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Abstract: Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee
stability to the derived complexes. On the other hand, due to its unique mix of structural and
optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired.
The present work is an overview of selected articles about zinc(II) complexes showing a tuned
fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers
was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur
donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties
of the ligands and the related complexes were compared and discussed both in solution and in the
solid state, keeping an eye on possible applications.
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1. Introduction

Over the past 20 years, fluorescence-responsive compounds are increasingly required for many
technological applications, from lighting and switch devices to bio-imaging and analytical probes.
Materials based on transition metal complexes were advantageously utilized. In this area, interest is
growing in the abundant, less expensive, and environmentally “green” zinc(II) metal cation. Today,
science is in great demand to address the challenge of sustainability. Scientific innovations and advances
must play a major role in technological breakthroughs thanks to the choice of sustainable green matter
as a substitute for highly toxic, expensive, and difficult to dispose products. So, green chemistry as
the design of less hazardous chemical products and processes is a hot topic today. The replacement
of heavy metal atoms in aromatic macrostructures with the small eco-friendly zinc cation, able to
modulate the properties of coordination environments, easier to synthetize, and low cost, can be a way
to meet the challenge.

From a research point of view, to the advantage of a large variety of coordination geometries
and elaborate molecular architectures, zinc(II) complexes add the versatility of the luminescent levels,
both in solution and in the solid state. Real breakthroughs for the novel luminescent technologies
were obtained by employing highly efficient, stable, and cheap emitters. Among them, several zinc(II)
complexes have to be included [1–6].

In the coordination complexes, electronic charge can be transferred between different molecular
entities in the complex, from the electron donor zone to the receiving electron acceptor zone. In most
complexes, charge-transfer electronic bands involve electron transfer between metal atoms and
ligands. The charge-transfer bands in transition metal complexes are due to the shift of charge density
between orbitals predominantly metal in character and those predominantly ligand in character.
Most transitions are ligand-to-metal charge-transfer (LMCT) if the transfer occurs from the ligand
orbitals to the metal, or metal-to-ligand charge-transfer (MLCT) in the reverse case. Due to its d10 closed
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shell configuration, zinc(II) ion has no optical signature. The d–d electronic transitions are not expected
in zinc emissive complexes and the lowest energy excited states are mainly of a ligand-centered charge
transfer (LCT) nature (as intramolecular charge transfer, ICT, and intraligand charge transfer, ILCT)
and/or ligand-to-ligand charge transfer (LLCT) nature, rarely due to ligand-to-metal charge transfer
(LMCT) states involving s or p empty orbitals of the metal [7]. The absence of ligand field stabilization
energy leads to the formation of complexes with various coordination numbers, such as 4, 5, or 6,
with tetrahedral, square pyramidal/trigonal bipyramidal, and octahedral geometries.

In dependence of the type of ligands and the coordination pattern imposed by the ligands,
zinc(II) complexes exhibit fluorescence tuning both in intensity and/or emission maximum. Specifically,
fluorescence enhancement (chelation enhanced fluorescence, CHEF mechanism [8–11]) or fluorescence
reduction (metal-binding-induced fluorescence quenching [12]) can occur upon coordination.
In addition, due to the lowering of the excited state of the bonded ligand upon coordination,
a qualitative fluorescence tuning (blue or red shift of the emission maximum from ligand to metal)
can be observed. The two different mechanisms can activate in solution and/or in the solid state,
with drastic variations in fluorescence with respect to the ligand. Recently [13], the ability of the
fluorophore ligand to form a π-contact with the metal cation was correlated with the fluorescence
quenching or enhancement ability. Therefore, the information about the excited state geometry and
the frontier orbital arrangement of the excited states is essential to understanding and foresight of
the phenomenon.

The fluorescence enhancement effect is often the result of a stabilization of the excited state in
poorly emissive ligands upon coordination [14]. Zinc(II) cation often causes a CHEF effect. Typically,
in emissive zinc(II) complexes, the fluorescence emission results from a π-π* LCT and the role of
the zinc ion is to freeze the favorable re-emissive conformation. In this way, it is possible to obtain
strongly emissive materials for lighting devices by increasing the emission of organic molecules
upon zinc coordination. Ligands with flexible spacers and appropriate aromatic moieties able to
fold over the metal in a locked conformation show good potential in analytical and bio-chemistry.
Many sensing systems for zinc cation detection exploit the CHEF effect [15–17]. At the opposite,
fluorescence quenching is quite unusual in zinc complexes. Nevertheless, ICT or ILCT transitions
can be responsible of zinc binding-induced fluorescence quenching. Fluorescence quenching is
observed in rigid pyridine-based ligands upon coordination, due to a decreased HOMO–LUMO
energy gap, or in zinc-induced quenching of the protein intrinsic fluorescence due to conformational
perturbations [18–21].

Finally, the aggregate nature of materials consisting of fluorophores frozen into polymeric chains
or networks give rise to noticeable changes in the energetic levels of the ligands. The assembly of
emissive pincers by zinc coordination produces the most varied polymeric structures: coordination
polymers (CPs) obtained by zinc bridges [22–25], metallated polymers obtained by coordination with
pre-formed chains [26,27], and polymeric networks obtained by interlacing of flexible zinc-crossed
fluorophores [28–30]. Owing to both the restrictions imposed to fluorophore and the efficient electron
hopping in the tight structure, relevant emission tuning with respect to the free ligands and to
mononuclear structures is envisaged.

As modifications of the ligand are expected to change energy levels and structural features,
the number of binding sites in the pincer ligand plays a decisive role on the spectroscopic properties.
Tridentate ligands are quite simple pincers, often low cost and easy to synthetize. At the same time,
tridentate ligands guarantee good stability to the complex thanks to a relevant chelate effect. Ligands that
can bind zinc(II) through three donor atom groups, such as O, N, and S donor atom groups,
represent an interesting class due to the variety of behavior and applications. Tridentate zinc complexes
are known to produce simple and mononuclear or intricate even polymeric structures, by themselves
or with auxiliary ligands. By doing so, they can cause relevant fluorescence tuning with respect to the
free ligand, in solution and/or in the solid state. In addition, depending on the charge of the pincer
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ligand, the zinc-binding reaction leaves unoccupied coordination sites for additional ligands, which in
turn can modulate the structure and properties of the derived complexes.

