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The contamination of dental unit waterlines (DUWLs) is a serious problem and directly
affects the dental care. This study aims to explore the microbial community of biofilm in
DUWL from different specialties and investigate the associated factors. A total of 36 biofilm
samples from 18 DUWL of six specialties (i.e., prosthodontics, orthodontics, pediatrics,
endodontics, oral surgery, and periodontics) at two time points (i.e., before and after daily
dental practice) were collected with a novel method. Genomic DNA of samples was
extracted, and then 16S ribosomal DNA (rDNA) (V3–V4 regions) and ITS2 gene were
amplified and sequenced. Kruskal–Wallis and Wilcoxon rank test were adopted for
statistical analysis. Microbial community with high diversity of bacteria (631 genera),
fungi (193 genera), and viridiplantae was detected in the biofilm samples. Proteobacteria
was the dominant bacteria (representing over 65.74–95.98% of the total sequences), and
the dominant fungi was Ascomycota (93.9–99.3%). Microorganisms belonging to multiple
genera involved in human diseases were detected including 25 genera of bacteria and
eight genera of fungi, with relative abundance of six genera over 1% (i.e., Acinetobacter,
Pseudomonas, Enterobacter, Aspergillus, Candida, and Penicillium). The biofilm
microbiome may be influenced by the characteristics of dental specialty and routine
work to some extent. The age of dental chair unit and overall number of patients had the
strongest impact on the overall bacteria composition, and the effect of daily dental
practices (associated with number of patients and dental specialty) on the fungi
composition was the greatest. For the first time, biofilm in DUWL related to dental
specialty was comprehensively evaluated, with more abundance of bacterial and fungal
communities than in water samples. Biofilm accumulation with daily work and multiple
kinds of opportunistic pathogen emphasized the infectious risk with dental care and the
importance of biofilm control.
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INTRODUCTION

Dental unit waterlines (DUWLs) include air/water syringe,
ultrasonic scaler, and narrow-bore plastic tubing that carry
water to the dental instruments. Contamination is often
observed in the complex DUWL with high densities of
microorganisms, such as bacteria, fungi, viruses, and protozoa
(Fujita et al., 2017; Spagnolo et al., 2019). The contamination
may be caused by the water supply (Zhang et al., 2018), the
retraction of biological fluids from the handpieces used in oral
cavities of patients (Costa et al., 2015), or probably the
continuous biofilm detachment or fragmentation in the narrow
waterline tubes (Lal et al., 2017).

Except for some harmless microorganisms (e.g., Flavobacterium
and Moraxella) (Lizzadro et al., 2019), opportunistic pathogens
such as Legionella pneumophila, Pseudomonas aeruginosa,
Mycobacterium, Staphylococcus aureus and amoebae have
previously been revealed in water samples from DUWL (Güngör
et al., 2014; Spagnolo et al., 2019). In addition, other genera such as
Propionibacterium and Stenotrophomonas were also recovered in
dental unit waters (Fotedar and Ganju, 2015). Several reports have
informed diseases associated with DUWL, especially pneumonia
caused by Legionella pneumophila (Ricci et al., 2012; Schönning
et al., 2017). Facial cutaneous sinus tract associated with
Mycobacterium fortuitum, M. abscessus, and M. peregrinum in
the DUWLwere also reported recently (Perez-Alfonzo et al., 2020).
In fact, both patients and dental staff are regularly exposed to
multifarious infectious risks due to inhalation or spreading of
aerosols produced during dental cares. However, infections could
be underestimated because the associations between infection and
recent exposure to contaminated dental water or aerosols were
difficult to confirm (Arvand and Hack, 2013), on the other hand,
the true condition of contamination in DUWL was ambiguous.

Investigation of the bacterial communities present in DUWL
was once performed with the help of pyrosequencing (Costa
et al., 2015), and it verified that a high bacterial and fungal
diversity remained in the output water despite disinfecting
treatment and flushing process (Costa et al., 2016a). (Ji et al.,
2018) summarized three key factors of influence as follows: daily
or weekly disinfection of DUWL, water supply source, and dental
chair unit (DCU) with a valid anti-retraction valve. As we know,
the narrow-bore tubing encourages biofilm formation with a
very large ratio of surface area to volume (6:1) (Walker and
Marsh, 2007). Research showed that silver coating applied to the
luminal surface of the commercial waterline tubing failed to
prevent biofilm formation (Lal et al., 2017). Biofilms up to 50-mm
thick have been found in functioning dental units, composed of
complex microbial communities (Porteous et al., 2011). Yeasts
once identified in DUWL especially Candida can form biofilms
and resist antifungal agents (Mazari et al., 2018). As a result, no
matter how various procedures were applied, none of these can
stop biofilm from accumulating and detaching. On the basis of
comprehensive research on biofilms, further studies on
prevention of biofilm accumulation are essential. It is pivotal
to monitor and assess a full pattern of microbial contamination
in DUWL of different specialties.
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Methods of culturing organisms from DUWL samples (the
circulation of water within the DUWL and turbine handpiece
output water) and providing the heterotrophic plate count [HPC,
calculated as colony forming units (CFUs)/mL] of living bacteria
in water samples were applied in most of the previous research
studies about DUWL. However, these methods may fail to detect
all microorganisms (including those uncultivable microbes) and
the actual diversity in DUWL. The aim of this study was to
investigate both bacterial and fungal communities which were
two of the major contaminants in the biofilm samples of DUWL,
using high-throughput sequencing technology. With the purpose
of systematically understanding the microbial communities and
revealing the associations with environmental factors, the age of
DCU, overall number of patients, and dental practices of
different specialties together with different sampling time
points were incorporated into this study. Our findings could
help better characterize and assess the cross-contamination risk
of dental care and suggest the information of better biofilm
control with more pertinence in DUWL.
MATERIALS AND METHODS

Dental Unit Biofilm Sample Collection
Eighteen dental units used daily for dental care were chosen from
one dental clinic, which were for specialties of prosthodontics,
orthodontics, pediatrics, endodontics, oral surgery, and
periodontics. The water supply of turbine handpiece was
purified water offered by the same company. The disinfection
system was chlorinated disinfectant (weekly used) and was
replaced with a filter unit (Dentapure, Crosstex, Chinese) in
succession lately, which was supervised by SenSafe (lodine
check). Operating years, overall number of patients per year
(replaced with average patients treated per month) together with
the number of patients on the sampling day of DCU from
different specialties were shown in Table 1. Flushing the
DUWL for 30 s and sterilization of handpieces were all
performed before the first patient and after each patient.

