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Abstract

Background: Elucidation of human disease similarities has emerged as an active research area, which is highly
relevant to etiology, disease classification, and drug repositioning. In pioneer studies, disease similarity was
commonly estimated according to clinical manifestation. Subsequently, scientists started to investigate disease
similarity based on gene-phenotype knowledge, which were inevitably biased to well-studied diseases. In recent
years, estimating disease similarity according to transcriptomic behavior significantly enhances the probability of
finding novel disease relationships, while the currently available studies usually mine expression data through
differential expression analysis that has been considered to have little chance of unraveling dysfunctional regulatory
relationships, the causal pathogenesis of diseases.

Methods: We developed a computational approach to measure human disease similarity based on expression data.
Differential coexpression analysis, instead of differential expression analysis, was employed to calculate differential
coexpression level of every gene for each disease, which was then summarized to the pathway level. Disease
similarity was eventually calculated as the partial correlation coefficients of pathways’ differential coexpression
values between any two diseases. The significance of disease relationships were evaluated by permutation test.

Results: Based on mRNA expression data and a differential coexpression analysis based method, we built a human
disease network involving 1326 significant Disease-Disease links among 108 diseases. Compared with disease
relationships captured by differential expression analysis based method, our disease links shared known disease
genes and drugs more significantly. Some novel disease relationships were discovered, for example, Obesity and
cancer, Obesity and Psoriasis, lung adenocarcinoma and S. pneumonia, which had been commonly regarded as
unrelated to each other, but recently found to share similar molecular mechanisms. Additionally, it was found that
both the type of disease and the type of affected tissue influenced the degree of disease similarity. A sub-network
including Allergic asthma, Type 2 diabetes and Chronic kidney disease was extracted to demonstrate the
exploration of their common pathogenesis.

Conclusion: The present study produces a global view of human diseasome for the first time from the viewpoint
of regulation mechanisms, which therefore could provide insightful clues to etiology and pathogenesis, and help to
perform drug repositioning and design novel therapeutic interventions.
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Background
It is increasingly evident that human diseases are not iso-
lated from each other although their clinical and patho-
logical features are diversiform. Understanding how
diseases are related to each other can provide novel insights
into etiology and pathogenesis [1–4], and furthermore help
to prioritize disease-related genes [5–8], perform drug re-
positioning and drug target identification [9–11].
Early works in this field were limited to examining the

overlap in clinical presentation between diseases [4, 11].
For example, Payne et al. used logistic regression to esti-
mate the relationships between Alzheimer's disease, Vascu-
lar dementia and other types of dementia based on the
standardized measures of their clinical impairments, and
revealed their notable differences [4]. Four years later,
Kalaria et al. particularly explored the two extremes of de-
mentia, Alzheimer’s disease and Vascular dementia [11].
These studies improved accurate diagnosis of dementias
and aided in clinical decisions on the applicability of
different treatments [4, 11]. In 2008, Human Phenotype
Ontology (HPO) systematically shows phenotypic similar-
ities of diseases based on clinical synopsis features ex-
tracted from OMIM [12].
In recent years, scientists have been able to investigate

genetic similarity between diseases based on gene-
phenotype relationships [1–3, 8]. Disease relationships
were revealed by measuring common disease-related
genes or pathways [1, 2], or by clustering both genetic
and environmental factors [3]. Moreover, Van Driel et al.
integrated anatomy information, clinical synopsis, genetic
mutation information and medical information context
into a feature vector to calculate disease similarities [8]. In
some other reports, disease relationships were evaluated
by exploring the semantic similarity of disease names or
related medical vocabulary concepts according to Disease
Ontology (DO) [13, 14] or by checking whether the dis-
ease associated enzymes catalyze same/adjacent metabolic
reactions or not [15]. Besides, some works combined
multi-types of data to identify significant disease relation-
ships [16–18]. It is noted that all these works rely heavily
on prior knowledge, therefore they are not applicable
when few disease knowledge are available. Also due to the
limitation of prior knowledge, it is hard to find out novel
disease relationships, or correct ambiguities and errors in
the current knowledge repertories.
Fortunately, the rapidly accumulated biomedical data

including registry data [15, 18–21] and high-throughput
data such as gene expression profiles [9, 10, 16], and the
greatly improved data mining strategies offer new
chances to discover disease relationships. Based on regis-
try data, scientists can examine the process of disease
development by tracing the order of disease occurrence
in a large number of patients for a fairly long period of
time. In this way, Jensen et al. extracted temporal

disease trajectories from registry data of 6.2 million
Danish patients [19]. Similarly, Blair et al. studied the re-
lationships between Mendelian diseases and complex
diseases by examining how Mendelian variations en-
hance the risk of complex diseases according to elec-
tronic medical records [20]. Furthermore, Davis et al.
exploited disease relationships via combining co-morbid
diseases in electronic medical records and co-genes dis-
eases in genetic data [18]. These works help to elucidate
the process of disease development from a novel view-
point. However, like the other common big data analysis
strategies, these studies can only discover associations,
but not causal connections or mechanisms.
In contrast, the genome-scale expression data give us

another angle to address this problem since simultaneous
measurement of the expression of thousands of genes al-
lows for the exploration of gene transcriptional regulation,
which is believed to be crucial to biological functions. In
2009, Hu and Agarwal presented an approach which re-
places the pre-existing disease-related genes with differen-
tially expressed genes correlated to diseases, and created a
disease-drug network [9]. Similarly, Suthram et al. defined
the correlation of differential expression values of protein
interaction modules between different diseases as the dis-
ease similarity measure, and found out 138 significant
similarities between diseases [10]. DiseaseConnect, a web
server, also utilized differentially expressed genes to ex-
plore disease relationships [16]. These studies adopted a
common understanding that diseases are highly correlated
to the rewiring of gene regulation, which would be mani-
fested at the transcriptional level. However, these dysregu-
lation events are actually difficult to be discovered by
traditional differential expression analysis (DEA), while
could be captured by differential coexpression analysis
(DCEA) [22] since they tend to display as the decoupling
of expression correlation. In fact, the DCEA strategy has
emerged as a promising method to unveil dysfunctional
regulatory mechanisms underlying diseases [22–25]. Fol-
lowing this sense, we propose that a disease similarity
measurement based on differential coexpression (DCE),
instead of differential expression (DE), may lead to a dis-
ease network more relevant to pathogenesis.
In the present work, we developed a DCE-based compu-

tational approach to estimate human disease similarity,
and identified 1326 significant Disease-Disease links (DDLs
for short) among 108 diseases. Benefiting from the use of
DCEA, the human disease network is constructed for the
first time from the viewpoint of regulation mechanisms.

Methods
Gene expression dataset
As of April 19, 2013, we selected 954 GSE datasets (GSE
short for GEO series) designed for human studies using
Affymetrix U133A chip (i.e., GPL96), the most commonly
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used platform, from GEO (http://www.ncbi.nlm.nih.gov/
geo/). We then picked out 106 GSEs which 1) were assigned
to human disease condition and corresponding normal con-
dition, 2) had more than five samples in each condition, and
3) came from fresh organs (excluding cell lines). We down-
loaded raw data (CEL files) of each sample, controlled and
removed low quality samples using affy [26] and affyQCRe-
port [27] packages, and finally retained 86 GSE datasets in-
volving 4403 samples for 89 diseases (Additional file 1). In
order to carry out a disease-centered analysis, the 86 GSE
datasets were re-organized as follows: the datasets which
studied the same disease with the same tissue were merged;
the datasets which involved multiple diseases or multiple
tissues were split. This procedure resulted in 108 datasets,
corresponding to 108 diseases (Additional file 1). The dis-
ease number was expanded from 89 to 108 because 11 out
of the original 89 diseases (12 %, as shown in Fig. 1)
involved two or more tissues, which were termed as multi-
tissue diseases. A multi-tissue disease was defined by com-
bining its disease name and the originated tissue, for
example, Type 2 diabetes - liver and Type 2 diabetes -
PBMC (short for peripheral blood mononuclear cell).

Pathway data
Molecular signature database (MSigDB), a collection of an-
notated gene sets, includes 7 major collections [28]. A total
of 6176 pathways from the following two collections of
MSigDB v4.0 were extracted: 1) curated gene sets collected
from public pathway databases (such as BIOCARTA.
REACTOME, KEGG, etc.), publications in PubMed and
knowledge of domain experts, 2) GO gene sets including
biological processes, cellular components and molecular

functions. In order to reduce the influence of missing data,
we excluded pathways whose members were not signifi-
cantly detected by GPL96 platform by using the binomial
probability model. Consequently, we ended up with 5598
pathways covering a total of 21,003 unique genes.

