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ABSTRACT

The integration of viral sequences into the host
genome is an important driver of tumorigenesis in
many viral mediated cancers, notably cervical can-
cer and hepatocellular carcinoma. We present ViFi,
a computational method that combines phylogenetic
methods with reference-based read mapping to de-
tect viral integrations. In contrast with read-based
reference mapping approaches, ViFi is faster, and
shows high precision and sensitivity on both sim-
ulated and biological data, even when the integrated
virus is a novel strain or highly mutated. We applied
ViFi to matched genomic and mRNA data from 68 cer-
vical cancer samples from TCGA and found high con-
cordance between the two. Surprisingly, viral integra-
tion resulted in a dramatic transcriptional upregula-
tion in all proximal elements, including LINEs and
LTRs that are not normally transcribed. This upregu-
lation is highly correlated with the presence of a viral
gene fused with a downstream human element. More-
over, genomic rearrangements suggest the forma-
tion of apparent circular extrachromosomal (ecDNA)
human-viral structures. Our results suggest the pres-
ence of apparent small circular fusion viral/human
ecDNA, which correlates with indiscriminate and un-
regulated expression of proximal genomic elements,
potentially contributing to the pathogenesis of HPV-
associated cervical cancers. ViFi is available at https:
//github.com/namphuon/ViFi.

INTRODUCTION

Human tumor associated viruses are a major contributor to
the global burden of cancer. Human papillomavirus (HPV)
is detected in virtually all cervical cancers and nearly half of
all infection-attributed cancers in women. Hepatitis B virus
(HBV) and Hepatitis C virus (HCV) infection occur in 74%
of all liver cancer cases worldwide (1).

Currently, the molecular mechanisms of viral carcino-
genesis are incompletely understood. Human tumor asso-
ciated viruses encode viral oncoproteins, such as HPV E6
and E7 (2,3), and HBx in HBV (4), that contribute to tumor
formation by dysregulating the activity of cell cycle proteins
in host cells (5–7). Human tumor associated viruses may
also promote tumor formation via integration into the host
genome. Although viral integration is seemingly random, a
chance integration into a key genomic locus could provide a
selective advantage for host cells if the virus integrates near
a key growth controlling gene, effectively driving constitu-
tive expression of a proliferative transcriptional program.
Consistent with this model, in some viral-associated can-
cers, tumor cells from the same sample share a unique vi-
ral integration site near TERT, MYC or MLL4, suggesting
that viral integration is an early and important driver of car-
cinogenesis (6). However, the majority of HPV-positive and
HBV-positive tumors do not contain recurrent integration
sites near known growth control genes. Thus, the impact of
seemingly random viral integration on the development of
viral-associated cancers is not well understood.

Next Generation Sequencing (NGS), including whole
genome sequencing (WGS) and RNA-seq, permits de-
tection of viral integration sites in human tumor tis-
sue (8,9). Analytic pipelines have been developed for analy-
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Table 1. Overview of datasets. We provide an overview of the datasets used throughout this study

Dataset name Type Source Number of Source
samples

HPV-Sim WGS Simulated 96 This study
HCC-WGS WGS Biological 20 (21)
HCC-RNA RNA-seq Biological 6 (22)
TCGA-CESC WGS and RNA-seq Biological 68 TCGA

sis of paired-end Illumina NGS data (VirusSeq (10), Virus-
Finder (11), ViralFusionSeq (12) in 2013; VERSE (13),
Virus-Clip (14) and Vy-PER (15) in 2015). These pipelines
vary in the methodologies used to infer viral integration
from sequence data, but the overarching theme is similar:
identify single end or paired-end reads that map to both
the human and viral reference genome. However, bioinfor-
matic inference of viral integration sites remains a chal-
lenge because shared repeat regions between human and vi-
ral genomes (15) are common, resulting in frequent false
positives.