DUWL samples were collected from the plastic tube
concatenated to high-speed handpiece using sterilized mini
brush by the same sampler. The brush was slender enough
(brush of kernel: diameter 3 mm, length 3.8 cm; total length:
17 cm) to insert into the tube, then rotated and traversed for 10
times to collect enough biofilm attached to the tube wall. Brush
of kernel was broken with sterilized plier and preserved in EP
tube. The tubes were immediately transported on ice to the
laboratory within half an hour and restored at −80°C no longer
than one month before further process.

During sampling, protective measures including sterile gloves
and facial mask were adopted to eliminate microorganism’s
contamination from the sampler. The two sampling time
periods were 7:30–8:00 in the morning before the routine work
(group M) and 17:00–17:30 in the afternoon when clinical work
was finished on the same day before daily disinfection (group N).
Information including age of DCU, disinfection system, and the
application offilter unit, overall number of patients in recent year
June 2021 | Volume 11 | Article 670211
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of each DCU, number of patients, and specialty of dental practice
on the sampling day was recorded. The dentists of different
specialties were usually fixed with the same DCU.

DNA Extraction and PCR Amplification
The mini brush with biofilm samples were oscillated with
ddH2O, then centrifuged at 8,000 g for 3 min. The sediment
was collected and suspended in 500 ml of ddH2O. Genomic DNA
was extracted using the HiPure Stool DNA Kits (Magen,
Guangzhou, China) according to the manufacturer’s protocols.
Primers (341F: CCTACGGGNGGCWGCAG; 806R: GGAC
TACHVGGGTATCTAAT) were used for the bacterial DNA
amplification (the V3–V4 hypervariable regions of the bacterial
16S rDNA gene) (Guo et al., 2017). Primers (ITS3_KYO2: GATG
AAGAACGYAGYRAA; ITS4: TCCTCCGCTTATTGATATGC)
were used for the fungal ITS2 gene amplification (Toju et al.,
2012). According to the same manufacturer’s protocol (Toyobo,
Osaka, Japan), PCR reactions were performed in triplicate 50 ml
mixture containing 5 ml of 10× KOD Buffer, 5 ml of 2 mM
dNTPs, 3 ml of 25 mM MgSO4, 1.5 ml of each primer (10 mM),
1 ml of KOD Polymerase, and 100 ng of template DNA (94°C for
2 min, followed by 30 cycles at 98°C for 10 s, 62°C for 30 s, and
68°C for 30 s and a final extension at 68°C for 5 min). Then, the
products of PCR amplification were collected by gel cutting and
quantified using ABI StepOnePlus Real-Time PCR System (Life
Technologies, Foster City, USA).

Sequencing of 16S and ITS Gene
The purified amplification products were pooled in equimolar and
paired-end sequenced (2 × 250) on an Illumina platform (Hiseq2500
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
PE250) following the manufacturer’s recommendations. Noisy
sequences of raw tags were filtered by QIIME (Caporaso et al.,
2010) (version 1.9.1) to obtain the high-quality clean tags. The
effective tags were clustered into operational taxonomic units
(OTUs) of ≥ 97% similarity using UPARSE (version 9.2.64)
pipeline (Edgar, 2013). The raw reads have been deposited into
the NCBI Sequence Read Archive (SRA) database (Accession
Number: PRJNA664509).

Statistical Analysis
The microbial community was analyzed in terms of descriptive
statistics. Alpha-diversity (the Chao1 richness, ACE indices,
Simpson and Shannon diversity indices) and Beta-diversity
[Jaccard, Bray–Curtis, principal coordinates analysis (PCoA), non-
metric multi-dimensional scaling analysis (NMDS)] was calculated
with QIIME. Samples were classified into six groups according to
the characteristics of dental practice: group 1—prosthodontics,
group 2—orthodontics, group 3—pediatrics, group 4—
endodontics, group 5—oral surgery, group 6—periodontics. The
differences among the six groups of specialty (groups 1–6) and
between samples in the morning and afternoon (groups M, N) were
evaluated by means of a Kruskal–Wallis test and a non-parametric
Wilcoxon rank-sum test in R project Vegan package (version 2.5.3).
Multivariate statistical techniques including PCoA and NMDS of
Jaccard and Bray–Curtis distances were also generated. Indicator
species analysis was performed using Welch’s t-test and Wilcoxon
rank test. The associations between microbiota composition and
environmental factors (age of DCU, time of filter unit application,
overall number of patients, number of patients on the sampling day,
and specialty of dental practice) were evaluated with Pearson
TABLE 1 | The general information of sampling Dental Chair Units.

Specialty Sample label Application
of filter unit

Age Average patients
per month

Number of patients on
the sampling day

Group1 Prosthodontic 1 5 months <1 year 210+ 7
2 5 months <1 year 230+ 5
3 5 months <1 year 180+ 3
10 5 months <1 year 240+ 13
14 5 months 8–10

years
240+ 7

Group2 Orthodontics 4 1.5 month 8–10
years

340+ 12

5 1.5 month 3–5 years 260+ 13
6 1.5 month 8–10

years
260+ 10

Group3 Pediatrics 7 1.5 month 8–10
years

310+ 12

8 1.5 month 3–5 years 730+ 14
9 1.5 month 3–5 years 340+ 9

Group4 Endodontics 11 5 months 8–10
years

140+ 13

12 5 months 8–10
years

230+ 11

16 1.5 month <1 year 300+ 16
Group5 Oral surgery 13 1.5 month <1 year 200+ 8

18 1.5 month 8–10
years

270+ 6

Group6 Periodontics 15 1.5 month <1 year 280+ 8
17 1.5 month <1 year 330+ 9
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correlation analysis. Heatmap and network of correlation coefficient
were generated using Omicsmart, a dynamic real-time interactive
online platform for data analysis (http://www.omicsmart.com). A p
value <0.05 was considered statistically significant.
RESULTS

