheng et al. 2007), air

(Wensing et al. 2005), soils, sediments, and natural waters

(Staples et al. 1997). PAEs have been classified as top

priority toxicants by the European Union, China National

Environmental Monitoring Center and US Environment

Protection Agency (Chen et al. 2007; Council of the

European Union 1993). PAEs are responsible for carcino-

genicity and endocrine disruption (Colborn et al. 1993;

David et al. 1999; Jobling et al. 1995; Piersma et al. 2000).

They can elicit cellular estrogenic responses and suppress

calcium signaling (Kaun-Yu et al. 2004; Lovekamp-Swan

and Davis 2003; Moore 2000). They are responsible for

hypospadias, cryptorchidism and malformation of the

reproductive tract in mice (Fisher 2004; Gray et al. 2000;

Jaeger and Rubin 1970; Li et al. 1998; Zhu et al. 2006).

They are known for irritation of eyes, skin, respiratory

tract, blurred vision and induce stone formation in the
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bladder (Dai et al. 2005a, b; Wang and Gu 2006). Dibutyl

phthalate (DBP) is the most widely used plasticizer and has

been detected in different environments (Eaton 2001; Fei-

ler 1980; Hashizume et al. 2002; Keith and Telliard 1979;

Xu et al. 2005).

The natural processes of degradation such as hydrolysis

and photodecomposition are not efficient in the degradation

of these pollutants (Lu et al. 2009). Therefore, microbial

degradation is the major route for their degradation (Sta-

ples et al. 1997; Vamsee-Krishna et al. 2006; Vamsee-

Krishna and Phale 2008). Bacteria having potential to

degrade PAEs have been isolated from various environ-

ments including mangrove sediments, activated sludge and

wastewater (Liang et al. 2008). Aerobic degradation of

PAEs is much more efficient as compared to anaerobic

degradation (Cheung et al. 2007; Fang et al. 2010).

Sequential hydrolysis of PAEs has been demonstrated by a

few researchers (Engelhardt and Wallnöfer 1978; Jiao et al.

2013; Staples et al. 1997).

Despite research on degradation of PAEs by various

researchers, these studies lack in perspectives such as

efficient DBP degradation at higher concentrations, eluci-

dation of DBP degradation pathway, kinetics of DBP

degradation and identification of genes responsible for

PAEs degradation. Extensive research in the above aspects

is required to remove these pollutants from the environ-

ment. The aim of the study was isolation, characterization

and identification of efficient DBP-degrading bacterial

strain from municipal solid waste (MSW) leachate and to

examine the degradation potential of the isolate toward

degradation of DBP in both minimal media and in PAEs-

contaminated samples collected from the landfill site.

Materials and methods

Chemicals

HPLC-grade monobutyl phthalate, diisodecyl phthalate,

dioctyl phthalate, protocatechuate, benzyl butyl phthalate,

diethyl phthalate and dibutyl phthalate were purchased

from Sigma-Aldrich (USA) and used as substrate for

growth of the bacteria. HPLC-grade acetonitrile purchased

from Sigma-Aldrich (USA) was used as solvent in the

analysis of DBP.

Isolation and characterization of DBP-degrading

bacteria

Municipal solid waste (MSW) leachate samples were

collected from a municipal solid waste landfill site at

Ghazipur, New Delhi, India. The location co-ordinates of

Ghazipur landfill site are 28� 370 22.400N and 77� 190

25.700E. The physical parameters of the site are: pH 8.4,

TDS 29,700, COD 31,600, Fe 9.81 and Cl 1174.2. After

collection, the samples were stored at 4 �C. The MSW

leachate was inoculated in minimal salt medium (MSM)

supplemented with DBP [DBP emulsified with 0.1 %

(vol/vol) Tween 80] as the sole carbon and energy source.