Some representative functional groups involved in the build of fluorescence-responsive tridentate
pincers can be identified. The Schiff base moiety, obtained by reaction of amines and carbonyl-containing
compounds, is a good candidate for the synthesis of N, O, S donors containing ligands. In particular,
in half-salen-type ligands, one nitrogen atom and one oxygen atom group chelate the metal, while the
C=N functional group constitutes a versatile bridge between the N,O pincer and the branch of the
ligand containing the third binding site. This role could be played by a third nitrogen, oxygen, or sulfur
atom, as an example the carbonyl oxygen, the thione sulfur, or the donor atom of an heteroaromatic
ring. The formation of a coordination core consisting of five- and/or six-membered rings between the
pincer and zinc cation produces stable and sometimes highly emissive coordination complexes. Finally,
the coordination core can be all made up of aromatic rings with N, O, S donor heteroatoms fixed in
a rigid pincer or able to fold up as a flexible pincer.

This is an overview of selected cutting-edge examples of tridentate zinc(II) complexes causing
fluorescence tuning with respect to the ligand. In this research area, many articles have been
produced in the last 15 years. Starting from the synthetic and purely phenomenological approach,
to the complete and detailed analysis of the energy levels, until the synergistic approach to the
structure–property relationship, there is much to tell on this subject.

In the following sections, ligands will be classified according to the binding donor atom groups,
and fluorescence properties of ligands and related complexes will be comparatively discussed. By use of
an easy “cartoon” representation (as in Figure 1), we will propose a quick intuitive overview of groups
of structures, examined according to the photoluminescence (PL) response and the application area.
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Figure 1. Schematic representation of most of the coordination cores achievable from tridentate pincers
binding zinc(II) cation (in green). X, X′, and X” can be N, O, and S atom groups.

2. Nitrogen Binding Sites

The study of polydentate ligands with available N donor sites is a prolific research area in
coordination chemistry [31–43]. Typically, nitrogen binding sites are neutral sites where the lone pair
of nitrogen atom is available for donation. Nitrogen aromatic heterocycles are excellent building blocks
for the synthesis of N-donor polydentate ligands. Single or fused five- and/or six-term rings produce
stable and soluble pincers able to direct the chemical and chemo-physical properties. A substantial
amount of literature articles on pyridine-containing tridentate ligands has emerged. Related to the
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enhanced π-electron delocalization upon zinc coordination, in some cases, the zinc-binding-induced
fluorescence quenching phenomenon was detected. At the opposite, pyridine and other nitrogen
heterocycles assembled in flexible architectures often produce a CHEF effect.

2.1. Terpyridine-Type Ligands

Rigid pyridine-based tridentate ligands as terpyridine (Tpy) are well-known chelate ligands
for transition metals [44–46]. Many Tpy ligands were found to be emissive in the solid state,
with photoluminescence quantum yields (PLQYs) strongly depending on their own molecular structure
and on substituents, with a relevant emission tuning due to metal coordination. Zinc-binding-induced
fluorescence reduction/quenching was often detected, as well strong color emission tuning. In 2009,
a series of zinc(II) bis(4′- phenyl-terpyridine) complexes with substituted Tpy were studied by J. Popp
and coworkers [47] (Figure 2). The zinc ion is coordinated with the three nitrogen atoms from each of
two terpyridine ligands and with two PF6

− as auxiliary ligands. Tuning of the color emission from
violet to cyan (425–487 nm) in dependence of the extension of the π-conjugated system of the ligand
was observed, and from low to high PLQYs (from 6 to 64%) were recorded. Thin solid films obtained
by low-concentration dye-doped poly(methylmethacrylate) (PMMA) matrix show bright emission,
with PLQYs up to 0.30. By DFT study, the HOMO energy level was also significantly influenced by the
ligand structure, whereas the LUMO energy appeared to be independent of the electronic pattern of
the Tpy ligand, with the enhanced π-electron delocalization leading to a decreased HOMO–LUMO
energy gap.
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The crystalline structure of a Tpy-type ligand upon coordination with different transition
metals was examined in 2015 by K. Rissanen and coworkers [48] (Figure 2). The ligand displayed
bright blue emission and high PLQYs dissolved in several organic solvents. A distorted octahedral
arrangement with two tridentate terpyridine ligands was detected in the zinc complex and a significant
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greenish-yellow tuned emission attributed to ILCT states, still appreciable but lowered in intensity
with respect to the ligand. DFT analysis rationalized the ICT-type electronic transitions involved from
the diphenylacetylene moiety to the terpyridine group. Except for the other d10 closed shell cadmium
(II) ion, a complete metal-binding-induced fluorescence quenching was observed in the presence of the
other divalent metal ions.

Tpy-type ligands with different substituents were examined for their binding ability specifically
toward zinc(II) cation in 2016 [20] and in 2017 [21] (Figure 2). In [21], Zhen Ma and coworkers examined
the compound obtained by reacting 4′-phenyl-terpyridine and ZnSO4·7H2O by X-ray crystallographic
analysis. A neutral 1:1 (Zn:Tpy) complex with a coordinated sulfate group, qualitatively emissive in the
solid state, was obtained. The emission spectrum displayed two bands at ca. 377 and 499 nm red-shifted
with respect to 361 and 373 nm for the ligand in the solid state. The former higher energy band of
the complex was assigned to LLCT whereas the latter band to LMCT [49,50]. In 2016, the influence of
the coordination stoichiometry was explored by Yi Pang and coworkers [20], by reacting substituted
Tpy-type ligands (R in Figure 2 is a p-substituted phenyl ring bearing a donor group and R’=H or
R’=CH3 on the lateral pyridine groups) with ZnCl2. The authors pointed out that the zinc complex forms
in a 2:1 (ligand: metal) ratio with a low zinc(II) concentration and in a 1:1 ratio with a high concentration
of metal. In ethanol, fluorescence quenching occurs in 2:1 complexes, whereas, turning into 1:1
complexes, fluorescence increases in the opposite direction, marking the role of the coordination
pattern in the emission intensity. In 1:1 complexes, temperature-dependent fluorescence spectroscopy
elucidated the role of the ICT mechanism between donor and acceptor groups. Due to the occurrence
of a relevant ICT process, the strong donor substituents induce zinc-binding fluorescence quenching
and red-shift of the emission maximum. Conversely, the weak donor substituent p-CH3-phenyl group
causes an increase in the fluorescence emission of the 1:1 complex.