Disease similarity algorithm
First, we normalized the gene expression data in
each microarray sample using MAS5.0 (as shown in
Additional file 2, step 1: normalization). Secondly, we cal-
culated the differential coexpression value (dC) of each
gene between disease and control samples for all diseases
via DCp method which was developed in our previous
work [23–25] (as shown in Additional file 2, step 2: calcu-
lating genes’ dC). As described in the literatures, DCp was
designed for identifying differentially co-expressed genes
(DCGs), which proved to be superior to currently popular
methods in simulation studies attributed to their unique-
ness of exploiting the quantitative coexpression change of
each gene pair in the coexpression networks [23–25]. For
a certain disease, the Pearson correlation coefficients
between gene i and its n neighbors form two vectors,
X = (xi1, xi2, …, xin) and Y = (yi1, yi2, …,yin) corre-
sponding to two comparative conditions (say, disease
and normal). Finally, dC of each gene for the disease
can be calculated with Eq. 1 [23–25].

dCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi1−yi1ð Þ2 þ xi2−yi2ð Þ2 þ…þ xin−yinð Þ2

n

s
ð1Þ

Next, similar to what Suthram et al. did [10], we assigned
dC of pathway to be the average dC of their component

Fig. 1 Seven characteristics of disease network. Seven characteristics of our disease network, including its pathogenic relevance (i.e., the
percentage of disease pairs which significantly share disease genes and drugs), degree distribution (i.e., the distribution of the number of
disease neighbours), the correlation sign, its comparison with DE-based network, its comparison with tradition disease classification, as well as the
percentage of multi-tissue diseases
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genes, and thus obtained a vector of pathways’ dCs for
each disease (as shown in Additional file 2, step 3: calculat-
ing pathways’ dC). We eventually calculated the partial
Spearman correlation coefficient between two diseases as
their similarity value (as shown in Additional file 2, step 4:
calculating partial correlations). The reason we adopted
partial Spearman correlation, instead of generic Spearman
correlation, was that partial Spearman correlation was
proved to have the capability of factoring out the possible
dependencies between different gene-expression experi-
ments due to their underlying tissues [10]. The last step of
Additional file 2 for obtaining significant partial correla-
tions will be illustrated in the following section.

Permutation test of disease pairs
In order to evaluate the statistical significance of observed
disease partial correlation coefficients, we randomly re-
assigned the affiliation of gene to pathway as Suthram et
al. did [10]. Pseudo pathways were obtained with the three
following values unchanged: 1) the number of pathways a
given gene belongs to, 2) the number of pathways’ compo-
nent genes and 3) the number of all pathways (as shown
in Additional file 2, step 5: permutation test), and then cal-
culated the pathways’ dCs and the partial correlation coef-
ficients between every possible disease pairs using the
permuted data. This permutation procedure was repeated
for 500 times, and the resulting partial correlation coeffi-
cient statistics formed an empirical null distribution. In
this way, the p-value for each disease pair was estimated,
and FDR value was obtained accordingly.

Disease-related genes and drugs
A total of 7357 genes known to be associated with 101 dis-
eases were collected from Genetic Association Database
(GAD) [29], Online Mendelian Inheritance in Man
(OMIM) [30], Human Gene Mutation Database (HGMD)
[31] and human single amino acid variants (SAV) of
UniProt (http://www.uniprot.org/docs/humsavar). We also
obtained 342 drugs for 83 diseases from DrugBank [32].

Within-network distance (WD)
According to Li et al.’s work, the mean shortest path
length among all links in a network was defined as
within-network distance (WD) in order to describe the
relational closeness of a network (Eq. 2) [2].

WDc ¼
X

d i; jð Þ
k

; i; j∈c ð2Þ

Where k denotes the total number of links in the network,
and d (i, j) denotes the shortest path between vertex i and j.
The smaller the WD value, the greater the network

compactness. Theoretically when WD= 1, the network is
fully connected, displaying as a complete graph.

Results
A human disease network was built with a differential
coexpression (DCE-) based computational approach
First of all, for each disease, the differential coexpression
values (dCs) of all genes were calculated by using differen-
tial coexpression algorithm, DCp [23, 24], which was de-
veloped in our previous work (see Methods for details).
The mean value of the differential coexpression levels of
all genes in a certain pathway was calculated as the differ-
ential coexpression value of the pathway. In this way, the
differential coexpression value (dC) was summarized at
the level of biological pathway, which characterized tran-
scriptomic behaviors from a more systematic viewpoint
than at the gene level. The disease similarity was then esti-
mated as the partial Spearmen correlation coefficients of
pathways’ differential coexpression values (dCs) between
any two diseases. Finally, by applying a permutation test, a
total of 1326 significant disease relationships at a p-value
threshold of 0.05 (FDR = 20.91 %), termed as Disease-
Disease links (DDLs for short), were identified from all
possible links among 108 diseases, leading to a human dis-
ease network (see Additional file 3 for details).
According to the basic understanding that similar dis-

eases tend to share similar pathogenesis, and thus have
the potential to be treated by common drugs, we assume
that the more similarity the diseases display, the more
disease-related genes and drugs they share. We therefore
checked if the DDLs in our disease network showed this
tendency. First, we tidied up a list of known disease genes
and a list of drugs (see Methods). The disease genes were
found to be associated with 101 out of 108 diseases and
1119 out of 1326 DDLs in our disease network; similarly,
the known drugs were correlated to 83 diseases and 745
DDLs. As shown in Table 1, the hypergeometric tests for
the 1119-DDL set and 745-DDL set indicated that 910 of
1119 DDLs (81 %, also showed in Fig. 1) significantly
shared known disease genes, and 348 of 745 DDLs (47 %,
also showed in Fig. 1) significantly shared drugs, both at a
p-value threshold of 0.05. Among the non-DDL disease
pairs, 3732 and 2576 pairs were correlated to known dis-
ease genes and drugs, respectively. The hypergeometric
tests indicated that 2911 out of 3732 non-DDL pairs
(78 %) shared known disease genes significantly, and 1095
out of 2576 (42 %) shared drugs significantly. At last, one-
sided Fisher’s exact tests showed that DDLs in our disease
network significantly shared both disease-related genes
and drugs at a p-value threshold of 0.05 (Table 1, 0.009 for
disease genes and 0.023 for disease drugs). This verified
the reliability of the disease relationships in our disease
network at the molecular pathological level.
Figure 1 summarizes the characteristics of our disease

network in terms of its pathogenic relevance (i.e., the per-
centage of disease pairs which significantly share disease
genes and drugs, as listed in Table 1), degree distribution
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(i.e., distribution of the number of disease neighbours), the
correlation sign, its comparison with DE- based network,
its comparison with traditional disease classification, as
well as the percentage of multi-tissue diseases, which will
be explained in details in the following subsections.
With regard to the degree distribution, 60 % diseases

in our disease network have 21 ~ 30 neighbour diseases,
23 % have 10 ~ 20 neighbours and 17 % have 31 ~ 40
neighbours, basically following Poisson’s distribution. It
is noted that our disease network is a random graph
without any hub nodes, contrary to the previous obser-
vation by Hu et al. [9]. In Hu et al.’s work [9], the dis-
ease network proved to be a scale-free graph with a few
diseases acting as hubs, such as some cancers. We no-
ticed that cancers account for almost half diseases in Hu
et al.’s network, which is far more than those in our net-
work. Since cancers involve common tumor activators
(such as Ras and Myc) and tumor suppressors (such as
p53 and PTEN) [33], the rich connections among can-
cers would make them form hubs. We therefore propose
that a disease network which well resembles the hetero-
geneity of diseasome probably has no hub diseases.
It is interesting that among the 1326 DDLs, 529 (~40 %)

links are negative (Fig. 1). When disease A and A’ form a
negative link, the patient with disease A tends to be pro-
tected from having disease A’ and vice versa, which is
probably due to the inversely regulated biological pro-
cesses involved in the negatively correlated diseases [9]. In
agreement with Liu et al. opinion, the disease similarity
study based on omics data has more chance to find nega-
tively correlated diseases than based on clinical symptom
information or gene-phenotype data, because text-mining
techniques for clinical symptom information cannot
process negative language and gene-phenotype data in-
clude disease causal information rather than preventive
information [3]. The proportion of negative links in our
data (~40 %) is even much higher than Hu et. al’s report
(~30 %) which adopted differential expression based
method to calculate disease similarity [9]. We found that
25 % of Hu et. al’s negative links were also sorted out in
our data. Since differential coexpression analysis (DCEA)
has more potential to discover regulation mechanisms

than differential expression analysis (DEA) does, we
propose that the negative links which are not included in
Hu et. al’s work also deserve further investigation. By tra-
cing the differential coexpression properties of a negatively
correlated disease pair, one may obtain useful hints for
explaining the underlying mechanisms of the mutual ex-
clusion of the two diseases.

The DCE-based disease network is more relevant to
pathogenic mechanisms than the DE-based one
As is mentioned above, differential coexpression analysis
(DCEA) is more powerful in unveiling differential regula-
tion mechanisms of diseases than differential expression
analysis (DEA) since differential regulations would display
as the decoupling of expression correlation [22, 24]. Based
on this opinion, we assume that the present differential
coexpression (DCE-) based human disease network should
be more relevant to pathogenic mechanisms than the net-
works based on differential expression analysis (DEA).
In order to carry out a parallel comparison, we replaced

the dC value in our similarity measurement with differen-
tial expression level, the log of Fold Change, and obtained
1583 differential expression (DE-) based DDLs. As ex-
pected, one-sided Fisher’s exact tests showed that the DE-
based DDLs did not significantly share disease-related
genes (p-value 0.229) and disease drugs (p-value 0.596)
(Additional file 4), whose p-values were much larger than
those of the DCE- based DDLs, 0.009 and 0.023.
To further understand the difference between the two

strategies, DE-based and DCE-based, we compared the
DDLs identified by the two methods and found that only
162 disease links (~12 %, as shown in Fig. 1) were com-
mon. The non-significant disease pairs (DE_nonsig and
DCE_nonsig in Fig. 2) were then included in the analysis.
According to the percentage of the disease pairs which
significantly share drugs (Fig. 2, color depth of each re-
gion), it was found that DCE-based DDLs (DCE_sig, in-
cluding “773” region, “162” region and “391” region in
Fig. 2) share drugs much more remarkably than DE-based
DDLs (DE_sig in Fig. 2), DE-based non-significant pairs
(DE_nonsig in Fig. 2), and DCE-based non-significant
pairs (DCE_nonsig in Fig. 2) in order. At the same time,

Table 1 Contingency table to validate the assumption that DDLs significantly share disease-related genes or drugs