Microbial Community Composition of
Overall DUWL Biofilm Samples
In our study, microorganisms including bacteria, fungi,
viridiplantae, and protists were clearly detected in the biofilm
samples of DUWL. A total of 1,762,370 bacterial reads (mean
length: 456 bases) and 543,175 fungal reads (mean length: 361
bases) were obtained from the 36 dental unit biofilm samples
indicating a high microbial diversity in DUWL. The 16S rDNA
gene sequencing showed that the bacterial communities of all
samples covered 31 phyla, 86 classes, 177 orders, 306 families,
631 genera, and 350 species. The ITS2 gene sequencing showed
that the fungal communities covered four phyla, 21 classes, 59
orders, 130 families, 193 genera, and 169 species. The relative
abundance of bacterial and fungal genera in the DUWL core
microbiome and the top ten classes of bacteria and genera of
fungi were illustrated in Figure 1.

The overall relative abundances (%) of the top six bacteria and
fungi at phylum, class, order, family, and genus level and that
among six groups of DUWL biofilm samples before/after daily
dental practice were shown in Table 2. At phylum level,
Proteobacteria was the most dominant bacteria (representing
over 65.7–96.0% of the total sequences) and that of fungi was
Ascomycota (93.9–99.3%) in all samples. Other phyla of bacteria
including Firmicutes, Bacteroidetes, Cyanobacteria, Actinobacteria,
Planctomycetes, Acidobacteria, as well as the fungi of
Basidiomycota were also found in biofilm samples. Among the
six groups, Alphaproteobacteria and Gammaproteobacteria were
the same dominant classes of bacteria; Methylobacterium,
Acinetobacter, and Sphingobium were the most abundant genera.
The dominant genera of fungi among six groups were as follows
respectively: groups 1/2/4 were Aspergillus, Candida, and
Purpureocillium; group 3 were Aspergillus, and Purpureocillium;
group 5/6 were Aspergillus and Candida. Based on the information
above, Aspergillus was the dominant genus of fungi among all
groups. Candida_parapsilosis, Cordyceps_polyarthra, and
Meyerozyma_guilliermondii were the most abundant
fungal species.

Certain amount of potential human pathogens was detected in
the biofilm samples, including 25 genera of bacteria and eight
genera of fungi. The overall relative abundances (%) of potential
pathogenic microorganism at genus level and that among six
groups of DUWL biofilm samples were shown in Table 3. The
most abundant six genera with relative abundance over 1% were
Acinetobacter, Pseudomonas, Enterobacter, Aspergillus, Candida,
and Penicillium. Some reported representative opportunistic
pathogens associated with DUWL like Methylophilus, Escherichia-
Shigella, Legionella, Streptococcus, and Flavobacterium were all
detected. In this study, we also detected opportunistic pathogens
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
including bacteria of Acinetobacter_lwoffii, Actinomyces_
gerencseriae, Afipia_genosp, Chlamydia_trachomatis, Clostridium_
perfringens, Edwardsiella_tarda, Endobacter_medicaginis,
Gardnerella_vaginalis, Neisseria_gonorrhoeae, Serratia_
marcescens, Shinella_zoogloeoides, Staphylococcus_aureus,
Streptococcus_pneumoniae, Streptococcus spp, Prevotella spp, and
fungi of Candida_albicans, Exophiala_dermatit idis ,
Fusarium_solani, Stachybotrys_chartarum, Trichothecium_roseum,
Trichoderma_spirale. Among these established microorganisms,
almost all of the opportunistic pathogens were distributed in the
six groups of samples, except thatMethylophiluswas not detected in
group 1 (prosthodontics),Haemophiluswas not detected in group 5
(oral surgery), Klebsiella and Stachybotrys were not detected in
groups 5 (oral surgery) and 6 (periodontics). Moreover,Gardnerella
could be only detected in group 4 (endodontics), while Exophiala
was only detected in groups 1 (prosthodontics), 2 (orthodontics),
and 3 (pediatrics).

Microbial Community Diversity of Samples
From Different Specialties
The complexity of the bacterial and fungal communities in the
six groups of specialty from the DUWL biofilm samples was
investigated based on richness and evenness, measured by alpha-
diversity (ACE, Chao1, Shannon, Simpson and Goods_ coverage
indices). The calculated Alpha-diversity indices are presented in
Table 4. The similarities of groups were analyzed via
Bray–Curtis calculation.

In the bacterial community, Shannon and Simpson indices
were significantly different between groups 1/3/5 and group 4,
which meant that the bacteria richness and evenness were
different between the specialty of prosthodontics/pediatrics/oral
surgery and endodontics (Figure 2A). The specific different
bacteria were as follows respectively: Proteobacteria (mean
abundance: 87.52 vs 95.98%, p = 0.01), Firmicutes (4.60 vs
0.97%, p = 0.01), Bacteroidetes (3.61 vs 0.73%, p = 0.02),
Cyanobacteria (2.36 vs 0.72%, p = 0.02) in group 1 and group
4; Methylobacterium (4.20 vs 25.02%, p = 0.02), Sphingobium
(0.23 vs 21.90%, p = 0.03), Ralstonia (4.06 vs 1.39%, p = 0.01) in
group 3 and group 4; Sphingobium (21.90 vs 1.72%, p = 0.04),
Ralstonia (1.39 vs 3.13%, p = 0.04) in group 4 and group 5. The
relative abundance of Sphingobium was significantly higher in
group 4 (endodontics) than in other groups. According to the
beta-diversity distance matrix, community structure of the six
groups was significantly different with the calculation of Bray–
Curtis and analysis at phylum (Kruskal–Wallis test, p < 0.001)
and class level (Kruskal–Wallis test, p = 0.02). There’s an obvious
separation of the bacterial communities between groups of
samples at class level: groups 1/2/3/6 and group 4 (Wilcoxon
test, p < 0.001/p = 0.01/p = 0.01/p = 0.002, respectively); group 3
and group 6 (Wilcoxon test, p = 0.04) (Figure 2B). Based on the
weighted PCoA analysis, the first (PCO1) and second (PCO2)
axes showed values of cumulative percentage variance of species
equal to 78.07 and 14.10% (Figure 2C).