Very recently [51], B.N. Gosh and coworkers examined the X-ray crystal structure of
4′-functionalized terpyridine complexes (Figure 2). Zinc cation did show a trans-arrangement of
the terminal pyridine nitrogen atoms with respect to the central pyridine ring in the 2:1 ligand zinc
tridentate complex. The terpyridine ligand exhibits a bright blue emission in dichloromethane with
68% PLQY and produces a different coordination pattern in dependence of the coordinated metal.
Upon zinc complexation, ligand emission shows a significant reduction while other transition metal
ions completely quench the fluorescence of the ligand. The weak fluorescence of the zinc complex
can be imputed as an ILCT transition from the amine moiety to the metal coordinated terpyridine
fragment [48,52,53]. The non-fluorescence nature of the complexes with other metal cations can be
imputed as MLCT-type transitions.

Recently, fluorogens exhibiting aggregation-induced emissive properties (AIEgens) have grabbed
scholars’ attention in various scientific areas. In contrast to conventional aggregation-caused quenching
(ACQ) molecules, AIEgens are weakly fluorescent/non-emissive in diluted solution and emit intensely
in their aggregate form (concentrated solution and solid state), owing to the restriction of intramolecular
motions [54]. Tpy-based zinc complexes AIEgens have been proved to be attractive and versatile tools
for biological imaging and chemical sensing. Under physiological conditions, Tpy-type ligands are
employed in bio-medical applications, such as for living cell imaging. As an example, in 2005 [55],
Valery N. Kozhevnikov and Burkhard König presented 2,2′-bi- and 2,2′:6′,2”-terpyridines with
aminomethyl and aryl substituents employable as luminescent probes coordinating in a pentadentate
coordination core zinc cation in physiological media.

In 2019, a thiophene bridged Tpy tridentate Zn(II) complex (Figure 3) was designed for
RNA-specific targeting thanks to its AIE bright yellow-green fluorescence emission under physiological
conditions by Ju Yupeng Tian, Dandan Li, and coworkers [56]. On the other hand, in 2016, a new
fluorescence sensor for citrate (acting itself as a tridentate ligand) detection was developed by
integrating an AIE Tpy ligand with zinc(II) by Ju Mei, Jianli Hua, and coworkers [57]. The enhanced
electron-withdrawing ability of the complex gave rise to a red-shifted fluorescence compared with
the organic ligand. The zinc-based probe was not an AIEgen but showed significant fluorescence
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enhancement (fluorescence turn-on mechanism) under substitution of the auxiliary ligands with citrate.
The bathochromic shift of the absorption maximum and the decrease of fluorescence intensity may be
ascribed to the stronger ICT in the complex as compared to the ligand (Figure 3).
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2.2. N,N,N Schiff Base-Type Ligands

Schiff base ligands containing an additional nitrogen binding site, usually derived from a nitrogen
heterocycle, have been widely reported. The versatile CH=N bridge allows the employment of a large
variety of substituents and to build the most varied architectures. Unlike their complexes, this kind
of ligand is often non-emissive, and a general behavior due to the CHEF effect was mostly found.
In 2011, Kaushik Ghosh and coworkers [58] explored the crystal structure and photophysical properties
of four zinc(II) complexes derived from the tridentate ligand Pyimpy (see Figure 4) with different
auxiliary ligands. In the complexes, two pyridinic nitrogen groups are involved in the equatorial plane
binding along with the iminic nitrogen group. The complexes show various fluorescence emission in
toluene solution upon excitation of the charge transfer band near 350 nm (ascribable to π,π* LC of the
ligand [59]) while the free ligand Pyimpy displays no fluorescence emission in the same experimental
conditions. The phenomenon was ascribed to the loss of vibrational energy decay due to ligand
stiffening under coordination. In addition to the zinc-binding fluorescence intensity enhancement,
a shift of the maximum of emission was detected, in dependence of the auxiliary ligands.

Other nitrogen aromatic heterocycles have recently emerged as electron donor-containing
moieties. Among them, pyrimidine groups attract attention for their role in biological systems [60,61].
Susanta Kumar Kar and coworkers in 2012 [62] prepared two tridentate N,N,N donor Schiff base
ligands [63] using pyrimidine- and pyridine-containing carbonyl compounds (see Figure 4). Whereas the
ligand with a methyl substituent was fluorescent silent, its zinc complex showed a strong CHEF effect
in methylcyclohexane. Probably due to photoinduced electron transfer processes in the presence of
several nonbonding electron pairs on the nitrogen donor atom groups, the ligand π,π* transitions are
not allowed and the flexible bonds of the ligands cause the activation of the non-radiative channel.
CHEF activates by the increase in conformational rigidity of the ligands upon strong zinc binding,
which prevents non-radiative channels [64]. Pyrimidine-containing Schiff base ligands were studied in
2015 by Saugata Konar [65] for the zinc-binding ability into 1-D coordination polymers held together by
µ1,5-bridged dicyanamide ions. The difference due to the activation of a N,N,O bonding site (ligand L1,
achieved by the presence of a half-salen group) with respect to the N,N,N bonding site (ligand L2,
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see Figure 4) was pointed out. Both the ligands display low fluorescence intensity in methanol.
Conversely, both their polymeric complexes show red-shifted enhanced fluorescence emission. The low
emission intensity of the ligands was ascribed to photo-induced electron transfer processes, while the
CHEF effect to an increase in conformational rigidity of the ligands upon complexation. The complex
derived from the N,N,O ligand shows the highest CHEF effect compared to the complex derived from
the N,N,N ligand. This has been attributed to the strong binding of the salen-type ligand L1 thanks to
the N,O donor pincer compared to the N,N pincer of ligand L2. In the first case, the conformation of
the coordination core is strongly trapped in a planar conjugated habitus.
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Polydentate flexible ligands containing two or more benzimidazole donor units have long been
used in coordination and supramolecular chemistry [66–68]. The fused benzimidazole ring contains
the N-binding site of the imidazole moiety. Feng-Mei Nie and coworkers [69,70] synthetized solid-state
emissive zinc(II) complexes derived from tridentate and polydentate benzimidazole (Figure 4),
solid-state emissive by themselves. Different architectures were obtained in dependence from the
number of chelating site and on the auxiliary ligands, as analyzed by the X-ray diffraction technique.
In presence of oxalate, a dinuclear oxalate-bridges Zn2L2 coordination core was obtained (in 2014, [69]),
whereas the same ligand produced a five-coordinate ZnL coordination core in the presence of N,O
chelating picolinate (in 2016, [70]). In both cases, the fluorescence emission was assigned to π-π*
ILCT bands. The red shift of the emission maxima from ligand to complexes is influenced by the
coordination pattern. The remarkable fluorescence enhancement compared to the free ligand was
ascribed to extensive π-conjugated structure formation.