Disease pairs correlated to known disease genes or drugs

DDLs Non-DDLs Total P-value of Fisher’s Exact test

Disease pairs sharing disease genes Significant 910 (81 %) 2911 (78 %) 3821 0.009085a

Non-significant 209 (19 %) 821 (22 %) 1030

Total 1119 3732

Disease pairs sharing disease drugs Significant 348 (47 %) 1095 (42 %) 1443 0.02307a

Non-significant 397 (53 %) 1481 (58 %) 1881

Total 745 2576
adenotes statistic significance by one-sided Fisher’s Exact test (p < 0.05)
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non-significant disease pairs identified by DCE-based
method (DCE_nonsig, including “2554” region, “511” re-
gion and “1387” region in Fig. 2) have the lowest percent-
ages of the disease pairs which significantly share drugs.
However, among the DE-based DDLs (DE_sig, including
“910” region, “162” region and “551” region in Fig. 2), the
551 DDLs which are non-significant disease pairs accord-
ing to DCE-based method have the lowest percentage of
the DDLs which significantly share drugs; while, out of
the DE-based non-significant pairs (DE_nonsig, including
“2417” region, “391” region, “1387” region in Fig. 2), the
391 non-significant pairs which are DDLs according to
DCE-based method have the highest percentage of disease
pairs sharing drugs. In this way, the disease network based
on DCEA proved to be more relevant to pathogenesis
than that based on DEA. Figure 2 clearly captures the
potential false positive and false negative disease pairs
identified by DE-based strategy, and explains why the
DCE-based strategy outperformed DE-based strategy.
In order to compare the relevance of DCE and DE in the

present work, we specially extracted 32 cancer datasets
from our 108 datasets. Since cancer progression requires
the coordination of cancer genes, we simultaneously calcu-
lated dC values and the log values of Fold Change of Ras
(NRAS, KRAS, HRAS and MRAS), Myc, p53 and PTEN
in each cancer type, and proposed that the more relevant
the measurement, the more coherent the value across the
various cancer genes. It was found that gene dCs in the 32
cancer types are coincident across the seven cancer genes;
in contrast, the log of Fold Change didn’t display any sig-
nificant pattern (Fig. 3 a, b). This result further supports
the rationality of our DCE-based analysis strategy.

The DCE-based human disease network is partly consistent
with traditional disease classification
In order to study the consistency of our DCE-based hu-
man disease network with previous knowledge on disease
classification, we carried out the following analyses. First,
we clustered the network by using the average method of
hierarchical clustering based on their pair-wise partial cor-
relation coefficients in which non-significant coefficients
were set to be zero. This resulted in a cluster tree involv-
ing six disease groups, comprised of 6, 6, 12, 18, 22 and 44
diseases respectively (Fig. 4). The six groups are basically
consistent with the classification systems in Medical Sub-
ject Headings (MeSH), International Classification of Dis-
eases (ICD-10) and Disease Ontology (DO). For example,
Neurodegenerative disease, Parkinson’s disease, Alzhei-
mer’s disease and some clinically isolated syndromes
which are members of “nervous system disease” category
of DO (or “Diseases of the nervous system” category of
ICD-10 or “Nervous System Diseases” category of MeSH)
are gathered together. Similarly, diseases in “gastrointes-
tinal system disease” category of DO (or “Diseases of the
digestive system” category of ICD or “Digestive System
Diseases” category of MeSH) such as Ulcerative colitis and
Crohn’s Disease are connected.
Furthermore, we marked the 108 diseases in our disease

network with their category names in MeSH, ICD-10 and
DO, and thus the disease network were divided into sev-
eral sub-networks according to category markers. In order
to check if the diseases from the same category are in-
clined to form compact sub-network in our disease net-
work, we applied a metric, within-network distance (WD)
(see Methods), to estimate the relational closeness of each
sub-network [2]. When the WD value of a sub-network is
smaller than that of the whole network, the diseases in the
sub-network, or within the category, are proposed to lie
closer to each other. Table 2 indicates that most of the
within-category diseases form more compact sub-
networks than the background. Among them, “Infection”
and “Mental disorder” are the most compact categories.
However, there are a small part of sub-networks/categor-
ies which have larger WD scores relative to the whole net-
work, including “disease of anatomical entity” of DO,
“Diseases of the musculoskeletal system and connective
tissue” of ICD and four categories of MeSH. We checked
these categories one by one as follows. Since “disease of
anatomical entity” of DO contains several sub-categories,
we recalculated the WD scores of the sub-categories with
three or more diseases. It was found that all the sub-
categories actually show smaller WD scores than the
whole network except one, “musculoskeletal system
disease” (shown in Additional file 5). As expected, “Dis-
eases of the musculoskeletal system and connective tissue”
of ICD and “Skin and Connective Tissue Diseases” of
MeSH, which are the congener disease categories of

Fig. 2 Comparison of two types of disease networks which were
identified based on DCE strategy and DE strategy. DCE_sig and
DCE_nonsig denote significant and non-significant disease pairs which
were identified by differential coexpression based strategy. DE_sig and
DE_nonsig denote significant and non-significant disease pairs which
were identified by differential expression based strategy. Meanwhile,
the depth of color in every region represents the percentages of
disease pairs which significantly share disease drugs
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“musculoskeletal system disease” of DO, do not form
compact sub-network either. For another three categories
of MeSH with larger WD scores than the whole disease
network, the scenario is much more complicated at least
partly due to the inconsistency of disease taxonomy be-
tween DO/ICD-10 and the MeSH system since MeSH al-
lots a disease into multiple categories.
Until now, our disease network prove to be basically

compatible with traditional disease classification sys-
tems, although some categories have larger WD scores
than the whole network, for example, musculoskeletal
system disease, which may have more heterogeneity than
previously thought and deserve more investigation on
their pathogenesis and classification.
At this point, we turned to check the 1326 significant

disease relationships (DDLs) in our disease network in-
dividually to see if they are consistent with the previous
knowledge in MeSH, ICD-10 and DO. It was found that
for 566 DDLs (~43 %, see Fig. 1), the disease pair share
at least one common disease category. While, the left
760 DDLs (~57 %) are supposed to be novel disease

relationships, among which 82.13 % significantly share
disease-related genes or drugs (Additional file 3). In fact,
some of these novel DDLs have been found to share
similar molecular mechanisms by individual studies. For
example, in our disease network, Obesity is connected
with several types of cancers including Lung squamous
cell carcinoma, Lung adenocarcinoma, Colorectal cancer
and Renal clear cell carcinoma, which is consistent with
several population-based observations [34–36]. In our
network, Obesity is also connected with Psoriasis which
is located differently from Obesity according to trad-
itional classifications; interestingly, Psoriasis is reported
to be affected by many cytokines which contribute to
metabolic syndromes such as Obesity [37]. Another
novel disease pair, Lung adenocarcima and S. pneumo-
nia, is also supported by independent observations, such
as the increased risk of lung cancer among persons with
lung infections including pneumonia infection [38].
These novel disease relationships will allow more oppor-
tunities for drug repositioning, that is, finding new uses
of existing drugs.

Fig. 3 dC values and log values of Fold Change of Ras (NRAS, KRAS, HRAS and MRAS), Myc, p53 and PTEN in 32 cancer datasets. a dC values.
b Log of Fold Change values
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Both the type of disease and the type of affected tissue
influence disease similarity
Inspired by what the pan-cancer project pointed out,
“cancers of disparate organs have many shared features,
whereas, conversely, cancers from the same organ are
often quite distinct”, we analyzed the similarity of same
diseases which originate from different tissues and the
similarity of different diseases which originate from the
same tissue, aiming to answer if the disease type and the

affected tissue influence disease similarity in correlation
or not.
As mentioned above, among the original 89 diseases, 11

diseases involved two or more tissues. For example, Type
2 diabetes split to Type 2 diabetes - liver and Type 2 dia-
betes - PBMC. We found that the same diseases originat-
ing from different tissues (termed as disease members
thereafter) could have connections in our disease network,
while are not necessarily completely connected. For

Fig. 4 Hierarchical clustering of 108 diseases. Different colors represent different groups
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example, Parkinson's disease - brain whole substantia
nigra, Parkinson's disease - whole blood, Parkinson's dis-
ease - brain prefrontal cortex and Parkinson's disease -
brain putamen are connected as shown in Fig. 5. Another
three multi-tissue diseases also show this character, in-
cluding Chronic obstructive pulmonary disease, Systemic
lupus erythematosus and Type 2 diabetes, which have
two, four and two disease members respectively. Hunting-
ton’s disease is similar: Huntington's disease - frontal cor-
tex is connected with Huntington's disease - cerebellum
and Huntington's disease - caudate nucleus, except that
Huntington's disease - whole blood is isolated from the
other three. For the left six multi-tissue diseases, the

disease members are absolutely isolated with each other in
our disease network, which include Chronic lymphocytic
leukemia, Colorectal cancer, Allergic asthma, Rheumatoid
arthritis, IgA nephropathy and Down syndrome involving
two, four, two, two, two and two members, respectively.
The above observations are consistent with Hoadley’s in
cancer [39] that only a small proportion of diseases repre-
sent stable manifestations in different tissues. The isolation
of disease members in the network indicates that the same
diseases could have extremely different pathogeneses in
different tissues, just like what the pan-cancer project de-
clared, “same genetic aberrations have very different effects
depending on the organ within which they arise” [40].