MSM was prepared by dissolving 3.5 g K2HPO4, 1.5 g

KH2PO4, 0.27 g MgSO4, 1 g NH4Cl, 0.03 g Fe2(SO4)3-
7H2O and 0.03 g CaCl2 in 1 L distilled water. The pH of

MSM was adjusted to 6.8 and sterilized by autoclaving at

121 �C and 15 psi for 20 min. A separate iron sulfate and

magnesium sulfate solution was prepared, filter sterilized

with 0.22 lm membrane filter and added to MSM to

avoid precipitate formation (Vega and Bastide 2003). For

isolation of DBP-degrading bacteria, 1 ml MSW leachate

was inoculated to 100 ml MSM supplemented with

10 mg/l of DBP and incubated at 30 �C and 180 rpm. The

amount of DBP was increased in subsequent transfer

cultures. Culture from the flask was streaked on MSM–

agar plates to obtain a pure culture. A colony numbered

29 was able to grow in the presence of DBP and it was

designated as strain 29D. Size and cell morphology were

observed using scanning electron microscopy (SEM).

Internal features of the bacteria were observed using

transmission electron microscopy (TEM). SEM and TEM

of strain 29D were performed at the Advanced Instru-

mentation Research Facility (AIRF), Jawaharlal Nehru

University, New Delhi. For electron microscopy, bacterial

cells were fixed in 3 % glutaraldehyde at room tempera-

ture for 3 h. After fixation, bacterial cells were washed

with 0.1 M phosphate buffer thrice for 10 min. Post-fix-

ation was performed in 1–2 % osmium tetroxide solution

followed by dehydration with increasing concentrations of

ethanol in water solution (Smith 1955). Characterization

of strain 29D was performed using biochemical tests (Vos

et al. 2011). Gram staining reaction was performed using

Gram-stain kit from Himedia Lifesciences. Determination

of catalase activity was performed by assessment of

bubble production in 3 % (v/v) H2O2. Determination of

oxidase activity was performed using 1 % (w/v) tetram-

ethyl-p-phenylenediamine from Himedia lifesciences.

Hydrolysis of starch was determined by growing bacteria

on MSM plates containing 0.2 % (w/v) starch. Suscepti-

bility to antibiotics was determined by spreading the

bacterial suspension on MSM plates amended with

10–100 lg/ml of antibiotic tested. To assess the capability

of strain 29D to cleave the benzene ring, Rothera’s test

was performed. For the test, 5 ml of bacterial culture was

saturated with solid ammonium sulfate and mixed with a

few drops of 2 % sodium nitroprusside solution and

liquor ammonia. The mixture was left for 15 min. A

bluish-purple ring indicates the presence of the ketone

bodies in it (Rothera 1908).
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16S-rRNA gene amplification, sequencing

and phylogenetic analysis

Identification of strain 29Dwas performedby16S-rRNAgene

identification. Genomic DNA of the strain 29D was isolated

using Fast DNA� SPIN Kit for soil from MP Bio. The 16S-

rRNA gene amplification was performed with bacterial uni-

versal primers 27F and 1492R (Weisburg et al. 1991). For

PCR, a 50 ll reaction was used containing 25 ll PCR master

mix (Thermo Scientific), 2 ll forward primer, 2 ll reverse
primer, 23 ll sterile water and 1 ll genomic DNA. Time

programming used for the thermo cycler (AppliedBiosystems

GeneAmpPCRsystem9700)was 10 min at 95 �C, 35 cycles,
60 s at 95 �C, 90 s at 54 �C, and 60 s at 72 �C and 5 min at

72 �C. The amplified PCR product was gel purified with

HiYieldTM PCR DNAMini Kit from Real GenomicsTM (Ref

catalog no. YDF100). Sequencing of the purified product was

performed at the DNA sequencing facility UDSC, University

of Delhi, New Delhi, India. Sequencing was performed using

dideoxy termination method with bacterial universal primers:

27F (50-AGAGTTTGATCCTGGCTCAG-30) and 1492R (50-
GGCTACCTTGTTACGACTT-30). The obtained sequences

were combined with BioEdit program. The resultant 16S-

rRNA sequence was compared with the representative

sequences of bacterial organisms from GenBank and aligned

using CLUSTALW (Thompson et al. 1994). The 16S-rRNA

sequencewas submitted toNCBI. Phylogenetic analyseswere

carried out with maximum composite likelihood method

(Felsenstein 1981) using MEGA version 5 (Tamura et al.