The fungal community of six groups had significant
differences in Chao1 (Kruskal–Wallis test, p = 0.001) and ACE
(Kruskal–Wallis test, p = 0.007) indices with Alpha-diversity
June 2021 | Volume 11 | Article 670211
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TABLE 2 | The overall relative abundance (%) of top six bacteria and fungi at phylum, class, order, family and genus levels and that among six groups of DUWL biofilm
samples at two time points (before/after daily dental practice) (relative abundance >0.1%).

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Overall

Before/After Daily Dental Practice

Bacteria
Phylum Proteobacteria 85.0/90.0 93.5/93.5 87.3/79.8 98.3/93.7 85.8/81.8 64.6/66.9 86.4

Firmicutes 6.6/2.6 1.8/1.5 4.6/7.1 0.3/1.7 2.1/3.8 13.5/2.0 3.9
Bacteroidetes 4.3/2.9 1.5/1.4 2.8/6.7 0.3/1.1 4.4/4.7 6.2/4.6 3.3
Cyanobacteria 2.4/2.3 0.9/1.4 2.3/2.2 0.2/1.2 3.5/4.6 2.2/6.9 2.3
Actinobacteria 0.8/1.1 1.1/1.0 1.4/1.8 0.4/0.7 1.2/1.6 8.2/9.4 1.9
Planctomycetes 0.1/0.2 0.4/0.1 0.1/0.1 0.2/0.1 0.5/1.5 0.1/8.5 0.7

Class Alphaproteobacteria 44.9/46.0 67.5/61.5 26.1/26.8 70.1/59.2 37.6/38.5 31.4/11.4 45.1
Gammaproteobacteria 40.0/44.0 26.0/31.9 61.1/52.1 28.2/33.9 48.0/42.8 32.6/55.2 41.0
Bacteroidia 4.3/2.9 1.5/1.4 2.8/6.7 0.3/1.1 4.4/4.7 6.2/4.6 3.3
Bacilli 2.6/1.8 1.3/1.1 3.9/4.7 0.2/1.3 1.7/2.5 6.6/1.1 2.3
Oxyphotobacteria 1.9/2.2 0.9/1.4 2.2/2.2 0.2/1.1 3.5/4.5 2.2/6.8 2.2
Actinobacteria 0.7/0.9 0.8/1.0 1.2/1.4 0.4/0.6 1.1/1.6 6.9/7.0 1.6

Order Rhizobiales 16.0/24.0 55.6/51.6 8.6/8.9 30.0/24.1 28.6/30.2 15.8/4.2 24.9
Pseudomonadales 24.3/24.0 7.5/15.9 30.7/27.9 6.1/14.2 29.9/24.6 12.5/4.0 19.2
Sphingomonadales 26.9/20.3 11.1/7.2 6.6/5.8 38.8/33.4 7.2/6.7 8.0/2.0 16.5
Betaproteobacteriales 6.4/7.5 11.3/9.1 7.9/5.9 17.8/13.4 12.2/11.0 9.6/9.9 9.7
Enterobacteriales 7.7/10.1 5.2/6.4 8.6/7.9 3.7/5.0 2.5/2.3 6.0/1.5 6.2
Xanthomonadales 1.2/1.9 0.5/0.4 12.5/10.1 0.3/0.9 2.1/3.3 3.3/5.3 3.3

Family Beijerinckiaceae 9.5/19.5 53.0/46.5 3.9/4.6 29.4/22.1 24.5/24.2 14.6/1.8 20.9
Sphingomonadaceae 26.9/20.3 11.1/7.2 6.6/5.8 38.8/33.4 7.2/6.8 8.0/2.0 16.5
Moraxellaceae 18.8/16.2 5.5/13.1 21.9/19.2 0.7/9.3 27.1/20.7 10.4/2.5 14.1
Burkholderiaceae 5.9/7.2 11.1/8.9 7.7/5.7 12.2/9.4 11.9/11.0 9.3/8.1 8.6
Enterobacteriaceae 7.7/10.1 5.2/6.4 8.6/7.9 3.7/5.0 2.5/2.2 6.0/1.5 6.2
Pseudomonadaceae 5.5/7.7 2.0/2.7 8.8/8.7 5.4/5.0 2.8/3.9 2.1/1.5 5.1

Genus Methylobacterium 9.3/19.3 53.0/45.9 3.8/4.5 28.7/21.4 24.3/23.9 13.9/1.4 20.6
Acinetobacter 18.2/15.6 5.2/12.6 21.3/18.7 0.6/9.1 26.6/20.3 10.0/2.1 13.6
Sphingobium 14.3/9.6 2.3/0.3 0.14/0.32 22.8/21.0 1.9/1.6 2.0/0.7 7.6
Sphingomonas 5.5/5.8 6.4/3.3 4.1/3.3 9.7/8.7 4.0/3.6 3.8/0.9 5.2
Pseudomonas 5.5/7.7 2.0/2.7 8.8/8.7 5.4/5.0 2.8/3.9 2.1/1.5 5.1
Stenotrophomonas 1.2/1.9 0.5/0.4 12.2/10.1 0.2/0.6 2.0/3.2 2.9/5.3 3.2

Fungi
Phylum Ascomycota 98.3/94.5 98.9/99.0 95.5/92.4 99.5/99.2 98.7/98.6 99.6/98.7 97.4