Phylogenetic methods could provide a powerful comple-
mentary strategy for more accurate and sensitive detection
of viral integration sites in human cancer by using evolu-
tionary relationships between known viral strains to iden-
tify novel or mutated integrated viral strains (16), thus yield-
ing new insights into how random viral integration con-
tributes to tumorigenesis. One commonly used evolution-
ary model for sequence identification is a profile Hidden
Markov Model (HMM (17)). A profile HMM is statistical
model for representing a multiple sequence alignment, and
has been shown to outperform reference-based read map-
ping for the assignment of novel sequences to protein fami-
lies (18). More recently, collections of HMMs known as en-
semble of HMMs (eHMMs) have been shown to result in
more accurate classification and identification of sequences
compared to the use of a single HMM (19,20).

Here, we present Viral Integration and Fusion
Identification (ViFi), a new tool for detecting viral in-
tegrations from WGS data and human-virus fusion mRNA
from RNA-seq data (Figure 1). Unlike other viral integra-
tion detection pipelines that use reference-based alignment
mapping for identifying viral reads, ViFi uses a combina-
tion of reference-based alignment mapping and eHMMs to
represent the viral families of interest to identify viral reads.
Previous methods using eHMMs modeled protein families
or gene families and could only identify reads belonging
to those protein or gene families (19,20); ViFi improves
upon these previous techniques by constructing an eHMM
on entire viral genomes, allowing the identification of viral
reads from any region of the virus family of interest. In
addition, ViFi incorporates mappability scores to reduce
false positive detections. The end result is a tool which
accurately detects viral integrations with high precision
and recall, even when the viruses are highly mutated or are
not found in the reference virus genomes.

We compared ViFi against competing tools, VERSE,
Virus-Clip and ViralFusionSeq, on both simulated and bi-
ological datasets with experimentally verified integrations
(Table 1). These datasets include simulated NGS of chro-
mosome 1 containing integrated HPV (HPV-SIM), WGS
from hepatocellular carcinoma (HCC) samples taken from

patients with HBV integration (21) (HCC-WGS), RNA-seq
datasets from HCC cell lines infected with HBV (22) (HCC-
RNA). We also compared fusion mRNA sequences found
by ViFi to results from other studies (23,24) on tumor cer-
vical samples taken from the The Cancer Genome Atlas
(TCGA-CESC; https://cancergenome.nih.gov/). In order to
make the comparisons fair, all methods use the same set
of reference genomes for each experiment (Materials and
Methods).

Finally, we performed ViFi-based comprehensive anal-
ysis of matched paired WGS and RNA sequencing data
from 68 cervical cancer samples profiled by The Cancer
Genome Atlas (TCGA), which reveals unique genomic inte-
gration structures, including potentially circular amplicons
containing fused human and viral DNA. A previous analy-
sis of the cervical cancer samples from the TCGA revealed
increased gene expression of genomic loci affected by inte-
gration (24). Our study refines this result and reveals that in-
tegration resulting in fusion viral/human sequences under
the control of a viral regulatory element resulting in high-
level indiscriminate proximal transcription of all nearby el-
ements, including LINE/LTRs. These results demonstrate
the ability of ViFi to provide unique structural information
in viral associated tumors and to suggest new biological in-
sights.

MATERIALS AND METHODS

ViFi

We present ViFi, a new computational method for the de-
tection of integrated viruses from NGS data (Figure 1). Un-
like other integration detection methods that use reference-
based alignment mapping for identifying viral reads, ViFi
uses a combination of reference-based alignment mapping
and an ensemble of profile HMMs (20) (eHMM) to iden-
tify viral reads, and uses the mappability scores of the reads
to reduce false positives. We outline our method below and
provide a full description of the software, including the
command line arguments and version numbers of external
software used within ViFi, in Supplemental Section S8.