Table 2 WD scores for different categories and whole network

Category names NO. of diseases NO. of DDLs WD scores

DO disease by infectious agent 7 10 4.20

disease of anatomical entitya 47 248 8.72

disease of cellular proliferation 38 193 7.28

disease of mental health 9 10 7.30

genetic disease 4 2 6.00

ICD-10 Certain infectious and parasitic diseases 5 5 4.00

Neoplasms 37 179 7.44

Endocrine, nutritional and metabolic diseases 7 6 7.04

Disease of nervous system 19 46 7.43

Disease of the circulatory system 4 2 6.00

Diseases of the respiratory system 8 8 7.00

Diseases of the digestive system 3 2 3.00

Diseases of the musculoskeletal system and connective tissuea 11 12 9.17

Diseases of the genitourinary system 3 2 3.00

MeSH Neoplasms 36 174 7.24

Musculoskeletal Diseases 14 12 6.28

Digestive System Diseases 10 12 7.50

Respiratory Tract Diseases 8 10 5.60

Nervous System Diseases 24 72 7.67

Male Urogenital Diseases 8 10 5.60

Female Urogenital Diseases and Pregnancy Complications 10 13 6.92

Cardiovascular Diseases 7 6 7.04

Hemic and Lymphatic Diseasesa 11 12 9.23

Congenital, Hereditary, and Neonatal Diseases and Abnormalities 15 31 6.77

Skin and Connective Tissue Diseasesa 12 15 8.80

Nutritional and Metabolic Diseases 8 9 6.22

Endocrine System Diseases 4 3 4.00

Immune System Diseasesa 23 52 9.73

Pathological Conditions, Signs and Symptomsa 4 1 12.50

Mental Disorders 7 11 3.84

Bacteria 3 3 2.00

whole network 1326 DDLs 108 1326 8.71
aindicates the categories whose WD scores are larger than that of the whole network
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Furthermore, we systematically estimated if different dis-
eases with same tissue origin tend to show similarity. In the
present work, the 108 diseases affect a total of 25 tissues,
among which 74 diseases (~69 %, Fig. 1) affect 10 tissues
with each tissue involving not less than three diseases. The
ten tissues and the related 74 diseases were selected to per-
form the follow-up analysis. For each tissue, the WD score
of the involved diseases was calculated to examine if the dif-
ferent diseases originated from the same tissue form a com-
pact sub-network (Table 3). In order to evaluate the
statistical significance of the WD score, we permutated dis-
eases with disease number belonging to a certain tissue un-
changed, counted the number of DDLs based on permuted
data and calculated the new WD scores. This permutation
procedure was repeated 500 times, and the resulting pseudo
WD scores formed an empirical null vector. The p-value for
each tissue was then estimated by using Wilcox test. It was

found that WD scores of all the ten tissues are significantly
smaller than that of whole disease network except one tis-
sue, lymphoblastic cells. That is, different diseases with
same “tissue-of-origin” tend to have similar pathogenesis.
Taken together, the traditional disease taxonomy which

classifies diseases based on “tissue-of-origin” is reasonable
from the viewpoint of disease network in terms of dys-
functional regulatory mechanisms. Additionally, the diver-
gence of disease members in different tissues, the
convergence of different diseases in the same tissue, and
the stable manifestations in different tissues of a small part
of multi-tissue diseases as well, indicate that both the type
of disease and the type of affected tissue influence the de-
gree of disease similarity.

The disease network helps to explore common molecular
pathogenesis shared by similar diseases
Since our disease network was inferred by evaluating the
similarity of gene correlation change between diseases, it
offers us the possibility to explore the common dysfunc-
tional regulation mechanisms underlying DDLs by extract-
ing common differential coexpression relationships shared
by linked diseases.
We took a sub-network including Allergic asthma, Type

2 diabetes, IgA nephropathy and Chronic kidney disease
as an example to demonstrate the exploration of the com-
mon pathogenesis underlying the disease network, since
the four diseases converged in the same disease cluster in
Fig. 4 and were also identified as a disease trajectory which
reflects temporal disease progression in Jensen et al.’s
study [19]. As shown in Fig. 6a, Allergic asthma was con-
nected with Type 2 diabetes, Type 2 diabetes connected
with IgA nephropathy, and IgA nephropathy connected
with Chronic kidney disease. Considering that IgA ne-
phropathy is linked to several chromosomal regions while
the responsible genes are still unclear [41], we excluded
IgA nephropathy from the following analysis and focused
on the other three relatively better known complex dis-
eases, Allergic asthma, Type 2 diabetes and Chronic kid-
ney disease. We first sorted out 197 common DCGs
shared by the three diseases. Meanwhile, we obtained
disease-related pathways of the three diseases from Mala-
Cards database version 1.05 [42, 43], resulting in 154
disease-related pathways in total (Additional file 6). How-
ever, we noticed that there are no overlapped pathways
across the three diseases, and only three pathways are
shared between Allergic asthma and Chronic kidney dis-
ease, eight shared between Chronic kidney disease and
Type 2 Diabetes (Fig. 6b). This is probably attributed to the
limited prior knowledge on the disease pathogenesis. We
then took the 154 union pathways as candidate pathways
of the three diseases. It is interesting that 37 out of 154
pathways (~24 %) are significantly enriched by the 197
common DCGs according to hypergeometric test (see

Fig. 5 DDLs among four disease members of Parkinson’s disease.
Nodes denote Parkinson’s diseases which originated from four
tissues, red lines represent positively correlated diseases, and green
lines represent negatively correlated diseases

Table 3 WD scores for the diseases originated from specific
tissues and for the whole network

Tissues NO. of
diseases

NO. of
DDLs

WD
scores

P-values

brain 5 3 1.66 2.346e-06

prefrontal cortex 5 6 2.33 6.29e-06

heart 6 4 2.50 1.351e-10

kidney 7 9 4.00 0.04431

lymphoblastic cells 8 6 22.50 1b

lung 6 4 3.00 9.157e-05

muscle 10 15 6.52 0.003319

PBMCa 18 43 6.67 7.953e-09

skin 4 3 3.33 0.0176

whole blood 5 7 1.85 9.05e-08

whole network 108 1326 8.71 -
aPBMC is short for Peripheral Blood Mononuclear Cells
bdenotes non-significant p-value (p > 0.05)
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Table 4 for the top three pathways), and the proportion,
24 %, is significantly higher than expected at random by
permutation test (p = 0.026). Hence, we propose that the 37
pathways and their included 49 common DCGs may con-
tribute to the common molecular pathogenesis of Allergic
asthma, Type 2 diabetes and Chronic kidney disease.
Among the 37 pathways, Wnt signaling pathway is most

significantly enriched by the 197 common DCGs (Table 4).
There have been individual reports of associations be-
tween Wnt pathway and Asthma [44], Type 2 diabetes
[45] and Chronic kidney disease [46], although in Mala-
Cards database Wnt is not assigned to be Asthma or
Chronic kidney disease related. According to our data,
Wnt pathway involves three common DCGs including
FZD8, FOXN1 and TLE2, among which only FZD8 was
reported to participate in the pathogenesis of Asthma [47,

48], and display abnormal expression in Chronic kidney
disease [49]. There are no literatures on the roles of
FOXN1 and TLE2 in Asthma, T2D and Chronic kidney
disease in the public domain. We propose that the three
genes, FZD8, FOXN1 and TLE2 may contribute to the
pathogenesis of the three complex diseases. We then iden-
tified the differentially coexpressed links (DCLs) by using
DCGL [23, 25], and built a gene differential coexpression
network which is centered by FZD8, FOXN1 and TLE2,
linked by differential coexpression relationships (Fig. 6c).
There are a total of 18 genes and 36 links in the network,
with 23 links appearing in one disease, 12 links in two dis-
eases, one (the link between FZD8 and TSC22D2) in all
three diseases (Additional file 7). According to the phil-
osophy of differential coexpression analysis [24], these
links potentially represent the disturbed regulation

Fig. 6 The disease sub-network, disease-related pathways and the differential coexpression information. a The sub-network formed by four
diseases including Allergic asthma, Type 2 diabetes (T2D), IgA nephropathy and Chronic kidney disease and their partial correlation coefficients. b Venn
diagram of disease-related pathways of Allergic asthma, T2D and Chronic kidney disease. c Gene network centered by three common DCGs in Wnt
signaling pathway FOXN1, FZD8 and TLE2. Red nodes denote FOXN1, FZD8 and TLE2. Green nodes denote genes which form differentially coexpressed
links with common DCGs. Four genes with bold type, FZD8, TGFBI, CCL18 and GHR, denote that their associations with Allergic asthma, T2D or Chronic
kidney disease have been reported

Table 4 Three the most significant disease-related pathways

Pathways AA T2D CKD P-values Included common DCGs

WNT_SIGNALING 0.95 0.74 0.60 0.000954 FOXN1, FZD8, TLE2

BIOCARTA_IGF1MTOR_PATHWAY 0.94 0.76 0.61 0.001591 MTOR, IGF1R

KEGG_PROSTATE_CANCER 0.94 0.79 0.62 0.003438 MTOR, IGF1R, IKBKG, E2F2

Numbers in “AA”, “T2D” and “CKD” columns are the differential coexpression values (dCs) of pathways
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relationships during disease progression, and therefore are
worthy of further investigation.
For example, FZD8 and FOXN1 are commonly linked to

14 genes in Fig. 6c, among which TGFBI has been proved
to contribute to Allergic asthma [47] and T2D [50], CCL18
contributes to Allergic asthma [51] and GHR is associated
with T2D [52]. In our data,TGFBI and FOXN1 do not cor-
relate with each other in normal tissue, while they present
negative correlation in Allergic asthma (−0.76); meanwhile,
the positive correlation of TGFBI and FZD8 in normal tis-
sue is reversed to be negative in T2D (from 0.63 to −0.86).
For CCL18, it is a differentially coexpressed gene (DCG) in
Allergic asthma. As for GHR, its negative correlation with
FZD8 in normal tissue (−0.69) disappears in T2D. These
correlation changes may indicate altered protein protein
interaction, disturbed gene regulation, or some other ab-
normal molecular events, and therefore provides clues for
further investigation of signaling transduction in pathogen-
esis. It is interesting that none of the above mentioned six
genes, FOXN1, FZD8, TLE2, TFGBI, CCL18 and GHR, are
differentially expressed between disease and normal sam-
ples, which is consistent with the opinion that crucial fac-
tors are not necessarily differentially expressed [22, 24].
Among the six genes, although FOXN1is an immune-
related transcription factor (see Additional file 8 for
FOXN1 linked DCLs in the three diseases) and TLE2 is a
transcriptional corepressor that inhibits Wnt signaling,
there are not any known regulatory relationships involved
in the 36 DCLs in Fig. 6c, which is probably due to the lim-
ited number of experimentally validated TFs (199) and
their regulation relationships (199,950) in DCGL’s TF2tar-
get library [25]. With the accumulation of experimental ev-
idences for TFs and their corresponding targets, we believe
the present analysis framework could generate more
insightful testable hypotheses for pathogenesis studies.