2011).

Substrate utilization

Substrate utilization of strain 29Dwas performed to examine

its ability to grow on different substrates. Six substrates were

chosen including methanol, diethyl phthalate (DEP), dioctyl

phthalate (DOP), monobutyl phthalate (MBP), diisodecyl

phthalate (DIDP), benzyl butyl phthalate (BBP) and proto-

catechuic acid (PC). Substrate concentration was 2000 mg/l.

Growth of strain 29D was measured with Perkin Elmer

Lambda 25 UV/vis spectrophotometer at 600 nm.

Kinetics and stoichiometry of DBP degradation

by strain 29D

For degradation studies, strain 29D was inoculated in MSM

and PAEs-contaminated samples and flasks were incubated

at 30 �C and 180 revolution per minute in an incubator.

Samples for residual DBP analysis and metabolic interme-

diates identification were collected every 24 h. Collected

samples were extracted with ethyl acetate in 1:1 ratio and

residues were dissolved in methanol. The obtained extract

was filtered through a 0.22 lm membrane filter and the

filtrate was transferred to an autosampler vials for HPLC and

gas chromatography analysis (Jin et al. 2010). For HPLC

analysis of the extracts, 20 ll of the filtrate was injected to

the Shimadzu HPLC system. Analysis of the samples was

performed using Ascentis� C 18 column, 5 lm,

25 cm 9 4.6 cm from Sigma-Aldrich. A gradient program

having two mobile phases, a water/acetonitrile (15:85) v/v

and B 100 % acetonitrile, was used. Time programing was:

0–3 min a 100 %A, 6.5–19.5 min 100 %B.A total flow rate

of 0.6 ml/min was maintained. Run time of the samples was

45 min. DBP was detected using a UV detector at 225 nm

(Thuren 1986). Residual DBP in the samples was quantified

by preparing a standard curve for DBP (Park et al. 2016).

Metabolic intermediates for DBP degradation were identi-

fied by the GC–MS system at Advanced Instrumentation

Research Facility, Jawaharlal Nehru University, New Delhi,

India, with column temperature of 100 �C, injection tem-

perature 250 �C and total flow 16.3 ml/min. For calculation

of biomass in terms of dry weight, bacterial cells were har-

vested and filteredwith 0.45 lmmembrane filter and dried in

an oven at 100 �C. The dried biomass was measured with a

weighing balance (Bratbak and Dundas 1984).

Identification of PAEs-degrading genes

Genes responsible for phthalate esters degradation from the

strain 29D were identified by PCR. Primers known for

PAEs degradation were synthesized and amplified

(Table 2). The programing used for the PCR thermocycler

was: 5 min at 95 �C, 30 cycles of 30 s at 95 �C, 30 s at Tm

of corresponding primers, 90 s at 72 �C and final extension

for 7 min at 72 �C (Han 2008). Gel-purified amplification

products were sequenced at the DNA sequencing facility

UDSC, University of Delhi, New Delhi, India. Sequencing

of the amplicons was performed by specific primers for

each gene and amplicons were cloned in M13 vector.

Statistical analysis

Statistical analysis of DBP degradation was performed by

F test and one-way ANOVA with three replicates data

using data analysis tool pack in Microsoft excel. For

analysis, the hypothesis was made at the 5 % level of

significance to calculate P and F values.