2.3. Ligands for Sensing Analysis and for Supramolecular Architecture Building

Polydentate structures with flexible moieties are useful tools for the sensing of metal analytes
by the fluorescence technique [71,72]. Many novel fluorescence chemosensors for zinc cations were
recently explored. From a purely theoretical point of view, Hee-Seung Lee and coworkers in 2013 [14]
explored the role of fluorophore−metal interaction in photoinduced electron transfer (PET) sensors and
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the large CHEF effect promoted by zinc(II) coordination by time-dependent density functional theory
(TDDFT) study, pointing out how DFT study is the logical complement of the synthetical work about
novel sensing molecules [17,30,59,73].

A significant example of a bendable N,N,N ligand useful as a sensor was synthetized and
employed in 2018 by Ugo Caruso, Rosita Diana, and coworkers [25,59,74–76]. Specifically, the pyridine/

phenol/benzoxazole-based ligand (Figure 5) able to bind various transition metals acts as N,N,N
tridentate selective fluorogenic ligand toward zinc(II) by a sensing CHEF mechanism, in water or
water/mixed solvents. DFT calculations for the free ligand and the complex were used to calculate
frontier molecular orbitals. The frontier molecular orbitals undergo strong changes when the sensor
folds back onto the metal cation (see Figure 5). HOMO of the ligand and of the complex are π orbitals
with contributions from 2p orbitals of the carbon atoms in the benzothiazole ring. LUMO of the free
ligand is a π* orbital with contributions mainly from the benzothiazole ring, while the LUMO of the
complex is a π* orbital localized on the pyridine group. Not unusual for multidentate ligands, the same
tripodal multidentate sensor acts as a tetradentate ligand toward zinc ion at pH = 8.0 [17]. In basic
media, the sensor activates the phenate oxygen-binding site in addition to the N,N,N chelate site.
The ligand results a pH-dependent sensor [77], able to detect zinc(II) ion in a neutral/slightly acidic
and in a slightly basic aqueous environment with different emission responses.
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Chlorophyll-catabolite named phyllobilins may display a capacity to complex metal ions. In 2015,
in a mighty article [78], Chengjie Li and Bernhard Kräutler explored pink-colored phyllobiladienes as
effective tridentate ligands, leaving one unoccupied coordination site that may be used for coordination
by an external additional ligand, such as proteins or nucleobases (Figure 5). Coordination of the
zinc cation to the scarcely luminescent pink chlorophyll catabolites induces bright fluorescence in the
complex. The zinc(II) adduct ZnL shows strong red emission in solution (band picked around 650 nm,
almost two orders of magnitude more intense than the free ligand) so it can be potentially used as
in vivo sensors. Analysis of the fluorescence of MeOH solutions leads to quantitative detection of the
cation thanks to the linear correlation between fluorescence intensity and zinc(II) concentrations.

N,N,N tridentate complexes have a part as novel polymeric materials with intriguing structural
and mechanical features for the construction of smart supramolecular architectures. The formation of
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polymeric architectures through zinc cation linkers can be the way to increase and/or tune the
fluorescence properties of the organic ligands, and to transfer the desired emission properties
to macrostructures.

Mechanically interlocked molecules, such as catenanes [79–81], are topological structures held by
mechanical bonds, with intriguing potential in several fields from synthetic chemistry to materials
science and nanotechnology [82–84]. In 2020, Xuzhou Yan and coworkers [28] obtained a mononuclear
ZnL2 complex by reacting a zinc salt with N,N,N chelating ring-like [2] catenane ligands. The synthesis
of a “woven” polymer network (WPN) via ring-opening metathesis polymerization of the catenane
produced a 3-D coordination polymer consisting of rigid metal-coordinated crossing points and flexible
alkyl chain. The flexible and firm network obtained by interlaced fluorophore units exhibit different
emission properties in the solid state with respect to the reagents. The mononuclear ZnL2 complex is
an AIEgen, relatively flexible and less restricted. It can aggregate tightly in the solid state, resulting in
a strong emission. After the formation of the more interlocked network structure, the restrictions
imposed to fluorophore aggregation lower the emission. The quantum yields of the three structures
(9.99% for ZnL2, 4.76% for the [2] catenane, and 8.97% for the WPN) measured in the solid state showed
similar variation trends along with different topological structural transformations.

3. Nitrogen and Oxygen Binding Sites

N,O chelating Schiff bases ligands, often half-salen-type ligands, can be obtained by condensation
of salicylaldehyde and its derivatives with a variety of primary amines. Applications of Schiff base
complexes in various fields, such as molecular electronics, optical, catalysis, analytical, pharmaceutical,
and biomedical [85–100], are known. The salen moiety owes attention to its versatility and coordination
ability toward several metals as a mononegative ligand. Schiff bases ligands can form homo-
and hetero-metallic complexes and 1-D, 2-D, and 3-D polymers. The emission behavior of many
zinc(II) half-salen complexes has attracted interest due to their potential as light-emitting layers [101]
and fluorescent sensors [102,103]. Photoluminescence properties of N,O Schiff base complexes can
be changed/improved by the introduction of a third binding site at the ligand backbone. In this case,
locking the metal in a strong N,O clamp, properties can be modulated by insertion of the third donor
atom group in a suitable site of the binding architecture. Tuning of fluorescence emission is expected
by varying the third donor atom and its position, by addition of substituents on the coordination core
and by the auxiliary ligands. The most recent and intriguing advances in the design of N,O,N and
O,N,O tridentate ligands for zinc(II) complexes are presented below.