Discussion
Disease-Disease relationships are of great interest be-
cause this knowledge enhances our understanding of
disease etiology and pathogenesis. The previous works
estimated disease similarities based on commonalities in
clinical phenotypes [4, 11], gene-phenotype knowledge
bases (OMIM and GAD, for example) [1–3, 8], medical
vocabulary concepts/features [13, 14], electronic medical
records [15, 18–21], high-throughput data (gene expres-
sion profiles, for example) [9, 10, 16] and multi-types of
data [16–18]. In this way, disease etiology, pathophysi-
ology and disease-related genes/proteins/microRNAs
can be appropriated from one disease to another [5–8];
furthermore, scientists can perform drug repositioning
and drug target identification from drug clinical applica-
tion of similar diseases [9–11]. However, we noticed that
when gene expression data were exploited in the field of
disease similarities study [9, 10, 16], the attention has

only been paid on differential expression. It has been
widely accepted that diseases originate from the dysregu-
lation of cell signaling transduction, which causes abnor-
mal expression of a large number of genes. That is,
differentially expressed genes are more likely to be the
consequences of differential regulation mechanisms, ra-
ther than the causes of phenotypic changes. More im-
portantly, a causal factor is not necessarily differentially
expressed, for example, when a mutation disrupts the
regulation function of the causal factor, the causal factor
could still be normally expressed, while in this case, the
correlation between the causal factor and its targets will
disappear. A new emerging strategy, differential coex-
pression analysis (DCEA) [22–24], was recently designed
to explore gene correlation changes, instead of expres-
sion level changes, and has been considered more prom-
ising in unveiling differential regulation mechanisms of
diseases than differential expression analysis [22]. There-
fore, in the present work, we explored the architecture
of disease relationships in terms of dysfunctional regula-
tion mechanism by using DCEA for the first time, which
has proved to be a complement to the disease networks
generated from symptoms, disease concepts, biomedical
big data. Benefiting from the use of DCEA, our disease
links shared known disease genes and drugs more sig-
nificantly than disease relationships captured by differ-
ential expression (DE) analysis based method (Table 1).
By tracing the differentially coexpressed genes and links
(DCGs and DCLs), the present disease similarity analysis
framework provides a practical way to explore the
underlying common molecular mechanisms shared by
similar diseases and generate insightful molecular evi-
dences for etiology and pathogenesis.
It is noted that there are quite a lot of novel disease rela-

tionships in our disease network, 760 DDLs (~57 % of all
DDLs), and most of them (82.13 %) significantly share
disease-related genes or drugs (Additional file 3). As men-
tioned above, the correlations between Obesity and cancer
[34–36], Obesity and Psoriasis [37], Lung adenocarcima
and S. pneumonia [38], and so on, have been reported by
pathogenic or epidemiologic studies, although they have
not been adopted by traditional disease classification sys-
tems. Whereas, by contrast, some diseases that are defined
in the same category in traditional classification systems
do not show significant similarities in our disease network.
It seems that these categories may have more heterogen-
eity than previously thought and deserve further investiga-
tion. We hold the view that a small proportion of diseases
need to be reclassified according to new molecular tax-
onomy. The contradictory observations between our dis-
ease network and the traditional disease classification
systems may provide insightful clues.
It has been accepted that similar diseases tend to involve

similar molecular mechanisms, hence have the potential to
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be treated by common drugs. That is to say, if a drug has
been proved to successfully treat disease A, it might be
used to treat A-linked diseases, which is the basis for drug
repositioning. Based on the information from DrugBank,
the DDLs in our disease network showed this tendency
(Table 1). Taking Ulcerative colitis and Crohn’s disease as
an example, they are considered as similar diseases in trad-
itional disease classification systems, and their correlation
is 0.428 in our data, ranking third among the 1326 DDLs.
The p-values of the hypergeometric test for their common
disease genes and disease drugs are 6.82E-183 and 1.50E-
05 respectively, both of which are at top 5 % in all DDLs
(Additional file 3). In 1998, Infliximab, a chimeric mono-
clonal antibody against tumor necrosis factor alpha (TNF-
α), was invented and approved for treatment of Crohn’s
disease [53]. After several years, some studies proved that
Infliximab have positive outcome when treating Ulcerative
colitis [54, 55]. We noticed that even among the 760 novel
DDLs, 42.7 % significantly share drugs (Additional file 3).
For example, Psoriasis and T-cell polymphoytic leukemia
are different disease in traditional classification systems,
while they form a DDL in our data (correlation coefficient
0.091, at top 8 % in all DDLs). They were found to signifi-
cantly share drugs with a p value of 0.035 (at top 22.7 % in
all DDLs, Additional file 3). Methotrexate, an antimetabol-
ite and antifolate drug, is recorded in American Hospital
Formulary Service (ASHP) drug information 2004 for
treatment of both polymphoytic leukemia and Psoriasis,
while methotrexate for autoimmune diseases is taken in
lower doses than for cancer [56]. Another interesting ex-
ample is Parkinson’s disease and Influenza A, which seem
to be unrelated with each other; however, Amantadine
hydrochloride (trade name Symmetrel, by Endo Pharma-
ceuticals) has been approved for treatment of both Influ-
enza A and Parkinson’s disease [57]. In our disease
network, Parkinson’s disease is linked to Influenza A with
the correlation coefficient of 0.061, at top 30 % in all
DDLs. They significantly share drugs with p value of 0.032
(at top 21 % in all DDLs, Additional file 3).
On the other hand, since negatively correlated diseases,

say disease A and A’, may involve inversely regulated bio-
logical processes, we proposed that an anti-A drug may
have an undesired property of inducing disease A’ when
the drug is inversing its target processes. Still taking
Crohn’s disease and its therapeutic drug, infliximab, as an
example, Crohn’s disease is negatively connected with T-
cell source of chronic lymphocytic leukemia (correlation
coefficient −0.15, at top 5 %) and Melanoma (correlation
coefficient −0.05, at top 50 %) in our data; infliximab, a
chimeric monoclonal antibody against tumor necrosis fac-
tor alpha (TNF-α), is usually used for treatment of inflam-
matory bowel disease (IBD) such as Crohn’s disease [53].
In 2006, the Food and Drug Administration (FDA) issued a
warning for infliximab given its potential association with

the development of Hepatosplenic T-cell lymphoma which
is a subtype of T-cell source of chronic lymphocytic
leukemia [58]. This phenomenon was also observed in
other independent studies [59–61]. Similarly, a case–con-
trol study showed an increased risk of melanoma with
anti-TNF treatment in IBD patients [62]. We believe that
the differential coexpression properties of these negatively
correlated diseases could help to explore the underlying
mechanisms and improve the therapeutic applications. It is
interesting that we also noticed some negatively correlated
diseases which shared drug(s). Still taking infliximab as an
example, infliximab is used for treatment of both Crohn’s
disease [53] and Rheumatoid arthritis [63] although the
two diseases formed a negative DDL in our disease net-
work. Another example is tamoxifen, a commonly used
anti-breast cancer drug, which was recently proved to rem-
edy Myotonic muscular dystrophy (DMD) in the mdx(5Cv)
mouse model [64], though Muscular dystrophy is nega-
tively correlated to some cancers in our disease network.
These intriguing observations need further investigation.
We believe that there are valuable druggability infor-

mation to be discovered in our disease network, and the
present work affords an effective and authentic way for
systematic drug repositioning. Last but not least, the
negative disease pair information helps to discover drug
side effects, explore the underlying mechanisms and im-
prove the therapeutic applications.
Just like it was claimed by Todd Golub, “Large, unbiased

genomic surveys are taking cancer therapeutics in directions
that could never have been predicted by traditional molecu-
lar biology [65]”, data-driven disease similarity research
strategy allows researchers to get a comprehensive, unbiased
architecture of diseasome, which includes useful hints about
pathogenesis exploration and drug development.