Pre-processing. ViFi begins with a pre-processing step (see
Figure 1A) to build the reference database used to identify
human and viral reads. The first step is to combine the hu-
man reference genome (Hg19; February 2009 release date)
with the reference viral genomes of the viral family of inter-
est into a single FASTA file and run BWA (25) to create a
single BWA index (referred to as Hg19+viral index) on the
combined set of human and viral genomes. The Hg19+viral
index is used to rapidly identify reads as either human or vi-
ral by mapping the reads to the index.

https://cancergenome.nih.gov/
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Figure 1. Overview of integration detection process. Integration detection is split into two phases. In the (A) pre-processing step, a BWA index is created
from the human reference genome and input viral genomes (Hg19+viral). In addition, a multiple sequence alignment is estimated from the viral genomes,
and a maximum likelihood tree is estimated from the alignment. The alignment is decomposed into an ensemble of profile Hidden Markov models. In the
(B) viral detection step, the paired-end reads are mapped against the Hg19+viral index. Candidate paired-end reads are selected if, (i) one end of the read
maps to the human genome and the other end maps to a viral genome, or (ii) one end of the read maps to the human genome and the other end scores
high against the HMM ensemble. All other reads are discarded. The integration point is then inferred from the set of candidate reads.

In addition, ViFi also models the viral family of interest
by using a collection of profile HMMs built from the vi-
ral reference genomes as follows. First, the FASTA file con-
taining only the viral reference genomes are aligned into a
multiple sequence alignment using PASTA (26), and a maxi-
mum likelihood tree is estimated from the multiple sequence
alignment using RAxML (27). The input alignment and
tree are then used to build the eHMM using Algorithm 1
(Figure 2 for graphical overview). Briefly, an HMM is com-
puted from the alignment using HMMER’s hmmbuild (17)
and is added as the first HMM in the set of HMMs. Next,
if the input tree contains more than 10 leaves, the centroid
edge (i.e. the edge that best separates the tree into two sub-
trees with roughly equal number of leaves) is removed to
create two approximately equally-sized subtrees. The pro-
cess then recurses on each of the subtrees and alignments
induced by the leaf set of the subtrees, adding the profile
HMMs computed on the induced alignments to the set of
HMMs. This process repeats recursively on each subtree un-
til there are at most 10 sequences in the subtree. This results
in a collection of nested hierarchical profile HMMs which
we call the ensemble of HMMs. This pre-processing step of

building the ensemble of HMMs only needs to be run once
for each viral family of interest.

Algorithm 1. Building eHMM from a multiple sequence
alignment and maximum likelihood tree. The functions
hmm build takes an alignment as input and returns a HM-
MER profile HMM computed the alignment, Number Of
Leaves takes a tree as input and returns the number of leaves
in the tree, bisectTree takes as input a tree and partitions the
tree into two roughly equally sized subtrees by removing the
centroid edge, and induced Alignment takes an alignment
and tree as input and returns the induced alignment that
contains only the sequences that are also in the tree.
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Figure 2. Algorithm for generating the ensemble of HMMs. The input is an initial multiple sequence alignment and a maximum likelihood tree that has
been estimated from the multiple sequence alignment. The algorithm begins by adding the HMM built on the multiple sequence alignment to the ensemble.
If the multiple sequence alignment has >10 sequences, the maximum likelihood tree is decomposed into two subtrees by deleting the centroid edge (i.e. the
edge that produces a maximally balanced split of the sequence set into two sets). The subtrees are used to generate induced alignments. HMMs are built
for each induced alignment and added to the ensemble. The process iterates on those subtrees that meet the criterion for decomposition (subset size >10).

Identification of candidate reads. One of the key steps in
detecting integrations is to identify paired-end reads (called
‘candidate reads’) that map to both the human reference
genome and to a viral reference genome. ViFi extends upon
this approach by also attempting to identify viral reads that
don’t map to any known viral reference genomes but do
match to an evolutionary model representing the viral fam-
ily of interest. We outline this approach below (Figure 1B).

ViFi begins by mapping all paired-end reads against the
Hg19+viral index using BWA-mem. The paired-end reads
are separated into four different groups: (i) reads in which
both paired-end reads mapped Hg19 or both to the viral
genomes, (ii) paired-end reads in which one end mapped
to Hg19 and the other to a viral genome, (iii) paired-end
reads in which one end mapped to Hg19 and the other is
unmapped and (iv) all other reads. Typically, most existing
viral integration detection tools focus on the set of reads in
group (ii) and discard reads found in group iii). However,
a read that is viral in origin might be unmapped because it
is too evolutionarily divergent from the set of known viral
genomes. ViFi attempts to rescue paired-end reads in this
group by scoring the unmapped reads against the ensemble
of HMMs created in the pre-processing step.