Basidiomycota 1.7/5.4 1.1/0.8 4.3/7.6 0.25/0.79 1.2/1.4 0.4/1.3 2.5
Class Sordariomycetes 35.7/34.5 44.3/44.7 35.6/43.0 38.0/24.2 15.8/8.8 9.2/6.8 31.8

Saccharomycetes 34.5/40.1 31.1/25.6 13.8/9.4 40.4/36.8 25.2/24.8 56.6/29.1 31.0
Eurotiomycetes 23.5/17.4 22.6/26.1 44.0/37.1 20.8/36.8 55.8/63.7 28.2/60.4 32.1
Dothideomycetes 4.3/2.1 0.8/1.7 1.5/1.0 0.3/1.3 1.5/1.0 5.3/0.8 1.9
Microbotryomycetes 0.9/3.2 1.0/0.6 3.4/4.6 0.0/0.0 0.4/0.6 0.0/0.0 1.5
Agaricomycetes 0.6/0.6 0.0/0.1 0.4/2.2 0.2/0.7 0.2/0.3 0.1/0.2 0.5

Order Hypocreales 34.4/34.3 44.0/44.3 35.1/41.5 37.9/23.7 15.3/7.5 8.0/6.4 31.2
Saccharomycetales 34.5/40.1 31.1/25.6 13.8/9.4 40.4/36.8 25.2/24.8 56.6/29.1 31.0
Eurotiales 23.3/17.2 22.5/26.0 41.1/34.9 20.8/36.8 55.8/63.7 28.2/60.4 31.6
Sporidiobolales 0.9/3.2 1.0/0.6 3.4/4.6 0.0/0.0 0.4/0.6 0.0/0.0 1.5
Pleosporales 1.3/1.4 0.7/0.1 0.8/0.5 0.1/0.1 1.0/0.2 4.8/0.7 0.9
Capnodiales 2.9/0.6 0.0/0.5 0.6/0.4 0.2/1.2 0.5/0.8 0.6/0.1 0.8

Family Aspergillaceae 23.2/17.2 22.5/26.0 40.8/34.4 20.8/36.8 55.3/63.6 28.2/60.4 31.5
Saccharomycetales_fam_Incertae_sedis 33.0/35.7 30.8/23.7 12.2/6.9 36.0/33.6 24.9/24.2 21.5/29.0 27.0
Ophiocordycipitaceae 20.1/19.3 41.4/40.3 31.1/34.2 24.2/21.6 0.1/0.4 0.8/0.1 22.2
Cordycipitaceae 14.1/14.4 2.5/3.6 3.7/7.0 12.1/1.7 15.0/7.0 5.8/6.3 8.4
Debaryomycetaceae 1.4/4.3 0.1/0.7 1.1/2.3 4.5/3.2 0.2/0.4 34.9/0.1 3.8
Sporidiobolaceae 0.9/3.2 1.0/0.6 3.4/4.6 0.0/0.0 0.4/0.6 0.0/0.0 1.5

Genus Candida 33.0/35.7 30.8/23.8 12.2/6.9 35.9/33.6 24.9/24.0 21.5/29.0 26.9
Aspergillus 20.0/14.6 19.8/24.8 38.0/30.3 20.0/36.4 48.5/53.4 27.1/59.3 28.5
Purpureocillium 20.1/19.3 41.4/40.3 31.0/34.2 24.2/21.6 0.0/0.0 0.8/0.1 22.2
Cordyceps 14.0/14.3 2.4/3.6 3.7/7.0 12.0/1.7 14.9/6.7 5.8/6.3 8.4
Meyerozyma 1.4/4.3 0.1/0.7 1.0/2.3 4.5/3.2 0.2/0.4 34.9/0.1 3.8
Penicillium 3.1/2.3 2.7/1.9 2.8/4.1 0.6/0.3 6.7/9.9 0.7/1.1 2.8
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Group 1—prosthodontics; group 2—orthodontics; group 3—pediatrics; group 4—endodontics; group 5—oral surgery; group 6—periodontics.
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analysis and were significantly different with the calculation of
Bray–Curtis at phylum level (Kruskal–Wallis test, p < 0.001). The
comparison of Bray–Curtis distance of fungal community among
six groups at phylum level and PCoA analysis was illustrated
(Figure 3). The genera of Meyerozyma , Penicillium ,
Leohumicola, and specie of Candida_tropicalis were different
(p < 0.05) among the six groups.

Microbiota of Biofilm Samples of DUWL
Before and After Dental Practices
The bacterial community had no significant change in richness and
evenness after one day’s dental practice according to analysis of all
samples as a whole. The alpha and beta diversity analysis showed no
significant difference between samples of DUWL before and after
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
dental practices, except for under Bray–Curtis calculation at family
level (Wilcoxon test, p = 0.04). There are some distinctions between
two time points (before/after dental practice): Nitrospirae (0.006 vs
0.03%, p = 0.02) at phylum level; Phycisphaerae (0.07 vs 0.17%, p =
0.04) at class level; Actinomycetales (0.18 vs 0.02%, p = 0.01), and
Pseudonocardiales (0.01 vs 0.08%, p = 0.04) at the order level;
Actinomyces (0.16 vs 0.02%, p = 0.02), and Sediminibacterium (0.03
vs 0.11%, p = 0.04) at the genus level. Most bacteria increased, and
only Actinomyces decreased after one day’s dental practices. The
alpha diversity analysis of fungal community showed no significant
difference between samples of DUWL before and after dental
practices. However, the Bray–Curtis calculation at phylum
(Wilcoxon test, p < 0.001) and species (Wilcoxon test, p = 0.009)
levels showed significant differences. After one day’s work,
TABLE 3 | The overall relative abundance (%) of potential pathogenic microorganism at genus level and that among six groups of DUWL biofilm samples.