3.1. N,N,O Ligands

Many N,N,O ligands have a relatively simple structure. By addition to the mononegative N,O
half-salen block of an aromatic or non-aromatic nitrogen-containing fragment, a wide variety of
structures can be obtained. In many articles, X-ray diffraction analysis constitutes the starting point to
correlate structural data and theoretical analysis. On the other hand, more elaborate N,N,O chelating
structures have been designed for specific functions. Because zinc is essential to life as part of enzymes,
the detection of zinc cation in complex biological systems is a desirable goal. Moreover, zinc complexes
have recently been employed as probes in fluorescence bio-imaging techniques.

3.1.1. Half-Salen-Type Ligands

In 2016, Shyamapada Shit and coworkers [104] presented two tridentate salen Schiff base ligands
with two different halogen substituents in combination with azide as auxiliary ligands (Figure 6).
The structure–property relationships of the coordination complexes were examined. Single-crystal
X-ray diffraction studies revealed a similar dinuclear pattern for the two complexes. Spectroscopic
characterizations revealed that the fluorescence pattern of the complexes is scarcely affected by the
halogen substituent, in both case distant from the coordination core and with no relevant electronic effect.
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As expected, the emission recorded in methanol, ascribable to ILCT of the complexes, is significantly
higher than that of the corresponding ligands.
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Variously substituted polydentate hydrazones are important scaffolds in coordination chemistry
REFF. Tridentate N,O,N ligands can explain their chelating ability utilizing the pyridine/pyrazine N
atom, one azomethine N atom, and one carbohydrazide O atom, and can mold itself according to the
required coordination of the metal ion. Pyrazole-based flexible N,N,O hydrazones and their zinc(II)
complexes were studied by Susanta Kumar Kar and coworkers in 2012 [63]. By the X-ray technique,
the flexible pyridyl–pyrazolyl-ended ligand was found to be able to produce different coordination
structures with different metal ions, and relevant changes in the luminescent pattern (Figure 6). In DMF,
d10 ions, such as Zn(II) and Cd(II) cations, show a high CHEF effect, unlike the Ni(II) ion, which in turn
causes fluorescence quenching with respect to the free ligand. In 2013 Kumer Kar and coworkers [105]
observed no relevant fluorescence in the ligands, while its cadmium(II) and zinc(II) complexes were
emissive in DMF, due to intraligand p,p* and n,p* transitions and also to the weak MLCT band [64].
Chelation-induced rigidity also plays an important role impeding the nonradiative channels due to the
flexible bonds.

Recently, the interest in this class of complexes was promoted by the photoluminescence activity in the
solid phase, as required for emitting layers of LEDs and solar cells. In 2019, Ugo Caruso and coworkers [75]
obtained two complexes by reaction of zinc(II) acetate and N,N,O tridentate pyridinyl-hydrazone ligands
(Figure 6). Both ligands have a pyridinyl-hydrazone moiety acting as mono-negative tridentate ligands
toward the zinc ion in a 2:1 stoichiometric ratio, producing an octahedral environment. Ligands and
complexes are scarcely emissive in diluted solution. The crystalline ligands show poor emission in the
solid state while the push-pull more efficient pattern of the complexes guarantee intense solid-state blue
fluorescence due to the AIE (aggregation-induced emission) effect [106]. In this case, the fluorescence
pattern of the complexes is largely affected by the substituent. Quantum yields above 20% and large
Stoke’s shifts were recorded. Because large Stoke’s shifts eliminate spectral overlap between absorption
and emission phenomena, the detection of the fluorescence improves both in the intensity and in color
purity, making the complexes promising for actual applications.
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3.1.2. Ligands for Sensing Analysis and for Biological Applications

In order to achieve the goal of zinc(II) detection in complex biological systems, or to design
zinc-based architectures with biological activity, the C=N moiety included in flexible ligands can be
an easy synthetic solution. A half-salen-type N,O,N ligand [107] was prepared in situ by Shyamal
Kumar Chattopadhyay in 2019 (Figure 7) and employed to produce a mononuclear zinc(II) complex
whose structure was determined by single crystal X-ray diffraction. In an aqueous methanol solution
at the physiological pH, the complex exhibits an intense greenish-blue fluorescence whose maximum
does not differ substantially with respect to the free ligand while the intensity is about 17-fold stronger.
The ability to give fluorescence in aqueous solutions makes the probe promising for DNA binding
activity and fluorescence bio-imaging. By DFT calculations, the nature of the electronic transitions was
assigned to the π,π* transitions of the imine and heterocyclic moiety and to a n,π* transition for the
free ligand, and to π,π* LCT transition in the complex.Molecules 2020, 25, x 12 of 27 
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Designed for cytotoxic and antibacterial activity by M.R. Prathapachandra Kurup and coworkers
in 2020 [108], a potentially N,N,O tridentate ligand worked with copper and zinc salts with unexpected
different results. The two complexes (Figure 7) show a very different structural and spectroscopic
pattern. In solution, the fluorescence emission intensity of the ligand decreased on complexation with
Cu(II) ion, which can be attributed to the decrease in electron density on the ligand due to d orbital
being involved. Contrarily, the ligand acts as a bidentate pincer toward zinc(II), coordinating to the
metal cation through phenoxo oxygen and imine nitrogen. The bis-chelate metal complex produces
an enhancement in the fluorescent intensity in DMF, due to the prevention of the photoinduced electron
transfer process preserving ILCT bands.