Results and discussions

Isolation, characterization and identification

of the bacteria

Cells of the strain 29D were rod shaped, Gram negative,

aerobic and without flagella, forming round and creamy
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colonies on agar plates. The cells grow on MSM with 1 %

methanol. Strain 29 D was catalase and oxidase positive

which is the characteristic of bacteria form of the genus

Methylobacillus (Doronina et al. 2004; Urakami and

Komagata 1986; Anthony 1982; Lidstrom 2006). Negative

results were obtained for nitrate production, urease activity,

H2S production, ammonia production, methyl red, Voges–

Proskauer and starch hydrolysis. The strain was positive for

indole production, lysine utilization and b-galactosidase
activity. It was resistant to streptomycin (100 lg ml-1 and

susceptible to ampicillin (10 lg ml-1), penicillin

(10 lg ml-1, kanamycin (10 lg ml-1), tetracycline

(10 lg ml-1), and chloramphenicol (10 lg ml-1). SEM at

20 KX revealed that strain 29D was rod shaped, smooth,

without flagella with length *2 lm and width *0.2 lm.

TEM of strain 29D at 20 KX revealed the presence of the

outer membrane, peptidoglycan layer and plasma mem-

brane (Fig. 1).

On comparison with the 16S-rRNA gene sequence of

strain 29D, it found maximum identity withMethylobacillus

arboreus clone SY117 (Accession No. KM041246.1). The

strain 29D was designated asMethylobacillus sp. V29b and

the obtained sequence was submitted to NCBI accession No.

KM219114. The phylogenetic relationship of Methy-

lobacillus sp. V29b is presented in Fig. 2.

DBP biodegradation by Methylobacillus sp. V29b

in MSM and contaminated samples

Biodegradation experiments were conducted by growing

Methylobacillus sp. V29b in MSM supplemented with DBP

at 2000 mg/l. To quantify the residual DBP in the bacterial

culture, samples were collected every 24 h and quantified

using HPLC. Figure 3a presents the relationship between

the growth of Methylobacillus sp. V29b and DBP degra-

dation. Figure 3b presents the degradation of DBP in the

PAEs-contaminated sample from a landfill site at Ghazipur,

New Delhi, India. The amount of DBP quantified in

contaminated samples was 441 mg/l. From Fig. 3a, it was

observed that from the initial DBP concentration of

1997 mg/l,Methylobacillus sp. V29b degraded half DBP in

120 h and only 590.40 mg/l DBP was left after 192 h.

Therefore, 70.5 % of DBP was degraded in 192 h. From

Fig. 3b, it may be observed that the Methylobacillus sp.

V29b degraded half of the initial amount DBP in 96 h and

64.5 % the initial amount of DBP in 144 h.

Biodegradation kinetics and DBP degradation

stoichiometry

Researchers have reported degradation kinetics using var-

ious models. Degradation kinetics of organic pollutants

was explained by first-order equations (Lu et al. 2009; Xu

et al. 2005; Zeng et al. 2004). A second-order equation was

also reported for degradation of phthalate esters by algae

Chlorella pyrenoidosa (Yan et al. 1995). A modified

Gompertz model was used to describe the effect of initial

DBP concentration on DBP biodegradation by Gordonia

sp. QH-11(Jin et al. 2012). Haldane substrate inhibition

model was used to explain DBP degradation in a contin-

uous culture system (Wang et al. 1998). DBP biodegra-

dation kinetics by Methylobacillus sp. V29b was explained

by drawing a plot of specific growth rate (l) and DBP

concentration (Sav) (Fig. 4). It was observed that as the

concentration of DBP was increased, there was increase in

specific growth rate, but when DBP concentration reached

1900 mg/l, there was a decline in the specific growth rate.

This behavior was explained by the growth inhibition

model. Equation (1) represents the Monod model for

growth inhibition. The calculated maximum specific

growth (lmax) and half-velocity constant (Ks) were:

0.07 h-1 and 998.2 mg/l, respectively.