Conclusion
We developed a differential coexpression based approach
to measure disease similarity, and constructed a human
disease network involving 1326 DDLs among 108 diseases.
We discovered quite a lot of novel disease links, some of
which are being found to share similar pathogenesis. Our
data-driven disease similarity strategy allows researchers
to obtain a comprehensive, unbiased architecture of disea-
some from the viewpoint of dysfunctional regulation
mechanisms, which could include hints about pathogen-
esis exploration and drug development.
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Reviewers: This article was reviewed by Limsoon Wong,
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Reviewer's report
Title: The human disease network in terms of dysfunc-

tional regulatory mechanisms
Version: 1 Date: 16 July 2015
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Reviewer: Prof Limsoon Wong. School of Computing,
National University of Singapore
Report form:
Good points:
1/ This manuscript describes an interesting approach

to measure the similarity of diseases by on hypothesized
rewiring of gene regulation networks. The rewiring is
hypothesized/predicted based on changes in the co-
expression of adjacent genes in a pathway. This is an in-
teresting idea and, in theory, is plausible.
2/ The manuscript presents a variety analyses based

on the disease-disease network/links generated by the
method mentioned in 1/ above. The analyses are inter-
esting and provide reasonable evidence of the validity of
the disease-disease links the authors have uncovered.
E.g., in one analysis, the enrichment of shared disease
genes between adjacent diseases in their inferred disease-
disease network is shown.
3/ The manuscript highlights a number of hypotheses on

the relationship between diseases; although I am not in a
position to judge these, I find them interesting and suffi-
ciently described for a more knowledgeable expert to judge.
4/ I also find the point that if two diseases have a

negative relationship, then the drug for one may make
the other worse to be interesting and plausible. If this
proves valid upon deeper investigation, it points to a
very important use of the constructed disease-disease
network.
Weak points:
5/ The significance of a disease-disease pair/link is

tested by a permutation by random assignment of genes
to pathways (albeit preserving number of genes in a
pathway, number of pathways, etc.). Nevertheless, such a
random assignment is valid only when one assumes as a
null hypothesis that genes in a pathway are mutually in-
dependent of each other. This null hypothesis is obvi-
ously false. Thereby, it has a tendency to be rejected,
and this rejection is insufficient for one to conclude the
validity of the disease-disease link. The rejection of this
null hypothesis (which basically says genes in a pathway
are no different from random ones) can only imply an
alternate hypothesis that says genes in a pathway do be-
have differently from a random set of genes. But this al-
ternate hypothesis has nothing to do with the validity of
the disease-disease link. I.e., there will be a lot of false
positives among the significant links by this permutation
test. The authors should think of a more appropriate
permutation test (or other form of test) that comes with
a more appropriate null hypothesis.
Response: We agree with you that our permutation

step could be designed more sophisticatedly. We actually
borrowed this design from a previously reported DE-
based disease similarity study [10]. Following its design,
we randomized the relationships between genes and

pathways while preserving the number of pathways a
given gene belongs to, the number of pathways’ compo-
nent genes, and the number of all pathways. In this way,
the distributions of pseudo pathways are similar to their
corresponding real pathways, and therefore, we assume
that the null hypothesis could be regarded as that the
diseases are mutually independent with each other, and
the alternate hypothesis is that the diseases links are dif-
ferent from random links.
In the present work, we further validated our disease links

by checking if the similar diseases in our disease network
tend to share disease related genes and drugs (see “A human
disease network was built with a differential coexpression
(DCE-) based computational approach” section). In order to
describe the permutation test more clearly, we revised ‘Per-
mutation test of disease pairs’ in the current version.
6/ A database of pathways is used as the starting point.

It is not clear from the manuscript whether each path-
way is used as a separate network and analyzed separ-
ately. Or, these pathways are integrated into one single
big network, then co-expression analysis is performed
on this integrated network. The authors should clarify
this in their method description.
Response: Sorry, we didn’t make it clear. The coexpres-

sion analysis was actually carried out on the gene level
at the very beginning of our pipeline, and had nothing to
do with pathway knowledge. Since the DCEA method we
adopted in the current work has been thoroughly ex-
plained in a previous publication, we only cited our ori-
ginal paper and didn’t describe its detailed information.
Following the reviewer’s suggestion, we re-organized the
method description of “Disease similarity algorithm”)
and added a workflow to illustrate the algorithm in the
Additional file 2.
7/ The manuscript mentions that muscular dystrophy

is negatively correlated with cancers. I am not sure that
this is consistent with current medical knowledge. For
counter examples, I recall myotonic muscular dystrophy
has been reported to be associated with elevated risk of
cancers and DMD patients have been reported to re-
spond well to cancer drugs like tamoxifen.
Response: Thank you for providing this information. We

found the paper which reported that tamoxifen, used to
treat estrogen-dependent breast cancer, caused remarkable
improvements of muscle force and of diaphragm and car-
diac structure in the mdx(5Cv) mouse model of myotonic
muscular dystrophy (DMD) [64]. After rechecking our
data, we found another similar example, Crohn’s disease
[53] and Rheumatoid arthritis [63], which are negatively
correlated while share a drug, infliximab. This is quite
interesting and deserves further investigation. Since we
don’t see any plausible explanations about its potential
mechanism, we merely added this observation to the discus-
sion as follows, “It is interesting that we also noticed some
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negatively correlated diseases which shared drug(s). Still
taking infliximab as an example, infliximab is used for
treatment of both Crohn’s disease [53] and Rheumatoid
arthritis [63] although the two diseases formed a negative
DDL in our disease network. Another example is tamoxi-
fen, a commonly used anti-breast cancer drug, which was
recently proved to remedy Myotonic muscular dystrophy
(DMD) in the mdx(5Cv) mouse model [64], though Mus-
cular dystrophy is negatively correlated to some cancers
in our disease network. These intriguing observations
need further investigation.”
Reviewer's report
Title: The human disease network in terms of dysfunc-

tional regulatory mechanisms
Version: 1 Date: 17 July 2015
Reviewer: Dr Rui Wang-Sattler. Helmholtz Zentrum

München, Munich
Report form: see the attached comments
Quality of written English: Acceptable
The manuscript "The human disease network in

terms of dysfunctional regulatory mechanisms" presents
a human disease network derived from mRNA expres-
sion data, pathway data, and information of disease-
related genes and drugs. A differential coexpression
analysis method, previously developed by the same
group, was used to explore the larger data. The authors
identified 760 novel disease-disease links and several
disease relationships including obesity and cancer. Fur-
thermore, both the types of diseases and of affected tis-
sues were found to influence the degree of disease
similarities.
Overall, the design of the study is of high interest. The

methods employed are adequate and sound. The analysis
is very well done. The results are very promising and
provide a good insight into the etiology and pathogen-
esis. The weaknesses of the paper are the presentation
of the complicated results and used methods. The
organization of the paper can be improved, for ex-
ample, a new figure of workflow may help the readers
of Biology Direct to better follow and understand the
design and results of the study. The clarity and/or co-
herence of the paper need to be improved as speci-
fied as the following:
Specific comments:
Please show words in the ‘Keywords’, e.g., human dis-

ease network instead of network.
Response: Thanks. “Human disease network” has been

shown in the “Keywords”.
Please remove the description of results from the

background section, fourth paragraph, starting with ‘we
identified 1326 significant…’.
Please remove the paragraph starting with ‘In conclu-

sion, we construct…’ from the background section,
fourth paragraph, as this is also shown in the Abstract.

Response: Following your suggestion, we deleted the
summary of results and conclusion from the “Back-
ground” section. In order to keep the manuscript more
complete, we briefly summarized the results at the end
of the “Background” section in two sentences, “In the
present work, we developed a DCE-based computa-
tional approach to estimate human disease similarity,
and identified 1326 significant Disease-Disease links
(DDLs for short) among 108 diseases. Benefiting from
the use of DCEA, the human disease network is con-
structed for the first time from the viewpoint of regula-
tion mechanisms.”
The organization of the publication can be im-

proved. The current Results section is partly mixed
with methods, introduction and discussion. Please ei-
ther remove the repeated method description from the
results part or move the methods into the Methods
section.
For example,
1) In the results, the first paragraph, in general, it’s a

description of method starting with ‘As mentioned in the
Methods section, a total of 96 ……file 2 for details.’
These should be moved to the method part;
Response: Following the reviewer’s suggestion, we re-

moved the repeated method description from the “Re-
sults” section, and re-organized the “Methods” section to
include all information of data processing. The part of
“As mentioned in the Methods section, a total of 96 ……
file 2 for details.” was re-wrote and integrated into “Gene
expression data” section of “Methods”.
2) In the results, the third paragraph, starting with ‘In

Hu et al.’s work…’ should be introduced in the
background;
Response: Yes, Hu et al.’s work was introduced in

“Background” section. In the third paragraph of “results”
section, we focused on the comparison between Hu et al’s
work and ours.
3) In the results, fifth paragraph, please move ‘In 2006,

the Food and Drug Administration ….’ to the discussion;
Response: Modified. Thanks.
4) In the discussion, the first three paragraphs till ‘A

new emerging strategy…’ can be removed from the
manuscript;
Response: Modified. Thanks.
5) In the discussion, the fifth paragraph, some results

are first descried in the Discussion section, e.g., ‘…Fig.
6A, B.’, which should be moved to Results section.
Response: Modified. Thanks.
The tables are nicely presented. However, some figures

can be improved: Fig. 1A can be removed as 1326 links
cannot be seen clearly.
Response: We agree with your comment. Have re-

moved the overview diagram of 1326 links from the Fig-
ure 1 in the revised version.
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The coloring of Fig. 3 should be different: Once simi-
lar diseases and once same tissue should be shown in
same colors. Additionally the information should be lim-
ited to tissues with more than one available disease and
disease groups with more than one tissue measured.
Response: We tried to revise Figure 3 according to your

suggestion (see the following figure). However, the large num-
ber of disease types and tissue types made the graph hard to
read. We therefore maintained the original Figure 3.