Very recently [109], two N,O,N tridentate ligands were used by Fabiao Yu, Guang Chen,
and coworkers as fluorescent sensors to monitor intracellular zinc(II) in living cells by fluorescent
bioimaging. The elaborate fused-rings aromatic part guarantees a rich π-conjugated system able to give
a photoluminescent response. The oxygen atom group of the C=O fragment is the third neutral jaw of
the tridentate ligand. Due to the restriction of the isomerization and rotation of C=N upon coordination,
the probes show fluorescence enhancement (from 4 to 7-fold at 523 and at 543 nm, respectively)
and large Stokes shifts of the emission spectra. A real-time two-photon excitation wavelength apt to
biological experiments and deep penetration in tissues was detected.
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3.2. O,N,O Ligands

The ubiquitous Schiff base moiety is the useful fragment also in this case. Due to the versatile
synthesis and the coordination ability of the CH=N functional group, many binegative ligands were
built starting from O,N chelating salen-derivatives and a third oxygen or sulphur-containing moiety.

Tridentate furan-containing half-salen-type ligands were published by Debashis Ray and coworkers
in 2014 [22] (Figure 8). Participation of the furan oxygen group in coordination is scarcely reported.
The phenoxido-O group can be involved in coordination as a neutral donor site. The coordination
abilities of the furan ring and the effect of several auxiliary triatomic bridging groups were checked
by reacting zinc perchlorate salt in the absence and in the presence of auxiliary thiocyanato or azido
anions. The ligand coordinates as a tridentate ligand producing a mononuclear specie, a dinuclear
specie in the presence of thiocyanato, and a polymeric azido-bridged chain with azido anion.
In MeOH solution, the emission bands of ligand and complexes are very similar. The PET process
due to the presence of an electron lone pair of the donor atoms in the ligand produces a low
PL quantum yield. Zinc-binding-induced emission greatly depends on the coordination pattern.
The coordination-driven enhancement of fluorescence intensity is explainable with an increased rigidity
upon complexation, so that the emission intensity in the dinuclear-bridged complex is higher than in
the mono and polynuclear.

Coumarin-based molecules were recently employed as laser dyes and fluorescent probes [110–112].
Zinc-selective coumarin-based chemosensors were used in biological systems. Vinay K. Singh and
coworkers in 2019 [113] produced two mononegative O,N,O tridentate Schiff base ligands employed
in the coordination of various metal cations (Figure 8). The structural information obtained by
the X-ray technique was used in the structure–activity correlation. In contrast to the fluorescence
quenching upon cobalt, nickel, and copper complexation, zinc complexes show a from medium to
strong emission, due to the locally excited π*,n transition state, the nature of substituents, and the
conformational rigidity of the fluorophore greatly affecting the photo-induced electron transfer
processes. Another coumarine-containing tridentate ligand with a hydrazonic flexible skeleton was
studied by Nader Noshiranzadeh and Mirabdullah Seyed Sadjadi in 2019 [114], focusing its catalytic
activity in azide-nitrile cycloaddition reactions (Figure 8). The combination of the coumarin moiety and
hydrazone functional group did show interesting optical properties. The ligand acts as a mononegative
O,N,O tridentate trough the azomethine nitrogen and the esteric oxygen atom groups to the metal ion.
Methanol and a chloride ion complete the coordination sphere. The ligand itself exhibits an intense
fluorescent emission in methanol at 475 nm, which can be assigned to the p,p* transfers. Interestingly,
as the ligand is encumbered, the nonradiative channels due to the flexible bonds are impeded and the
fluorescence intensity is scarcely affected by zinc coordination. The higher emission band of the complex
is very similar both in intensity and in the maximum wavelength, still related to intraligand emissions.

Very recently [115], a series of mononuclear acetate-containing zinc complexes derived from
acylhydrazones demonstrated efficient photoluminescence in the solid state, with emission maxima
from 414 to 536 nm and quantum yields from 9.5 to 64.2% depending on the nature of the acyl fragment
and of the auxiliary ligand (water or pyridine). A.N. Gusev and coworkers in 2020 synthetized several
hydrazones containing a phenylpyrazole fragment acting as mononegative ligands toward the cation
by deprotonation of the pyrazole fragment. The ligands themselves are poor emitters in the solid
state. The PL efficiency of the hydrate complexes is lower with respect to the pyridinium analogs
in the case of the aromatic acid derivatives, whereas an inverse dependence was observed for the
phenylalkyl derivatives.

A systematic approach based on zinc-binding aroyl- and acylhydrazones ligands with different
substituents and pyridine rings as auxiliary ligands was adopted in a series of articles by B. Panunzi
and coworkers (Figure 9). This approach, based on the study of a homogeneous set of the same skeleton
ligands, which differ in one relevant substituent, led to highly stable mononuclear and polynuclear
structures and to metallated zinc polymers emissive in the solid state.
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In 2014, B. Panunzi and coworkers reported the synthesis and characterization of four O,N,O
acylhydrazono [23] and four analogous aroylhydrazono-type [116] ligands. The difference within
the first mononuclear complex group and within the second (mono and dinuclear) groups is the
electron-acceptor substituent R on the same tridentate chelating core. The difference between the two
groups is an additional benzyloxy bulky group (Figure 9). In both cases, the enhanced fluorescence in the
solid state is due to the increased rigidity upon coordination, which leads to a decreased probability of
electronic nonradiative transitions from the excited states [117,118]. Tuning of the emission wavelength
was achievable by varying the electron-acceptor group R with significant analogies in the two series
(see Figure 9). DFT analysis produced a first rationalization of the red shift in the chromophore series.
The ability of pyridine molecules to complete the coordination sphere of zinc(II) was explored and
its dominant contribution to LUMO involved in the electronic transitions was pointed up. Due to
self-quenching decreasing, the photoluminescence intensity enhances by increasing the distance
between the emitting species in the crystalline complexes. Therefore, the second series of bulky
complexes show higher PLQYs with respect to the first series. An unprecedented 64% PLQY for
the R=CN bulky zinc complex was recorded, with relevant tuning in the wavelength and emission
intensity with respect to the ligand; this value is suitable for lighting applications.



Molecules 2020, 25, 4984 14 of 25

Molecules 2020, 25, x 15 of 27 

 

pointed up. Due to self-quenching decreasing, the photoluminescence intensity enhances by 

increasing the distance between the emitting species in the crystalline complexes. Therefore, the 

second series of bulky complexes show higher PLQYs with respect to the first series. An 

unprecedented 64% PLQY for the R=CN bulky zinc complex was recorded, with relevant tuning in 

the wavelength and emission intensity with respect to the ligand; this value is suitable for lighting 

applications. 