Monod model:

l ¼ lmax � S

ðKs þ SÞ ; ð1Þ

Fig. 1 a Scanning electron micrograph of strain 29D. Scale bar 2 lm. b Transmission electron micrograph of strain 29D. Scale bar 100 nm

200 Page 4 of 12 3 Biotech (2016) 6:200

123



where l is the specific growth rate of the microorganism,

lmax the maximum specific growth rate of the microor-

ganism, S the concentration of the limiting substrate for

growth and Ks the half-velocity constant.

Values of the coefficients:

lmax = 0.07 h-1,

Ks = 998.2 mg/l,

Yield = 0.43.

Stoichiometry for DBP utilization and biomass forma-

tion (Shuler and Kargi 2002) is presented in Eq. (2):

50C16H22O4 þ 893O2 þ 20NH3 ! 20C5H7O2N

þ 546H2O þ 700CO2:

DBP Biomass

ð2Þ

Identification of metabolic intermediates

Determination of the metabolic intermediates for DBP

degradation was performed by analysis of the GC–MS

results. Four metabolic intermediates dibutyl phthalate

(DBP), monobutyl phthalate (MBP), phthalic acid (PA), and

pyrocatechol (PC)were detected duringDBP degradation by

comparing the mass spectrum at a particular retention time

with published mass spectra from the National Institute of

Standards and Technology (NIST) database. Figure 5 pre-

sents the HPLC peaks and structure of the identified meta-

bolic intermediates from GC–MS. It was observed that with

time the length of the DBP peak was decreased, while the

peak lengths of the MBP and PA was increased and on day 8

the peak length was highest for pyrocatechol (PC). The

identified intermediates suggest that DBP was converted to

MBP, which was converted to PA. The final product of the

reaction was PC. The positive result for Rothera’s reaction

confirms the benzene ring cleavage.

Few studies reported that PAEs degradation was medi-

ated by a pathway where they are first converted to its

monoester by esterase and then to phthalic acid (PA). PA is

then transformed to carbon dioxide and water via an

intermediate known as protocatechuate (Benckiser and

Ottow 1982; Eaton and Ribbons 1982; Engelhardt and

Wallnöfer 1978; Wang et al. 1995a, 2003a; Xu et al.

2005, 2007, 2006). Sometimes, two ester linkages in PAEs

are cleaved by two different bacteria (Cartwright et al.

2000; Li et al. 2005; Li and Gu 2007). Some studies

reported the formation of phthalic acid from DBP mediated

by intermediate, monobutyl phthalate (MBP) (Benckiser

and Ottow 1982; Gu et al. 2004; Wang et al. 2004; Xu et al.

2005). Based on the reported studies, the identified meta-

bolic intermediates and Rothera’s test, a pathway for DBP

degradation by Methylobacillus sp. V29b was proposed in

Fig. 6. A similar pathway for dibutyl phthalate degradation

in landfill bioreactor was reported for Enterobacter sp. T5

isolated from municipal solid waste (Fang et al. 2010). The

study described the appearance of two major transient

metabolites including phthalic acid (PA) and monobutyl

phthalate (MBP). Pathway described for DBP degradation

by Methylobacillus sp. V29b is the extension of the

Fig. 2 Phylogenetic tree of Methylobacillus sp. V29b. The evolu-

tionary history was inferred using the UPGMA method. The optimal

tree with the sum of branch length = 0.05032880 is shown. The

percentage of replicate trees in which the associated taxa clustered

together in the bootstrap test (500 replicates) are shown above the

branches. The tree is drawn to scale, with branch lengths (below the

branches) in the same units as those of the evolutionary distances

used to infer the phylogenetic tree. The evolutionary distances were

computed using the maximum composite likelihood method and are

in the units of the number of base substitutions per site. Codon

positions included were 1st ? 2nd ? 3rd ? noncoding. All positions

containing gaps and missing data were eliminated from the dataset

(Complete deletion option). There were a total of 1281 positions in

the final dataset. Phylogenetic analyses were conducted in MEGA5.