For Fig. 4, please explain what is shown and add a
legend.
Response: Following your suggestion, we added a legend

to present the connections among the multi-tissue diseases.
Please correct these typos:
P10: Please exchange Fig. 1A with 1b, as Fig.1B was

first mentioned.
P13: Several abbreviations were defined several times

in the method, results and discussion. For example, the
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differential coexpression analysis (DECA) appeared in
numerous places.
Please avoid citing the same reference twice, e.g., Ref-

erence no.16 = no. 21.
Response: Modified. Thanks.
Reviewer's report
Title: The human disease network in terms of dysfunc-

tional regulatory mechanisms
Version: 1 Date: 29 July 2015
Reviewer: Andrey Rzhetsky. Institute for Genomics

and Systems Biology, University of Chicago
Report form:
The authors’ main assumption is that gene expression

in disease is different from“healthy” gene expression in
the same tissue type in a partially predictable way. A fur-
ther assumption is that diseases that share features of
expression abnormality for the same tissue type should
have partially shared etiology. These assumptions are
reasonable and intuitive.
However, there is a disconnect at the point when mo-

lecular networks are divided into pathways and one
computes the disease similarity statistic over these path-
ways (“Disease similarity algorithm”): There are numer-
ous ways to split a graph into pathways and the
currently-used split was produced using a sequence of
somewhat arbitrary decisions. For instance, why is the
differential co-expression value best defined by an Eu-
clidean distance between two expression vectors (nor-
malized by a squared root of the number of vector
dimensions, equation 1). Are there alternatives? Are
there desirable statistical properties or an intuitive phys-
ical meaning of a so-defined quantity? In other words, it
would be nice if the approach did not depend on the ar-
bitrary decisions of uncoordinated experts.
Response: We guess that the order of our descriptions

in the “Methods” section seem misleading where the DCp
method was explained almost at the last (together with
another measure, WD). DCp is actually performed at the
very beginning of the pipeline, and it is on the gene level.
By using DCp, we obtained the differential coexpression
values (dCs) of all genes for every diseases. As pathways
are accountable for most processes in the cell, we then
calculated the changes in the coexpression levels of vari-
ous functional pathways of the systems, i.e., dCs of path-
ways, by calculating the average dC of pathways’
component genes. The disease similarity was finally esti-
mated as the partial Spearmen correlation coefficients of
pathways’ dCs between any two diseases. In order to de-
scribe the pipeline more clearly, we re-organized “Disease
similarity algorithm” section and added a workflow to il-
lustrate each step of the algorithm in Additional file 2.
As for the design of dC measure, since the method was

reported in our previous work, we did not explain its de-
tails in the current manuscript. As described in the

original paper [24], in order to estimate the degree of cor-
relation change of a gene in two contrastive conditions,
say disease and normal, the differential coexpression
measure, dC, was defined as the Euclidean distance of
two contrastive coexpression profile of the gene under two
conditions [24]. DCp proved to be superior to currently
popular designs, including LRC, ASC and WGCNA
[Choi, J.K., Yu, U., Yoo, O.J. and Kim, S. (2005) Differen-
tial coexpression analysis using microarray data and its
application to human cancer. Bioinformatics, 21, 4348–
4355. Reverter, A., Ingham, A., Lehnert, S.A., Tan, S.H.,
Wang, Y., Ratnakumar, A. and Dalrymple, B.P. (2006)
Simultaneous identification of differential gene expression
and connectivity in inflammation, adipogenesis and can-
cer. Bioinformatics, 22, 2396–2404. Mason, M.J., Fan, G.,
Plath, K., Zhou, Q. and Horvath, S. (2009) Signed
weighted gene co-expression network analysis of tran-
scriptional regulation in murine embryonic stem cells.
BMC Genomics, 10, 327. Fuller, T.F., Ghazalpour, A.,
Aten, J.E., Drake, T.A., Lusis, A.J. and Horvath, S. (2007)
Weighted gene coexpression network analysis strategies
applied to mouse weight. Mamm Genome, 18, 463–472.
van Nas, A., Guhathakurta, D., Wang, S.S., Yehya, N.,
Horvath, S., Zhang, B., Ingram-Drake, L., Chaudhuri, G.,
Schadt, E.E., Drake, T.A. et al. (2009) Elucidating the role
of gonadal hormones in sexually dimorphic gene coexpres-
sion networks. Endocrinology, 150, 1235–1249.], in simula-
tion studies in retrieving predefined differentially regulated
genes and gene pairs, which was attributed to their
uniqueness of exploiting the quantitative coexpression
change of each gene pair in the coexpression networks.
I understand that the authors are trying to convince

readers that the differential co-expression is biologically
more relevant than differential expression. The logic of
the comparison of these two types of networks can be
made clearer. If I understand correctly, the authors cite
their own paper and a commentary piece to claim that it
“has been accepted that differential coexpression analysis
(DCEA) is more powerful in unveiling regulation mecha-
nisms of disease than differential expression analysis
(DEA).” This is, in my view, an overstatement.
Response: Due to the space limitation, we did not ex-

plain the background of differental coexpression analysis
(DCEA) sufficiently in our manuscript. Although DCEA
is far from a commonly used method in the field of tran-
scriptomics, differential coexpression and differential
regulation have been discussed for more than one decade.
Briefly speaking, Differential expression analysis (DEA)
looks at absolute changes in gene expression levels, and
treats each gene individually. While, gene coexpression
analysis explores gene interconnection at the expression
level from a systems perspective, and differential coex-
pression analysis (DCEA) was designed to investigate mo-
lecular mechanisms of phenotypic changes through

Yang et al. Biology Direct  (2015) 10:60 Page 17 of 22



identifying subtle changes in gene expression coordin-
ation [Choi, J.K., Yu, U., Yoo, O.J. and Kim, S. (2005) Dif-
ferential coexpression analysis using microarray data
and its application to human cancer. Bioinformatics, 21,
4348–4355. Reverter, A., Ingham, A., Lehnert, S.A., Tan,
S.H., Wang, Y., Ratnakumar, A. and Dalrymple, B.P.
(2006) Simultaneous identification of differential gene ex-
pression and connectivity in inflammation, adipogenesis
and cancer. Bioinformatics, 22, 2396–2404. Watson, M.
(2006) CoXpress: differential co-expression in gene ex-
pression data. BMC Bioinformatics, 7, 509. Fuller, T.F.,
Ghazalpour, A., Aten, J.E., Drake, T.A., Lusis, A.J. and
Horvath, S. (2007) Weighted gene coexpression network
analysis strategies applied to mouse weight. Mamm Gen-
ome, 18, 463–472. Mason, M.J., Fan, G., Plath, K., Zhou,
Q. and Horvath, S. (2009) Signed weighted gene co-
expression network analysis of transcriptional regulation
in murine embryonic stem cells. BMC Genomics, 10, 327.
van Nas, A., Guhathakurta, D., Wang, S.S., Yehya, N.,
Horvath, S., Zhang, B., Ingram-Drake, L., Chaudhuri, G.,
Schadt, E.E., Drake, T.A. et al. (2009) Elucidating the role
of gonadal hormones in sexually dimorphic gene coex-
pression networks. Endocrinology, 150, 1235–1249.]. In
2010, a review, entitled “From ‘differential expression’ to
‘differential networking’ – identification of dysfunctional
regulatory networks in diseases”, systematically expli-
cated the development from differential expression to dif-
ferential coexpression for the first time as we know [22].
It summarized the purpose and features of differential
expression analysis and differential coexpression analysis,
and proposed that differential coexpression analysis has
more chance to unveil regulation mechanisms of disease
than differential expression analysis. Our first paper in
this field was published immediately after this review
[24]. As mentioned above, DCp displays a better per-
formance than its contemporary methods. In very recent
years, more and more scientists started to analyze their
transcriptomic data from the angle of differential coex-
pression and differential regulation in order to generate
testable hypotheses about the disrupted regulatory rela-
tionships or abnormal regulations specific to the pheno-
type of interest [Diao H, Li X, Hu S, Liu Y (2012) Gene
expression profiling combined with bioinformatics ana-
lysis identify biomarkers for Parkinson disease. PLoS One
7: e52319. Araki R, Seno S, Takenaka Y, Matsuda H An
estimation method for a cellular-state-specific gene regu-
latory network along tree-structured gene expression pro-
files. Gene 2013; 518: 17–25. Liu M, Hou X, Zhang P,
Hao Y, Yang Y, et al. (2013) Microarray gene expression
profiling analysis combined with bioinformatics in mul-
tiple sclerosis. Mol Biol Rep 40: 3731–3737. Li G, Han N,
Li Z, Lu Q (2013) Identification of transcription regula-
tory relationships in rheumatoid arthritis and osteoarth-
ritis. Clin Rheumatol. Qu Z, Miao W, Zhang Q, Wang Z,