 

Figure 9. Aroyl- and acylhydrazones N,O,N tridentate pincers with different substituents, the derived 

complexes, and the related zinc polymers. 

In order to transfer the optimal fluorescence performance of the two groups of complexes into 

polymeric materials, the same tridentate ligands were employed by B. Panunzi and coworkers in 

2015 to prepare metallopolymers by chemical grafting of Zn(II) coordinating cores onto preformed 

poly(4-vinylpyridine) (PVPy) chains [119] (Figure 9). As an alternative approach to the dye-doped 

materials, this practice showed advantages, such as stability of the materials, synthetic easiness, and 

reproducibility. In the 10 wt.% grafted polymeric materials, effective emission color tuning was 

achieved depending on the strength of the electron acceptor substituent and high solid-state PLQYs. 

As a part of the same research, other groups of aroyl- and acylhydrazones were studied for their 

ability to form stable zinc(II) complexes with a varied coordination environment and tunable 
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complexes, and the related zinc polymers.

In order to transfer the optimal fluorescence performance of the two groups of complexes into
polymeric materials, the same tridentate ligands were employed by B. Panunzi and coworkers in
2015 to prepare metallopolymers by chemical grafting of Zn(II) coordinating cores onto preformed
poly(4-vinylpyridine) (PVPy) chains [119] (Figure 9). As an alternative approach to the dye-doped
materials, this practice showed advantages, such as stability of the materials, synthetic easiness,
and reproducibility. In the 10 wt.% grafted polymeric materials, effective emission color tuning was
achieved depending on the strength of the electron acceptor substituent and high solid-state PLQYs.

As a part of the same research, other groups of aroyl- and acylhydrazones were studied for
their ability to form stable zinc(II) complexes with a varied coordination environment and tunable
photophysical properties. In 2019, U. Caruso and coworkers reported [74,120] on three O,N,O
tridentate aryl-hydrazone ligands with a cationic-ended side chain and a different electron-withdrawing
substituent (Figure 10). The charged chain makes both ligands and complexes very soluble in common
organic solvents and aqueous mixed solvents and emissive in solution, as required in soft-matter
solar cells, such as light-emitting electrochemical cells (LECs). RGB (red-green-blue) emission color
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tuning in ethanol was obtained by increasing the withdrawing strength of the substituent. PLQYs of
the complexes are higher with respect to similar zinc coordinated systems [29,74,121–123], due to the
electrostatic repulsions between the cationic chains and implemented respect to the free ligands, due to
the CHEF effect.
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The same fluoro, cyano, and nitro substituents and the charged chain guaranteeing solubility
were employed by grafting the coordination moieties to a preformed PVPy (Figure 10). The resulting
materials show RGB emission tuning in the solid state, with medium to excellent (more than 80%
for the green-emissive polymer) PLQYs. By modulating the contents of various emissive pendants
into a single polymer chain, in 2020, U. Caruso and coworkers reported a single-component highly
performing white emissive material employable in the construction of white OLED devices (WOLED)
with CIE coordinates (0.30, 0.31) [74].

In 2016, B. Panunzi and coworkers pointed out the exclusive role of auxiliary pyridine ligands
in determining the molecular photophysical properties of the tridentate hydrazine complexes [24]
and studied the effect of a pyridine moiety into the main structure of O,N,O aroylhydrazone ligands
(Figure 10). Direct involvement of the pyridinoyl moiety in the coordination to the metal was observed
when the nitrogen was in the ortho or meta position. 1-D coordination polymers were obtained with
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the meta derivatives, with 74% PLQY in the solid state. This result suggests that crystalline packed
polymeric structures could provide emission enhancement for their continuous rather than discrete
structure in the solid state. The tight crystal structure permits an efficient electron hopping.

4. Nitrogen, Oxygen, and Sulfur Binding Sites

In several tridentate structures, an oxygen atom was replaced by a, S donor binding site.
Sulfur–nitrogen chelating agents are employed for their marked biological activities both as ligand
and in their transition metal complexes. In many cases, the versatile C=N bond and aromatic
heterocycle rings were employed in the ligand construction. Many N,N,S tridentate zinc complexes
were explored by paying attention to both structural and spectroscopic behavior. More rarely, S,N,S
tridentate pincer ligands with zinc salts [124] were explored, mainly screened for their reactivity and/or
catalytic activity rather than for the PL properties. On the other hand, a few significative examples of
mixed N,S,O binding sites were recently proposed. In most cases, interest was focused on the X-ray
structural exploration of the coordination core and in their basic chemo-physical properties. In some
cases, the observation of specific spectroscopic properties promoted the investigation of the emission
properties and even moved an applicative interest.

4.1. N,N,S Ligands

In 2012, Jing Yang Niu and coworkers synthetized two N,N,S tridentate dithiocarbazate-type
Schiff base ligands [125] (Figure 11). In the solid state, the ligands are in the thione tautomeric form
and the derived mono or dinuclear zinc complexes show different stoichiometry and coordination
core. Biological studies showed that the zinc(II) complexes are able to distinguish a leukemia cell line
from a normal hepatocyte cell line by a selective fluorescence response. Still, due to their biological
interest, thiosemicarbazones and 1,3,4-thiadiazole were employed to build N,N,S ligands by M.K.
Bharty and coworkers in 2016 [126] with different metal cations. Zinc acetate was reacted with the
fluorescent silent thiosemicarbazide-type ligand and with the derived fluorescent thiadiazole-type
ligand producing two zinc complexes with ZnL2 stoichiometry, where two negative nitrogen bind
the metal. Interestingly, after cyclization, the same ligand acts as an N,N neutral bidentate ligand
toward the zinc cation. The N,N,S tridentate complex is emissive in solution, a phenomenon ascribed
to the CHEF effect by formation of four five-membered chelate rings around the cation. By DFT study,
the electron density of HOMO in the thiosemicarbazide-type ligand was found on the pyridine ring
nitrogen, hydrazinic nitrogen, and thione sulfur. LUMO is localized on the pyridine ring and less on
hydrazinic nitrogen and sulfur. The electronic transition from HOMO to LUMO levels are associated
with the π,π* transition of ligand.