The values such as 0.002 and 0.004 denote the evolutionary distance

between different species and values such as 99 and 100 denote the

similarities between different species
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pathway proposed for DBP degradation by Enterobacter

sp. T5. In Methylobacillus sp. V29b DBP, degradation of

one more metabolic intermediate pyrocatechol was iden-

tified as the final aromatic intermediate which fills the gap

between PA to carbon dioxide conversion.

Identification of phthalates-degrading genes

Methylobacillus sp. V29b was able to grow on substrates

protocatechuate, monobutyl phthalate, diethyl phthalate,

benzyl butyl phthalate, dioctyl phthalate and dodecyl

Fig. 3 a Degradation of DBP

by Methylobacillus sp. V29b in

MSM. b Degradation of DBP by

Methylobacillus sp. V29b in the

sample contaminated with DBP
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phthalate (Table 1). The growth of Methylobacillus sp.

V29b decreases as the length and complexity of hydro-

carbon attached to the phthalate ring increases (Wang et al.

2003b). Therefore, good growth was observed in PC, MBP

and DEP. To examine the possibility for degradation of

different phthalate esters by Methylobacillus sp. V29b and

explore the PAEs degradation pathway, PAEs-degrading

genes were amplified. Table 2 presents the list of primers

Fig. 4 DBP degradation

kinetics for Methylobacillus sp.

V29b

Fig. 5 DBP degradation metabolic intermediates identified by GC–MS. a HPLC chromatogram of the metabolic intermediates. b Structure and

m/z of the identified metabolic intermediates. DBP dibutyl phthalate, MBP monobutyl phthalate, PA phthalic acid, PC pyrocatechol

Fig. 6 A proposed biochemical pathway for DBP degradation by Methylobacillus sp. V29b. DBP dibutyl phthalate, MBP monobutyl phthalate,

PA phthalic acid, PC pyrocatechol
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selected and synthesized for gene amplification. Table 3

presents the genes amplified from Methylobacillus sp.

V29b genome. Gene sequences for primers FEH, HFDH,

FOXG, FOXGS and FDK were obtained from Arthrobacter

sp. 68b growing on phthalic acid as the sole carbon source

(Stanislauskien _e et al. 2011). Gene sequence for the primer

transporter ATPase was obtained from alkylbenzene-de-

grading Rhodococcus sp. strain DK17 which utilizes

phthalate and terephthalate as growth substrates ((Choi

et al. 2005). Gene sequences for the primers oph-A1, -A2, -

B, -C, -D, -H, -R, Tph-A2, -A3, and -B were obtained from

the bacteria-degrading phthalate, isophthalate and tereph-

thalate (Han 2008).

Biodegradation of phthalate esters is initiated by their

transport inside the cell by phthalate permease (oph-D)

which induces phthalate 4,5 dioxygenase. They belong to

major facilitator superfamily with 12 hydrophobic

membrane-spanning helices. Phthalate permeases are

reported as transport enzymes (Eaton 2001; Keyser et al.

1976). Permeases from P. putida NMH102-2 and B.

cepacia ATCC 17616 found similarity with anion:cation

symporter family (Chang and Zylstra 1999). Permeases

have reported multiple genes and have catabolic operons

(Chang and Zylstra 1999; Eaton 2001; Sasoh et al. 2006;

Wang et al. 1995b). Phthalate dioxygenase (oph-A1) cat-

alyzes the incorporation of two hydroxyl groups on the

phthalate ring to yield phthalate dihydrodiols (Eaton 2001;

Keyser et al. 1976). Primer oph-A1 was used to amplify the

enzyme called phthalate dioxygenase reductase (PDR).

PDR is an iron sulfur flavoprotein which utilizes flavin

mononucleotide (FMN) to accomplish electron transfer

from reduced nicotinamide adenine nucleotide (NADH) to

the one-electron acceptor, [2Fe-2S] (Correll et al. 1992).