Fu C, et al. (2013) Analysis of crucial molecules involved
in herniated discs and degenerative disc disease. Clinics
(Sao Paulo) 68: 225–230.]. Following this sense, we pro-
posed that a disease similarity measurement based on
differential coexpression (DCE), instead of differential ex-
pression (DE), may lead to a disease network more rele-
vant to pathogenesis.
In the present work, the disease links in the DCE-based

disease network did prove to share known disease genes
and drugs more significantly than DE-based disease rela-
tionships, supporting that the disease network based on
DCEA is more relevant to pathogenesis than that based
on DEA. Figure 2 captures the potential false positive
and false negative disease pairs identified by DE-based
strategy, and explains why the DCE-based strategy out-
performed DE-based strategy.
The whole section comparing DCEA to DEA could be

made much clearer by separating assumptions (such as
“a good method would have similar diseases share more
common drugs”) and results.
Response: Thanks. We re-organized the related de-

scription, trying to make the assumption and results
more readable.
The partial consistency of the disease classification

network with traditional classification is, in my view, not
very informative and convincing.
Response: Considering that traditional disease classifi-

cation systems are descriptive conceptual systems, we de-
signed that following analyses to make the comparison.
First, we clustered the network by using the average
method of hierarchical clustering based on their pair-
wise partial correlation coefficients, resulting in a cluster
tree including six disease groups (Figure 4). These six
groups are basically consistent with the classification sys-
tems in Medical Subject Headings (MeSH), International
Classification of Diseases (ICD-10) and Disease Ontology
(DO). This comparison is similar with previous reports
[9, 10]. We realized that this so-called consistency is not
that informative and convincing, we then applied a
metric, WD, to evaluate the consistency as follows, “we
marked the 108 diseases in our disease network with
their category names in MeSH, ICD-10 and DO, and
thus the disease network were divided into several sub-
networks according to category markers. In order to check
if the diseases from the same category are inclined to
form compact sub-network in our disease network, we
applied a metric, within-network distance (WD) (see
Methods), to estimate the relational closeness of each
sub-network [2]. When the WD value of a sub-network is
smaller than that of the whole network, the diseases in
the sub-network, or within the category, are proposed to
lie closer to each other. Table 2 indicates that most of the
within-category diseases form more compact sub-
networks than the background.” Until now, our disease
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network was proved to be basically compatible with trad-
itional disease classification systems, although some cat-
egories have larger WD scores than the whole network.
Reviewer's report
Title: The human disease network in terms of dysfunc-

tional regulatory mechanisms
Version: 2 Date: 26 August 2015
Reviewer: Prof Limsoon Wong. School of Computing,

National University of Singapore
Report form:
The authors did not sufficiently address my earlier

comment (#5) that the way the significance of disease-
disease pair/link was tested was invalid as the null hy-
pothesis was obviously false. The authors cited an earlier
work that used the same strategy as a justification. But
would you repeat a mistake when you know it is a mis-
take just because someone else also make that mistake? I
think the authors should make a better effort here. E.g.,
instead of considering all the randomized pathways they
have generated, they should perhaps consider only a
subset of their randomized pathways whose genes ex-
hibit a sufficient amount of correlation in their expres-
sion level (comparable to correlation levels found among
genes in actual pathways of comparable sizes).
Response: Following the reviewer’s suggestion, we made

a further effort by checking whether our pseudo pathways’
genes exhibit a sufficient amount of correlation or not.
First, we calculated the genes’ correlation values of each
real pathway in 108 disease expression profiles. That
formed a 5598*108 table (please see “/ real_pathway_
genes_correlation/ pathway_MoreThanTen_c2c5_0_path-
way_multi_exprs.txt” of Additional file 9), which is short-
ened as the following Table I.
Table I. Correlation values of every real pathways in

108 disease expression profiles.

Then, we calculated the counterpart values for pseudo
pathways. For example, based on the 5598 permuted path-
ways in the first simulation process, we obtained the genes’
correlation values of the pseudo pathways in 108 expression
profiles (shortened as Table II). In all, there were a total of
500 5598*108 tables since we permuted the affiliations be-
tween genes and pathways for 500 times (due to the limita-
tion of additional file size, please see the result of 1st
permutation time at “/pseudo_pathway_genes_correlation/

pathway_MoreThanTen_c2c5_1_pathway_multi_exprs.txt”
of Additional file 9).
Table II. Correlations of 1st permuted pathways in 108

disease expression profiles.

Also taking the permutation result in Table II as an ex-
ample, if the correlation value of pseudo pathway n (Pn’)
in a certain expression profile is within the interval of
the real pathway n (Pn)’s correlation values in 108 ex-
pression profiles, genes of the pseudo pathway (Pn’) would
be considered as exhibiting a sufficient amount of correl-
ation in the expression profile. Thus, within the 108 ex-
pression profiles, we can obtain the proportion of pseudo
pathways which present the sufficient amount of correl-
ation. This proportion is termed as sufficient proportion.
As shown in Table III, in the 1st permutated process,
80 % (0.80) of correlation values of pathway 1 in 108 ex-
pression profiles were within the interval of real pathway
1 in 108 expression profiles.
Table III. The sufficient proportions of 108 expression

profiles for 5598 pathways in 500 permuted processes.

Finally, we found that almost all sufficient proportions of
pseudo pathways in 1st time of permutation are more than
0.5, and the percentage of pseudo pathways in 1st time of
permutation whose sufficient proportion values are greater
than 0.8 is 84 %. The performances of other 499 permuta-
tion times are similar as 1st permutation time (please
see “/percentage_of_sufficient_proportion/ percent_sufficient_
proportion_of_500_permutation_times.xls” of Additional file
9). That means most pseudo pathways in our permutation
design met the requirement of gene expression correlation,
although we did not limit the correlation values of genes
when generating pseudo pathways.
We really appreciate your careful review and helpful

suggestion. All the original calculation results are pro-
vided together with this revision.

Real
pathways

Summation of
genes’ correlations
in Disease 1

Summation of
genes’ correlations
in Disease 2

… Summation of
genes’ correlations
in Disease 108

Pathway 1 2.5 0.6 … 4.8

Pathway 2 −1.0 −0.8 … 0.3

… … … … …

Pathway
5598

0.7 8.0 … 10.1

pseudo
pathways

Summation of
genes’ correlations
in Disease 1

Summation of
genes’ correlations
in Disease 2

… Summation of
genes’ correlations
in Disease 108

Pathway 1 2.0 −0.8 … 5.5

Pathway 2 1.5 −2.1 … −2.0

… … … … …

Pathway
5598

−2.4 −0.4 … 7.2

pseudo pathways 1st time 2nd time … 500th time

Pathway 1 0.80 0.79 … 0.88

Pathway 2 0.82 0.86 … 0.92

… … … … …

Pathway 5598 0.89 0.85 … 0.91

Distribution of
sufficient proportion

84 % of 5598
values >0.80

83 % of 5598
values >0.80

85 % of 5598
values >0.80
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The section on exploring common molecular patho-
genesis shared by similar diseases is mostly descrip-
tive in nature. It is not clear to me what the real
insight is.
Response: Since our disease network was inferred by

evaluating the similarity of gene correlation change be-
tween diseases, it offers us the possibility to explore the
common dysfunctional regulation mechanisms under-
lying DDLs. The section of “The disease network helps to
explore common molecular pathogenesis shared by simi-
lar diseases” section aims to demonstrate how to explore
common molecular pathogenesis shared by similar dis-
eases by extracting common differential coexpression re-
lationships shared by linked diseases, for example,
Allergic asthma, Type 2 diabetes, and Chronic kidney
disease. In this example, we first sorted out 197 common
DCGs shared by the three diseases, and then we inte-
grated disease related pathways to the common DCGs
to explore the potential common molecular pathogenesis
of the three diseases. Wnt signaling pathway was then
extracted, which has been reported to be associated with
all the three diseases by individual literatures while has
not been recorded in MalaCards database. We therefore
highlighted Wnt related DCGs and DCLs, providing
clues for those who are interested in the pathogenesis of
Allergic asthma, Type 2 diabetes, and Chronic kidney
disease. Also, this example demonstrated how to appro-
priate pathogenesis from one disease to its similar ones
in a practical way.
Also, in the present study, edges are kept if they are

significant at p <0.05. What if the threshold is changed
to p < 0.01? Do you observe even stronger evidence for
the disease-disease links (e.g., increased in proportion of
shared disease genes and drugs)?
Response: Following this suggestion, we changed our

threshold from p < 0.05 to p < 0.01 and obtained 724
disease pairs (1326 disease pairs when the threshold is
p < 0.05).
According to the basic understanding that similar dis-

eases tend to share similar pathogenesis, and thus have
the potential to be treated by common drugs, we assume
that the more similarity the diseases display, the more
disease-related genes and drugs they share.
As described in the manuscript, when threshold is p <

0.05, a total of 1119 out of 1326 DDLs in the disease net-
work could be associated with known disease genes; simi-
larly, 745 out of 1326 DDLs could be correlated to known
drugs (Table 1, Table IV). The hypergeometric tests for the
1119-DDL set and 745-DDL set indicated that 910 of 1119
DDLs (81 %) significantly shared known disease genes, and
348 of 745 DDLs (47 %) significantly shared drugs, both at
a p-value threshold of 0.05 (Table 1, Table IV).
When threshold is p < 0.01, 599 and 309 out of 724 dis-

ease pairs were associated to known disease-related genes

and drugs, respectively. Then we applied the same
method to evaluate these disease pairs. We found 486
out of 599 (81 %) and 197 out of 309 (64 %) shared dis-
ease genes and drugs significantly (Table IV). As the re-
viewer expected, stronger evidence was observed for the
disease links when the p value is changed to 0.01.
Table IV. Comparison of disease pairs in different

thresholds.

Additional files

Additional file 1: Series information of 108 diseases from GEO.
(XLS 41 kb)

Additional file 2: Workflow for identifying significant Disease-
Disease links. (TIFF 3715 kb)

Additional file 3: 1326 significant Disease-Disease links. (XLS 358 kb)

Additional file 4: Contingency table to validate the assumption
that DE-based disease relationships significantly share disease-related
genes or drugs. (XLS 21 kb)

Additional file 5: WD scores for sub-categories of “disease of
anatomical entity”. (XLS 21 kb)

Additional file 6: 154 related pathways in Allergic asthma, Type 2
diabetes and Chronic kidney disease. (XLS 49 kb)

Additional file 7: FZD8, FOXN1 and TLE2-centered differentially
coexpressed links of Allergic asthma, Type 2 diabetes and Chronic
kidney disease. (XLS 34 kb)

Additional file 8: FOXN1-centered differentially coexpressed links in
Allergic asthma, Type 2 diabetes and Chronic kidney disease.
(PDF 747 kb)

Additional file 9: Results of checking genes’ correlation of pseudo
pathways. (ZIP 9816 kb)
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