ViFi takes the set of paired-end reads in which one end
maps to the human reference and the other is unmapped
and creates a FASTA file containing the unmapped reads.
ViFi then scores the FASTA file against each profile HMM
in the ensemble of HMMs using HMMER’s nhmmer com-
mand. The scores represent how well the unmapped reads
match to a model of the viral family of interest. If a read has
a sufficient score to at least one of the profile HMMs in the
eHMM (E-value below a threshold; default is 0.01), then
the read is marked as a viral read and the paired-end read
is also put into the candidate set. This step allows the de-
tection of novel or evolutionarily divergent viral sequences

belonging to the same family. Thus, ViFi’s set of candidate
reads not only include paired-end reads that map to both
human and viral genomes, but also include paired-end reads
in which one end maps to the human genome and the other
paired-end has sufficient score to profile HMMs of the viral
family.

Identification of integration point. Once the candidate
reads have been collected, the final step is to use the candi-
date reads to infer integration locations in the genome. The
idea behind this procedure is to identify clusters of candi-
date reads that are sufficiently close together such that they
might haven been generated from the same genomic inte-
gration, and then infer the possible range for the integration
from the cluster of reads.

The first step is to remove poorly mapped reads that
might result in false positive detection of integration sites.
Read pairs with poor mappability scores, defined as an av-
erage Duke Uniqueness Score (28) (generated using sliding
windows of 35-mers instead of the default window size of
20-mer) less than 0.33 or MAPQ score <10 are removed.
These removed reads represent reads that might map to
multiple locations. Next, the remaining read pairs grouped
into clusters in order to identify potential integration points.
A graph is created in which the read-pairs are vertices in the
graph, and an edge is drawn between a pair of paired-end
reads if their mapped human coordinates are sufficiently
close (default threshold is within 300 bp of each other). The
connected components of the graph define the read clusters,
with each cluster representing a group of reads in which
each read is at least within 300 bp of another read. Clus-
ters with fewer than three reads are removed. Finally, we at-
tempt to identify the location of the integration point from
the clusters.



Nucleic Acids Research, 2018, Vol. 46, No. 7 3313

We report three different integration location ranges, go-
ing from most general to most specific. The first integra-
tion range, called the ‘relaxed’ range, is the most inclusive
and is the range of all mapped positions in the read cluster
(i.e. the most 5’ and 3’ positions in the set of reads). The
second range, called the ‘stringent’ range, attempts to nar-
row the location of the integration using the mapped strand
information. For all human-mapped reads in a cluster, we
group the reads depending on whether or not they map to
the forward strand (‘forward’ group) or the reverse strand
(‘reverse’ group) of the human reference genome. For each
group, we identity the coordinates of the most 3’ end po-
sition in both sets, and define the genomic integration as
the range of these two numbers. For example, if the forward
group reports that position chr19:30,303,492 is the most 3’
mapped position in the group, and the reverse group reports
that position chr19:30,303,498 is the most 3’ mapped posi-
tion in the group, the integration range would be reported
as chr19:30,303,492–30,303,498.

The third range, called the ‘exact’ range, attempts to iden-
tity the exact integration location and can only be reported
if there are split reads present in the read cluster. A split
read is defined as a read that has a primary alignment to
a human chromosome and a secondary alignment to a vi-
ral reference genome, or a read that has a secondary align-
ment to a human chromosome and a primary alignment to
a viral reference genome. If a split read is detected, the pri-
mary and secondary alignments are combined into a single
alignment by marking positions in the read that map to only
to the human reference in the primary or secondary align-
ments with an ‘H’, marking positions in the read that map
only to the viral reference genomes in the primary or sec-
ondary alignments with an ‘V’, marking positions that map
to both human and viral genomes with an ‘M’, and mark-
ing all other positions with an ‘X’. Positions marked ‘M’
represent potential micro-homologies between the human
and viral ends near the integration point. If a read contains
at least five Hs and five Vs flanking 0 or more Ms (i.e. least 5
bp from both the human and viral genome flanking the in-
tegration), then the read covers the integration. The break-
point (defined as the 3’ position closest to the boundary be-
tween the human and viral portion of the read) is reported.
If multiple different breakpoints are reported due to mul-
tiple different split reads existing in a cluster, then all the
breakpoints are reported. By reporting all breakpoints dis-
covered from the split reads, it allows for the discovery of
multiple integrations that might have only been classified as
a single integration because they occurred within 300 bp of
each other.