Pathogen Group1 Group2 Group3 Group4 Group5 Group6 Overall

Bacteria
Acinetobacter 16.924 8.858 20.019 4.856 23.445 6.069 13.362
Pseudomonas 6.610 2.370 8.760 5.200 3.360 1.835 4.689
Enterobacter 2.925 1.625 2.682 0.489 0.395 0.765 1.480
Bacillus 1.005 0.318 1.066 0.309 0.616 0.837 0.692
Staphylococcus 0.138 0.034 0.157 0.132 0.962 2.009 0.572
Nocardioides 0.131 0.015 0.035 0.015 0.020 0.804 0.170
Edwardsiella 0.294 0.225 0.199 0.021 0.165 0.002 0.151
Bacteroides 0.452 0.133 0.062 0.021 0.013 0.217 0.150
Neisseria 0.192 0.066 0.076 0.004 0.036 0.359 0.122
Serratia 0.045 0.069 0.050 0.006 0.109 0.365 0.107
Streptococcus 0.182 0.061 0.141 0.022 0.084 0.136 0.104
Actinomyces 0.099 0.178 0.041 0.001 0.117 0.080 0.086
Flavobacterium 0.061 0.011 0.045 0.056 0.052 0.231 0.076
Escherichia-Shigella 0.153 0.058 0.049 0.008 0.053 0.041 0.060
Mycobacterium 0.014 0.035 0.043 0.036 0.022 0.199 0.058
Aeromonas 0.021 0.035 0.197 0.005 0.05 0.001 0.052
Rhodococcus 0.027 0.005 0.089 0.007 0.031 0.135 0.049
Vibrio 0.024 0.012 0.017 0.007 0.042 0.186 0.048
Prevotella_7 0.030 0.032 0.001 0.003 0.01 0.181 0.043
Klebsiella 0.005 0.197 0.005 0.001 0 0 0.035
Legionella 0.028 0.006 0.074 0.002 0.039 0.014 0.027
Corynebacterium 0.019 0.010 0.001 0.006 0.034 0.043 0.019
Haemophilus 0.018 0.015 0.033 0.008 0 0.011 0.014
Methylophilus 0 0.002 0.004 0.002 0.016 0.039 0.011
Gardnerella 0 0 0 0.036 0 0 0.006
Fungi
Aspergillus 17.344 21.918 34.133 28.222 50.971 37.855 28.518
Candida 34.321 27.286 9.574 34.760 24.453 24.020 26.921
Penicillium 2.696 2.289 3.402 0.451 8.284 0.857 2.848
Cladosporium 1.662 0.254 0.458 0.610 0.620 0.290 0.791
Alternaria 0.363 0.014 0.031 0.068 0.178 3.231 0.410
Fusarium 0.054 0.003 0.050 0.710 0.114 0.750 0.220
Exophiala 0.005 0.069 0.525 0 0 0 0.103
Stachybotrys 0.023 0.054 0.013 0.007 0 0 0.019
June 2021
 | Volume 11 | Article
TABLE 4 | Number of genus, alpha-diversity index and Good_coverage for bacteria of six groups.

Specialty Number of genus ACE Chao1 Shannon Simpson Good coverage

Group1 Prosthodontic 238 3,417 3,362 6.69 0.961 0.988
Group2 Orthodontics 207 2,763 2,716 6.27 0.963 0.990
Group3 Pediatrics 221 3,414 3,314 6.77 0.971 0.988
Group4 Endodontic 213 2,979 2,879 5.67 0.932 0.989
Group5 Oral surgery 196 3,491 3,318 6.91 0.973 0.989
Group6 Periodontics 208 3,014 2,778 6.58 0.935 0.991
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Hymenochaetales (relative abundance 0.20 vs <0.01%, p = 0.04) and
Tremellales (0.70 vs <0.01%, p = 0.03) nearly disappeared at the
order level; Debaryomycetaceae (2.84 vs 0.41%, p = 0.04) decreased
and Plectosphaerellaceae (0.03 vs 0.15%, p = 0.04) increased at
family level; Meyerozyma (2.82 vs 0.41%, p = 0.03) decreased, and
Exophiala (0.01 vs 0.07%, p < 0.01), Cadophora (<0.01 vs 0.49%, p =
0.01),Verticillium (<0.01 vs 0.15%, p < 0.01) increased at genus level.
The NMDS analysis based on Bray–Curtis of bacterial (at family
level) and fungal (at phylum level) communities before and after
dental practices were illustrated (Figure 4).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Environmental Factors Associated
With DUWL Microbiota by Pearson
Correlation Analysis
Pearson correlation analysis revealed the microbiota composition
was associated with environmental factors including the age of DCU
(variable-Age), time of filter unit application (variable-Filter),
average patients per month (variable-Average patients), group of
specialty (variable-Group), and the number of patients on the
sampling day (variable-Daily patients) (Figure 5). As for the
specific species, Acidobacteria and Dependentiae were positively
A

B

C

FIGURE 2 | The comparison of Shannon indices of bacterial community among six groups at phylum level (A); the comparison of Bray–Curtis distance of bacterial
community among six groups at class level (B); principal co-ordinates analysis (PCoA) of bacterial community among the six groups of samples (C). *significant at
p < 0.05, **significant at p < 0.01.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Fan et al. Microbiome of Biofilm in DUWL
related with the average patients per month (p < 0.001);
Proteobacteria was positively related with age (p < 0.01) and
negatively related with average patients per month (p < 0.05).
Most genera of fungi were related with average patients per
month including Lepista (p < 0.001), Humicola (p < 0.01),
Leohumicola (p < 0.01), while Candida was negatively related
with the number of daily patients (p < 0.001).