Phthalate-4,5 dioxygenase action produces cis-4,5-dihy-

droxy-4,5-dihydrophthalate, which is dehydrogenated by

cis-phthalate dihydrodiol dehydrogenase (oph-B) to 4,5-

dihydroxyphthalate. Decarboxylation of 4,5-dihydroxyph-

thalate by 4,5-dihydroxyphthalate decarboxylase (oph-C)

produces 3,4-dihydroxybenzoate, also known as protocat-

echuate (Batie et al. 1987; Chang and Zylstra 1998; 1999;

Pujar and Ribbons 1985). Protocatechuate is one of the

important intermediates in various pathways including

phthalates (Eaton 2001). Protocatechuate then enters Krebs

cycle after conversion to pyruvate and carbon dioxide.

Protocatechuate is also present in the benzoate degradation

pathway (Choi et al. 2005). Oph-H codes for a protein

known as hemerythrin-like metal-binding protein.

Hemerythrins are non-heme oxygen-binding proteins and

they bind oxygen with a di-iron centre (Stenkamp 1994).

Tabel 1 Growth of Methylobacillus sp. V29b in different substrates

Strain name Methylobacillus sp. V29b

Methanol ?

PC ???

MBP ???

DEP ??

BBP ?

DOP ?

DIDP ?

PC pyrocatechol, MBP monobutyl phthalate, DEP diethyl phthalate,

BBP benzyl butyl phthalate, DOP dioctyl phthalate, DIDP diisodecyl

phthalate

Table 2 Primers used for identification of PAEs-degrading genes

Primer name Gene name References

Oph-A1 3,4-Dioxygenase oxygenase component large subunit (Han 2008)

Oph-A2 3,4-Dioxygenase oxygenase component small (Han 2008)

Oph-B Phthalate dihydrodiol dehydrogenase (Han 2008)

Oph-C 3,4-Dihydroxyphthalate decarboxylase (Han 2008)

Oph-D d-Galactonate transporter (Han 2008)

Oph-H Hemerythrin-like metal-binding protein (Han 2008)

Oph-R Transcriptional regulator, MarR family (Han 2008)

FEH Phthalic ester hydrolase (Stanislauskien _e et al. 2011)

HFDH 3,4-Dihydroxy-3,4-dihidrophthalate dehydrogenase (Stanislauskien _e et al. 2011)

FOXG Phthalate dioxygenase large and small subunits (Stanislauskien _e et al. 2011)

FOXGS Ferredoxin and reductase subunits (Stanislauskien _e et al. 2011)

FDK 3,4-Dihidroxyphthalate-2-decarboxylase (Stanislauskien _e et al. 2011)

Ptr A Transporter ATPase (Choi et al. 2005)

Tph-A2 Terephthalate 1,2-dioxygenase oxygenase component large subunit (Han 2008)

Tph-A3 Terephthalate 1,2-dioxygenase oxygenase component small subunit (Han 2008)

Tph-B Terephthalate dihydrodiol dehydrogenase (Han 2008)
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They occur in invertebrates Sipunculida (peanut worms),

Brachiopoda (lamp shells) Priapulida (priapulid worms)

and some Annelida (segmented worms, including leeches

and polychaete worms) (Klippenstein et al. 1968; Loehr

et al. 1978; Long et al. 1992). Hemerythrin-like proteins

were reported in prokaryotes, specifically Methylococcus

capsulatus and Desulfovibrio Vulgaris, and it was proposed

that the oxygen-binding domain acted as an oxygen sensor

(Xiong et al. 2000). Genes for hemerythrin-like metal-

binding proteins were amplified using oph-H primer from

the bacteria-degrading phthalate, isophthalate and tereph-

thalate. They have been found in cluster with genes

responsible for phthalate degradation, but their specific

function in PAEs degradation is uncertain (Han 2008).