The output of ViFi is the list of read clusters discovered,
and for each read cluster, the relaxed, stringent, and exact
(if split reads are present) ranges are reported, as well as the
read names of the reads in the cluster.

Viral reference genomes

We generated a PV reference genome set used on analyses
on cervical cancer samples and a HBV reference genome
set used for analyses on hepatocellular carcinoma samples.
The PV reference genome was created by downloading all
available reference PV genomes (337 total PV genomes)

from PapillomaVirus Episteme website (PaVE (29); https:
//pave.niaid.nih.gov) on 15 August 2016. The HBV refer-
ence genome set was created by downloading the set of 73
reference HBV genomes used in (30), which includes geno-
types A-I and a strain of Woolley Monkey HBV. The GI
number for all the reference genomes and the map of GI
numbers to sequence name is provided in Supplementary
Table S1.

VERSE

We ran VERSE under its default setting (see Supplementary
Section S5 for full details on running VERSE). We discov-
ered that VERSE performed unnecessary I/O operations
during its pipeline and improved upon its performance by
reducing I/O operations through use of pipelines (see Sup-
plementary Section S4).

ViralFusionSeq

We ran ViralFusionSeq under its default setting (see Sup-
plementary Section S2 for full details on running ViralFu-
sionSeq). We discovered several bugs while running Viral-
FusionSeq and had to fix the errors in the code in order
to run the software (Supplementary Section S1). However,
even with these corrections, we were unable to run the code
to completion on any of the simulated datasets. In addition,
even on a simple test case of 10 integrations on chr1 with 5x
coverage, ViralFusionSeq required 93 hours on a dedicated
node with 24 processors before failing with an error mes-
sage. During this run, ViralFusionSeq produced more than
134GB of temporary files on an input dataset of <1GB. Due
to the difficulty in running ViralFusionSeq, as well as the
computational requirements of the software (Supplemen-
tary Section S1), we excluded it from our analyses.

Virus-Clip

We ran Virus-Clip under its default setting (see Supplemen-
tary Section S7 for full details on running Virus-Clip). We
made minor modifications to the code in order to make the
program more efficient and to take full advantage of the
multiple processors on the node (see Supplementary Sec-
tion S6).

Datasets

We use both simulated and biological datasets in our stud-
ies. We describe the datasets below.

HPV simulated NGS datasets (HPV-Sim). We generated
16 model conditions with PV integrations (see Supplemen-
tary Section S9 for full description of simulation proce-
dure). In order to examine the impact of viral sequence
divergence on integration detection, we simulated differ-
ent strains of HPV by evolving HPV16 down a phyloge-
netic tree with differing branch lengths under the Gener-
alized Time Reversible (GTR) substitution model (31). We
grouped the simulations into three categories, depending
on the integrating virus strain’s similarity to the reference
HPV16 strain: easy (99% similarity), medium (95% similar-
ity), and hard (90% similarity). In addition, we generated

https://pave.niaid.nih.gov
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one additional dataset with Brown Howler PV (AgPV1),
a papillomavirus genome not included in the set of viral
reference genomes to simulate detection of a novel HPV
virus. AgPV1 is 44% similar to HPV16 and is 65% simi-
lar to the most closely related sequence in the set of refer-
ence genomes. For each simulated virus, we generated sim-
ulated viral integrations into the human chromosome 1,
with the integration locations selected uniformly at random
throughout the chromosome. Paired-end Illumina reads of
100 bp were generated from the simulated chr1 chromosome
using ART Illumina Simulator (32). In order to study the
impact of sequencing coverage and number of integrations
on integration detection accuracy and running time, we gen-
erated a first set of model conditions in which we fix the cov-
erage to be 25× and vary the number of integrations from
10, 25, 50 and 100, and a second set of model conditions in
which we fix the number of integrations to be 10 and vary
the coverage from 5×, 10× and 25×. In total, 96 datasets
were generated for the simulation study.