Thanks to its intrinsic fluorescence properties, triapine ligand (Figure 11) can be used to monitor
the uptake and intracellular distribution in cancer cells by fluorescence microscopy. In 2010, Bernhard K.
Keppler and coworkers [127] studied the triapine ligand and its tridentate zinc complex. While the
compounds show similar emission spectra with a maximum at 457 nm and similar quantum yields in
water, distinctly different cellular distributions of the free ligand and its complex were found. In particular,
the zinc complex binds with strong affinity to a substructure within the nucleus, providing opportunities
in labelling techniques. Very recently, a series of complexes from different transition metal cations were
explored by V.G. Vlasenko and coworkers in 2019 [128] (Figure 11). A tridentate N,N,S thioxo-pyrazole
Schiff base ligand was employed toward zinc cation with 1,10-phenathroline as auxiliary ligand. In the
trigonal bipyramid mononuclear complexes, the amidic and iminic nitrogen atom groups and sulfur
thiolate atom group constitute the tridentate site, the coordination sphere being completed by N atoms of
phenanthroline. Interestingly, the related zinc complex does not display fluorescence. Computational
analysis assigned the experimentally observed bands to π,π* of the tridentate and to π(L), π*(Phen)
electronic LLCT transitions.
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4.2. N,S,O Ligands

In2015, N.K. Singhand coworkerssynthetized twotrinuclearZn(II) complexes [129] from carboperthioate
ligands (Figure 12). In both complexes, the middle zinc cation has a tetrahedral arrangement with two
hydrazinic nitrogens and two sulfur atoms from two perthio ligands, structurally similar to the zinc finger
protein. Both side zinc cations are five coordinated by one carbonyl oxygen, one hydrazinic nitrogen, and
one sulfur from the carboperthioate ligand, which acts as a tridentate pincer toward the side cations. Two of
the pyridinic nitrogen atom groups act as auxiliary ligands. Interestingly, from a structural point of view,
the trimeric complexes generate self-assembly supramolecular structures in dependence on the different
position of the pyridinic nitrogen atom of the ligand. The ligand is fluorescent silent while the complex with
the 4-pyridyl substituent displays a blue emission at 470 nm in DMSO, predominantly ascribable to MLCT
transitions. In this case, the mobility of the electron transfer in the backbone is enhanced and the electron
transition energy of ILCT decreases due to back-coupling of π-bond between the metal and ligand. Moreover,
the formation of a five-membered chelate between the coordination units and the central metal ion increases
the π,π* conjugation and the conformational coplanarity, consequently decreasing the energy gap between
the π and π* molecular orbitals of the ligand.

In 2016, a Schiff base ligand derived from 2-aminothiophenol was coordinated as an N,S,O tridentate
ligand to different transition metal cations by Bita Shafaatian and coworkers [19]. The fluorescence
properties of the ligand and of the dinuclear complexes (Figure 12) were examined. Interestingly, in all
cases, the metal complexes in dichloromethane exhibit weak fluorescence in comparison to ligand.
For Zn(II) complex, no emission observed was assigned to π,π* IL transitions. PLQY decreases to about
one third with a relevant blue shift in the emission maxima with respect to the free ligand. Finally,
as an example of biological application of N,S,O complexes, in 2017, two novel triazole containing
Schiff base ligands were employed with zinc cation and other transition metals by Sulekh Chandra
and coworkers [130]. The ligands behave as binegative tridentate in the formation of 1:1 aqueous
metal complex (Figure 12), which were employed in fluorescence quenching experiments of the strong
emission band at 327 nm of BSA, revealing a zinc complex that was more promising due to its strong
binding ability.
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5. Conclusions

One of the biggest challenges of the modern era is sustainability. Over the last years, the high
variety of N, O, S donor ligands moved a strong interest toward spectroscopic and applicative features
of the related complexes. Tridentate ligands are simple, low cost, and easy synthesizable pincers able
to guarantee good stability to the derived complexes. On the other hand, zinc cation has a unique mix
of attractive properties, which potentially make it a smart “green” metal. Combinations of suitable
tridentate ligands with zinc cation are the perfect union to achieve remarkable PL responses and
targeted applications. As a d10 closed shell cation, zinc(II) plays a quite innocent role in the electronic
and therefore spectroscopic pattern of the ligand, often guaranteeing a relevant CHEF effect. For this
reason, zinc is a key issue in developing an alternative class of environmentally friendly and highly
efficient fluorophores for display and lighting technologies. On the other hand, zinc plays a crucial role
in many important biological processes and is a structural key component of proteins and enzymes.
Versatile molecules able in the zinc(II) detection or in the zinc binding of fluorescence markers to
specific biological substrates are recently proposed chemo- and biosensors.

As scientists, we presented here some examples of zinc tridentate complexes in an attempt to
highlight some of their unique properties. We examined the PL emission tuning due to coordination
and stating the most interesting applications. As researchers, we are committed to continuing the
study of novel systems for the new technological frontier and we expect our research to be the subject
of further interesting discoveries.

Author Contributions: Conceptualization, B.P.; data curation and formal analysis, R.D.; methodology, R.D.
and B.P.; writing—original draft, B.P., writing—review & editing, B.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Italian Ministry of Education, University and Research (MIUR)
under grants PON PANDION 01_00375.

Conflicts of Interest: The authors declare no conflict of interest.
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33. Vlček, A., Jr. Ultrafast excited-state processes in Re(I) carbonyl-diimine complexes: From excitation to
photochemistry. In Topics in Organometallic Chemistry; Lees, A.J., Ed.; Springer: Berlin/Heidelberg, Germany,
2010; Volume 29, pp. 73–114.

34. Zalis, S.; Milne, C.J.; El Nahhas, A.; Blanco-Rodriguez, A.M.; van der Veen, R.M.; Vlcek, A., Jr. Re and Br
X-ray absorption near-edge structure study of the ground and excited states of [ReBr(CO)3(bpy)] interpreted
by DFT and TD-DFT calculations. Inorg. Chem. 2013, 52, 5775–5785. [CrossRef]
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