Variance partitioning analysis (VPA) showed that age
(explanatory value = 19.64%) and average patients (explanatory
value = 11.84%) contributed to phylum composition of bacteria, as
well as class composition. Age (6.64%), filter unit (6.11%), and
average patients (0.74%) accounted for order composition, as well
as family composition; age (7.13%) and filter unit (5.69%)
contributed to genus composition, while daily patients (0.62%)
and filter unit (0.42%) contributed to the daily bacteria species
variation. For fungal community of samples, group of specialty
(3.36%) accounted for phylum composition; daily patients
(13.60%), group of specialty (7.94%), and average patients
(1.85%) accounted for class composition, as well as order
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
composition; daily patients (19.18%), group of specialty (6.61%),
average patients (2.58%), and filter unit (2.03%) accounted for
species composition as well as genus and family composition. The
age of dental unit and overall number of patients had the strongest
impact on the overall bacterial composition, and the effect of daily
dental practices (number of patients and specialty) on the fungi
composition was the greatest.
DISCUSSION

Microbial Communities in Biofilm of DUWL
and Pathogens Related to Infection
This study revealed the DUWLs are heavily colonized by bacterial
and fungal communities and investigated the associations with
dental specialty and daily dental practices. We found that the most
abundant phyla in biofilm samples were Proteobacteria
(proportion of total sequences: 65.74–95.98%), Firmicutes (0.97–
A

B

FIGURE 3 | The comparison of Bray–Curtis distance of fungal community among six groups at phylum level (A); principal co-ordinates analysis (PCoA) of fungal
community among the six groups of samples (B). *significant at p < 0.05, **significant at p < 0.01.
June 2021 | Volume 11 | Article 670211
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7.72%), and Bacteroidetes (0.73–5.40%), which was slightly
different from previous studies which showed the pattern of
Proteobacteria (32.78%), Tenericutes (31.76%) and Firmicutes
(8.91%) (Zhang et al., 2018), or Proteobacteria and
Actinobacteria as the two major phyla (Costa et al., 2015). The
dominant fungi in this study were Ascomycota (93.9–99.3%) at
the phylum level and Saccharomycetes, Eurotiomycetes, and
Sordariomycetes at the class level. It was similar with another
study which showed that Ascomycota and Basidiomycota at
phylum level and the Saccharomycetes at class level were
dominant in the core fungal microbiome (Costa et al., 2016b).
The dominant fungi Aspergillus, Candida, and Purpureocillium in
this study were also found in other research studies (Szymańska,
2005; Kadaifciler et al., 2013). These distinctions may be due to the
different sample types (i.e., biofilm and water samples) and
methods (i.e., sequencing directly or after cultivation). Previous
study samples of DUWL included the supplying water, output
water of dental instruments which were delivered through the
narrow waterline tubes. Biofilm with proliferating of
microcolonies formed and grew readily on the inner surface of
DUWL (Porteous and Partida, 2009), showing different colonizers
in early and late stages (Tall et al., 1995). It could be a reservoir of
microorganisms and detach to the water continuously (Donnell
et al., 2011), as well as protect the microorganisms from
disinfectant by providing a suitable matrix of glycoproteins and
polysaccharides (Walker et al., 2003). The relative abundance of
Proteobacteria was obviously higher in the biofilm sample than in
the water sample, possibly owing to the release of microbiota from
biofilm to flowing water (Paramashivaiah et al., 2016), thus biofilm
could better represent the true condition of DUWL rather than
water sample and should be emphasized. In view of the variation
of supplying water from different DCUs, the comparison of
biofilm and water samples from the same DCU was needed to
verify the distinction. There was a study (Szymańska, 2006) that
found that the dominant fungal species were different among
reservoirs water (Candida curvata and Candida albicans),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
handpieces water (Candida albicans and Aspergillus glaucus),
and biofilm (Aspergillus glaucus and Candida albicans). Among
the dominant bacteria, Proteobacteria was ubiquitous and
physiologically versatile in drinking water (Vaz-Moreira et al.,
2017) and even on earth (Zhou et al., 2020), which was related to
bronchiectasis (Guan et al., 2018) and dysbiosis in gut microbiota
(Shin et al., 2015). Heavier bacterial and fungal contamination in
endodontics specialty was also observed in this study, which was
consistent with a previous report (Zhang et al., 2018). The genus
only detected in group of Endodontics-Gardnerella is atypical
representative of oral cavity microflora, which has been detected
both in vagina and oral cavity in people with bacterial vaginosis
(Petrushanko et al., 2014). Except for Gardnerella, the relative
abundance of Sphingobium was also higher in endodontics than in
the other specialties, which may raise the risk in hospital tap water
(Vaz-Moreira et al., 2011; Narciso-da-Rocha et al., 2014).

It is known that DUWLs are favorable environments for
pathogen colonization. Among the six most abundant genera of
opportunistic pathogens (i.e., Acinetobacter, Pseudomonas,
Enterobacter, Aspergillus, Candida, and Penicillium), high
frequencies of bacterial respiratory pathogens, especially
Acinetobacter spp. and Pseudomonas spp. were detected in oral
cavity of patients (Zuanazzi et al., 2010). There are several
reports about these pathogens with related diseases, such as
Pseudomonas aeruginosa with lung infection in patients suffering
from cystic fibrosis (Schick and Kassen, 2018), or with brain
abscess (Pereira et al., 2017). Some opportunistic fungal
pathogens (e.g.: Penicillium, Candida) isolated and identified in
water samples from air-water syringes and high-speed drills may
also lead to respiratory diseases such as allergic rhinitis
(Kadaifciler et al., 2013). Other potentially pathogenic genera
reported in a previous study (Costa et al., 2015) was also detected
from our biofilm samples, including Legionella, Mycobacterium,
Propionibacterium, Stenotrophomonas , Flavobacterium,
Streptococcus, and Escherichia-Shigella. There are also
numerous diseases probably associated with these pathogens,
A B

FIGURE 4 | The non-metric multi-dimensional scaling (NMDS) analysis based on Bray–Curtis of bacterial (A, at family level) and fungal (B, at phylum level)
communities before and after dental practice.
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such as Legionellosis acquired through Legionella from a dental
unit (Schönning et al., 2017); Mycobacterium tuberculosis and
Pseudoramibacter alactolyticus coinfection in central nervous
system after dental extraction (Liao et al., 2019); postoperative
and device-related infections of the bones and joints, mouth, eye,
and brain caused by Propionibacterium (Perry and Lambert,
2011). Apart from the pathogens, increased endotoxins of
bacteria have been found in aerosols from DUWL with
substantial biofilm growth, which may lead to inflammation of
the airways (Szymanska and Sitkowska, 2013). Fungal pathogens
can decrease host fitness by reducing survival and impacting host
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
reproduction (Feistel et al., 2019). Compared with other similar
research studies (Walker and Bradshaw, 2000; Walker et al.,
2004) the rarely detected opportunistic pathogen species in this
study, such as Acinetobacter_lwoffii, Actinomyces_gerencseriae,
Gardnerella_vaginalis, Staphylococcus_aureus, Streptococcus_
pneumoniae, Candida_albicans, Exophiala_dermatitidis,
Fusarium_solani, Stachybotrys_chartarum might continue to
remind us of the possible secondary infections. These results
emphasized the potential adverse effects from DUWL despite the
low species richness of these pathogens and the importance of
regular control of microbiome contamination in DUWL.