HCC Sung 2012 WGS dataset (HCC-WGS). Eighty
eight HCC samples (81 HBV-positive and 7 HBV-negative;
both tumor and adjacent tissue) were sequenced by Sung
et al. (21) and deposited into the European Genome-
phenome Archive (EGA) under the accession ERP001196.
The authors identified recurrent genomic integrations (4
or more samples) in known oncogenes/oncogenic regions
(FN1, TERT, MLL4, CCNE1, ROCK1, SENP5). A total
of 399 genomic integrations were identified across the 88
samples. To confirm recurrent genomic integrations, the au-
thors randomly selected 32 genomic integrations in six af-
fected genes were able to successfully validate 22 of of the
32 integrations (72%) via PCR. Our study included the same
22 integrations as a comparison. As five samples contained
pairs of integrations that were significantly closer than the
insert size of the paired reads (less 20 bp from each other),
we collapsed these integrations into a single integration, re-
sulting in a final list of 17 verified integrations. The sample
list used is provided in Supplementary Table S6.

HCC Lau 2014 cell line RNA-seq dataset (HCC-RNAseq)

Whole transcriptomes from six HCC cell lines were ana-
lyzed using RNA-seq by Lau et al. (22). 11 chimeric HBV-
human fusion transcripts were detected in three of the cell
lines and validated using Sanger sequencing. Our study in-
cluded the original six cell line RNA-seq data and is avail-
able from the Sequence Read Archive under accession num-
ber SRP023539.

TCGA Cervical cancer datasets (TCGA-CESC)

We selected 68 patient cervical tumor samples in the TCGA
database with matched WGS and RNA-seq tumor sequenc-
ing data for analyses. Of the 68 samples, 28 samples over-
lapped with the Tang et al. study (23) which examined
the landscape of mRNA viral fusion events across the
TCGA dataset, and 65 samples overlapped with The Can-
cer Genome Atlas Research Network study (24) which ex-
amined the genomic and molecular characteristics of cervi-
cal cancer. Our study includes a comparison of ViFi to re-
sults on the Tang and The Cancer Genome Atlas Research

Network study study, as well as analyses on all 68 samples
(Supplementary Table S5).

Scoring integration detection accuracy

As the exact breakpoint cannot be determined unless a split-
end read overlaps the genomic integration location, we con-
sidered an integration is correctly detected if a method re-
ports a detected integration within 300 bp (typical insert size
of a paired-end read) of the true integration location. When
a method reports a possible range for a genomic integration,
we use the mean position as the estimated integration point
and examine whether or not this mean position is within
300 bp of the true integration location to determine whether
the range correctly includes the true integration. In order to
make the comparisons fair across all methods, if a method
reports multiple integrations within 300 bp of another, they
are collapsed into a single cluster covering the integration
point. This change mainly impacts Virus-Clip and reduces
the number false positive integrations.

Annotation of genomic and mRNA transcripts proximal to
integration sites

We annotated the genomic regions and transcripts that were
proximal to integration sites using annotations from RefSeq
genes (33) or RepeatMasker (34) annotations. For each in-
tegration, we took all positions within a 10 kb interval of
the integration that were covered by at least three or more
reads (WGS reads for genomic annotations, mRNA reads
for transcript annotations), and then clustered the positions
into segments. We merged any segments that were within 5
bp or any other segment into a single segment. We then re-
ported the total number of unique annotations that inter-
sected any of the segments within the interval. In addition,
we also generated a distribution of expected annotations by
selecting 1000 random intervals of the same genomic length
from the sample containing the integration and recorded
the total number of annotations that intersected the seg-
ments from the random intervals. We report the total an-
notations from the observed integrations compared to the
distribution of total annotations from randomly selected in-
tervals. To detect whether the total annotations from ob-
served integrations was statistically significant, we modeled
the distribution of annotations from the random intervals
as a normal distribution and used it to computed a Z-score
(one-tailed) for the total annotations from the observed in-
tegrations.