Terephthalate metabolism is initiated by double hydroxy-

lation at the position 1 and 2 of the ring by terephthalate 1,2

dioxygnenase (Tph-B) to produce 2-hydro-1,2-dihydroxy

terephthalic acid (Choi et al. 2005; Schläfli et al. 1994).

2-Hydro-1,2-dihydroxy terephthalic acid is further metab-

olized to 3,4-dihydroxybenzoate (Vamsee-Krishna et al.

2006; Wang et al. 1995b). Figure 7 presents the amplified

gene products for phthalate ester-degrading genes.

This study is the first to report the isolation and char-

acterization of a Gram-negative bacterium form of the

genus Methylobacillus-degrading DBP. Bacteria from the

genus Methylobacillus are methylotrophs and have the

ribulose monophosphate (RuMP) pathway for formalde-

hyde assimilation (Bratina et al. 1992; Doronina et al.

2004; Urakami and Komagata 1986). The isolated Methy-

lobacillus sp. V29b not only grows on methanol, but is able

to grow on other substrates, such as protocatechuate,

monobutyl phthalate, diethyl phthalate, benzyl butyl

phthalate, dioctyl phthalate and diisodecyl phthalate. DBP

degradation was reported by Sphingmonas sp. DK4

(5 mg/l) (Chang et al. 2004), Pseudomonas fluorescens

B-1(2.5 & 10) (Xu et al. 2005), Acinetobacter lwoffii

(1000 mg/l) (Hashizume et al. 2002), Corynbacterium

nitilophius G11 (100 mg/l), R. rhodochrous G2, G7

(100 mg/l) (Chao et al. 2006) and R. Coprophilus G5, G9

(100 mg/l). Methylobacillus sp. V29b was able to degrade

1997 mg/l DBP, which is very high reported till so far.

Degradation kinetics of organic pollutants were explained

by first-order equations (Lu et al. 2009; Xu et al. 2005;

Zeng et al. 2004), second-order equation (Yan et al. 1995),

modified Gompertz model (Jin et al. 2012) and Haldane

model (Wang et al. 1998). Methylobacillus sp. V29b

demonstrated DBP degradation by the Monod model for

growth inhibition, which is a new perspective to present the

degradation of pollutants. While a majority of the studies

are concentrated on the degradation of PAEs in minimal

media (Chao et al. 2006; Fang et al. 2010; Wu et al. 2010a;

Wu et al. 2010b), this study focuses on the degradation of

DBP in contaminated samples collected from landfill sites.

Landfill sites are composed of wastes from domestic,

medical, pharmaceutical and industrial sources containing

a variety of plastic items and PAEs. Therefore, it was

selected for DBP degradation studies. It was an efficient

degrader of DBP in PAEs-contaminated sample; therefore,

it can be considered as a potential candidate for bioreme-

diation of the sites contaminated with pollutants.
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Table 3 Phthalate-degrading genes identified from Methylobacillus sp. V29b genome

Amplicons Primer name Name of the gene Amplicon size

84 Tph-B-F2,R2 Terephthalate dehydroxygenase 500 kb

85 Tph-B-F1,R1 Terephthalate dehydroxygenase 800 kb

86 Oph-A1 Phthalate dioxygenase 800 kb

87 Oph-D Phthalate permease 1 kb

89 Oph-C Phthalate decarboxylase 1 kb

93 Tph-B-F2,R3 Terephthalate dehydroxygenase 500 bp

95 Oph-H Hemerythin-like metal-binding protein 200 bp

99 Oph-B Phthalate dehydrogenase 500 bp

Fig. 7 Phthalate esters-degrading genes amplified form the genome

ofMethylobacillus sp. V29b. Ld-ladder, c-control, 84, 85 and 93-Tph-

B, 86-oph-A1, 87-oph-D, 89-oph-C, 95-oph-H, an 99-oph-B
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