Environmental Factors Associated With
Biofilm Accumulation
Among the possible environmental factors in this study, both age
of DCU and daily dental treatment play a key role in biofilm
accumulation. There was a study which showed that oral
streptococci detection in water samples was not affected by
handpiece age or dental treatment type, but was associated
with dental unit age (Petti et al., 2013). Based on the high-
throughput sequencing data of bacteria and fungi with
environmental factors of this study, both specialty and daily
dental practices would affect the microbiota composition; it may
be due to the different uses of handpiece for different dental care,
which was also associated with average of patients, for example,
tooth cleaning and scaling in periodontics, tooth preparation and
conditioning of prosthesis in prosthodontics (without too much
detritus). However, it was less commonly used for orthodontics
except for some polishing. The oral surgery specialty may
probably use handpiece for splitting tooth with aerosol mixed
with blood. It is shown that the pathogens of biofilms were also
associated with dental specialty in view of a similar study
showing that Flavobacterium was only detected in samples
from the departments of endodontics and streptococcus was
only found in samples from the department of periodontics
(Zhang et al., 2018). Candida albicans is the most commonly
isolated species from infected root canals (Sunde et al., 2002;
Waltimo et al., 2003), which may affect the mycobiology of
DUWL engaged in endodontics or pediatrics. The daily dental
practice has certain effects on the microbiome of biofilm in
DUWL; however, it must be taken into account that the two time
points of sampling in one day may be not sufficient to screen
biofilm accumulation; further longitudinal studies were essential
to evaluate the dynamic accumulation.

Describing the problem of DUWL biofilm could emphasize
on the contamination and biofilm control for dental chair unit
manufacturers (Coleman et al., 2007). Despite disinfecting
treatment and flushing process, microbial contamination
remained relevant. Dental unit management is often missed or
not correctly applied by stakeholders, with an underestimation of
the real risk of infection for patients and operators (Lizzadro
et al., 2019). Apart from the conventional measures of biofilm
control (Donnell et al., 2011), there are some special advice in
regard to manufacture, disinfectants and practice strategy.
Rechargeable N-halamine-based antimicrobial functionality
onto the inner surfaces of DUWL tubing (Luo et al., 2011),
A

B

FIGURE 5 | The Pearson correlation analysis of bacterial (A at phylum level)/
fungi) (B at genus level) composition and five environmental factors. The
interpretations of variables: filter-the application time of filter unit; age, age of
dental unit; average patients, average patients per month; Daily patients-
number of patients on the sampling day; Group-specialty of dental treatment.
*significant at p < 0.05, **significant at p < 0.01, ***significant at p < 0.001.
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nanosilver disinfectant (Gitipour et al., 2017) could be taken into
consideration. The hydrogen peroxide disinfection system was
also proved in eradicating biofilm from DUWL and in
controlling the bacterial count in water against several bacterial
species (Orru et al., 2010). Some tested disinfectants active
against sessile microorganisms were recommended to be used
in a prophylactic rather than curative way (Costa et al., 2016a),
and continuous disinfection was better than the intermittent
treatment of DUWL (Laura et al., 2014). These supported that
the filter unit used in the DCU of this study was an influencing
factor on microbiota composition. Interestingly, the nature of
DCU (associated with age and overall number of patients) and
daily dental practices (associated with daily patients and dental
specialty) were related with bacterial and fungal composition,
respectively. For the dental staff, protective measures were also
emphasized to avoid infections, especially in departments with
large number of patients.

Compared with the method of sequencing after cultivation,
we overcame the difficulties of insufficient quantity of
microorganisms and explored a novel method of biofilm
sample collection that could be generalized. Though high-
throughput sequencing technology could afford huge amount
of biological information, there are still some unclassified and
unknown microorganisms with unclear risk. For the small
sample size of some specialties of DUWL and insufficient days
of observation, we should be cautious to conclude the
distinctions of microbiota between specialties of DUWL. On
the other hand, it should be noted that some non-living
microorganisms may also be counted for sequencing with this
method, and the infection risk may be overestimated. The results
remind staff that they themselves and the patients may be
exposed to many pathogens by inhalation or exposure during
dental care and develop associated infections. This work was
assumed to afford abundant information for biofilm control, and
panic anxiety about the exposure to traces opportunity
pathogens was unnecessary.
CONCLUSION

To our knowledge, for the first time, biofilm in the DUWL
engaged in different specialties was investigated by high-
throughput sequencing.

a. Both bacterial and fungal communities with heterogeneous
and complex ecosystem of DUWL biofilm were revealed and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
were more abundant than in water samples with culturing
method.

b. The biofilm microbiome may be influenced by the
characteristics of dental specialty and routine work to some
extent. The age of DCU and overall number of patients had
the strongest impact on the overall bacteria composition, and
the effect of daily dental practices (associated with number of
patients and dental specialty) on the fungi composition was
the greatest.

c. Considerable kinds of human opportunistic pathogens
including both bacteria and fungi were detected in the
DUWL biofilms, which suggested that dental staff and
patients were at risk of potential infection despite the low
species richness of these pathogens, and protective measures
cannot be ignored.

d. The novel method of biofilm collection from the plastic tube
concatenated to dental instruments was feasible and can be
generalized.

e. This study demonstrated the necessity and importance of
DUWL biofilm control and gave a clue for specific
disinfection strategy.
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