Quantifying transcription expression

In order to compare transcript expression across regions,
we followed transcription analysis protocol outlined in (35).
The RNA-seq datasets were aligned to the human refer-
ence using HISAT-2 (36). Next, StringTie (37) was used
to perform annotation-free assembly of the transcripts for
each sample. Afterward, all the gene and gene structures
found in the individual samples were merged together us-
ing StringTie to create a consistent set of transcripts across
all samples. Finally, the abundances of each transcript (re-
ported as Fragments Per Kilobase of transcript per Million
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mapped reads (FPKM)) in each sample were computed us-
ing the merged transcript set.

Unlike other RNA-seq differential expression analyses
where the number of conditions are typically more evenly
distributed (i.e. half control and half treatment), our sam-
ples are split into two uneven groups: one sample with the
integration at a particular loci, and all remaining samples
without the integration at the same loci. Thus, we used a dif-
ferent process for performing differential expression analy-
ses. In order to determine the impact of a specific integra-
tion on expression in integration region i, we compare the
total FPKM of integration region of the sample contain-
ing the integration (FPKMi) against the distribution of the
total FPKM of the same interval for all other samples not
containing the integration (FPKMo = {FPKMj|j = 1..N,
j �= i}), where N is the total number of samples. We com-
pute the fold change in expression for integration region i as

Foldi = (FPKMi +α)
mean(FPKMo)+α

where � is a pseudocount value

that we set to 0.01. We report the mean fold change as the
geometric mean of the fold change in expression.

To determine whether or not the transcriptional activity
of an integration region was significant within a sample, we
compared the transcriptional activity of the integration re-
gion to the activity of all other transcripts within the same
sample using the following protocol. For each sample, we
first filtered out any transcript with low expression (defined
as having an FPKM less than 0.01). Next, we computed the
FPKMUQ value as the FPKM value of the 75th percentile
of the filtered transcripts as a baseline of comparison (Sup-
plementary Table S7). In other words, a transcript with ex-
pression exceeding FPKMUQ would be among the top 25%
most expressed transcripts. We report both the number of
times the FPKM of the integration region is greater than
the FPKMUQ.

Correcting for copy number variation

In order to examine whether the increase in transcription
expression was primarily caused by increased genomic am-
plification typically observed near viral integration regions,
we attempted to correct for copy number variation as fol-
lows. For a particular integration region i for sample s, we
compute the expression per copy number as EFPKMs,i

=
FPKMs,i

CNs,i
, where CNs, i is the average copy number of the

region i for sample s. We define the average FPKM per
copy number of a region without an integration as meani =
mean(EFPKMo,i

|o = 1..N, o �= s). To compute the fold-
change from expected transcription for an integration re-

gion i, we compute Foldexpectedi
=

EFPKMs,i

meani
, which can

be summarized as the FPKM of the region of the sample
containing the integration divided by the average FPKM
per copy number of the same region for all other samples
not containing the integration multiplied by the copy num-
ber of the region of the sample containing the integration.
We obtain the copy numbers of the region directly from
the Masked Copy Number Segment files provided by the
TCGA database.

Statistical tests for differential expression

To compute a P-value for the statistical significance of an
integration resulting in increased expression, we performed
the following steps. For a particular integration region i
in a sample si, we took the distribution FPKMo (i.e., nor-
malized expression of the same region in of all other sam-
ples not containing that integration) and attempted to fit
the distribution to a Normal, Log-Normal, Exponential,
Gamma, and Weibull distribution (38) using the R pack-
age fitdistrplus (39). The model and parameters with the
best fit (measured as lowest AIC score) were selected. Let
M(p) be the model with the best fit and is parameterized
by p. Let FPKMi be the observed normalized expression
level in the integration region of the sample si. We then per-
formed single-tailed parametric tests for the p-value of the
FPKM from the region of the sample containing the inte-
gration to the best fit parameterized model, i.e. P-val=P(x
≥ FPKMi|M(p)). We corrected for multiple hypothesis test-
ing by adjusting the P-value for significance using false dis-
covery rate (40) (FDR) correction.

We performed a two-tailed paired Wilcoxon Signed-
Rank Test to detect whether integration results in a statis-
tically significant change in expression across all genomic
segments. For each integration region i, let FPKMi be the
normalized expression of the sample containing the inte-
gration region and mean(FPKMo) be the mean normalized
expression of the same integration region in all other sam-
ples not containing an integration within that region, then
the paired difference, �i, for integration region i is defined
as �i = FPKMi − mean(FPKMo). We then found the p-
value the two-tailed paired Wilcoxon Signed-Rank on the
paired differences, computed using R’s stats library (41).

Classification of integration regions into simple, complex, fu-
sionless

We define a simple integration as a single integration event
with no other integrations within its integration region and
shows concordant chimeric paired-end reads, allowing the
identification of regions upstream and downstream of the
viral gene. We define a complex integration as an integration
that contains two or more integrations within its integration
region and reveals multiple fusion mRNA sequences with
discordant chimeric paired reads. Finally, regions without
chimeric RNA are defined as ‘fusionless’. Supplementary
Figure S8 outlines the classification of the integration re-
gions into simple, complex, and fusionless integration re-
gions.

AmpliconArchitect

In addition to running ViFi on each TCGA-CESC sample,
we also ran AmpliconArchitect (AA; (42)), a directed as-
sembly method for reconstructing complex genomic struc-
tures from WGS data. Briefly, AA uses discordant read-pair
alignments and coverage information to connect genomic
regions with high amplification. It then further breaks these
regions into segments based upon coverage shift changes
in the genomic regions. AA then builds a breakpoint graph
by connecting segments using discordant read-pairs. From
the breakpoint graph, AA reports possible cycles and paths
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in the graph that can be used to identify potential circular
structures.

We leverage AA by using it to identify potential appar-
ent extrachromosomal DNA (ecDNA). For each sample,
we examine whether or not AA reported a cyclic human-
viral structure with at least 2× amplification. We then take
all discordant paired-end reads reported by ViFi or AA and
filter out reads that might have multiple non-unique BLAT
mapping to hg19 as follows. We define a BLAT score for a
read aligned to a location on hg19 as the number of non-
repeat base matches minus the number of mismatches and
insertions into the query and template sequences. Thus, if
the read aligns perfectly to a non-repeat location, its score
would the length of the read. Next, we examine if the read
has any other hits in which the BLAT score is within 90% of
its best score; if so, then the read is not considered uniquely
alignable and is discarded. Finally, we take the remaining
reads and map it to cyclic structure to show the discordant
and split reads that support the structure.

RESULTS

Comparison on simulated datasets

We simulated NGS datasets (Materials and Methods) with
genomic integration of viral genomes, exploring the impact
of viral strain diversity, coverage, and the number of inte-
grations on detection accuracy and computational running
time. The integrated viruses included three HPV16 strains
simulated with either low, medium, or high rates of substi-
tution mutation, and one papillomavirus (AgPV1) that was
not included the reference PV database to simulate integra-
tion of a novel virus. Datasets containing the low, medium,
or high mutation rates are referred to as ‘easy’, ‘medium’,
‘hard’, and datasets containing the AgPV1 virus are referred
to as ‘novel’.

To better understand how the methods scale in accuracy
and computational complexity with respect to coverage and
the number of integrations, we generated datasets in which
we fixed the coverage to be 25× and varied the number of
integrations from 10, 25, 50 and 100, as well as datasets in
which we fixed the number of integrations to be 10 and var-
ied the coverage from 5×, 10× and 25×. For each model
condition with a simulated integrated virus (parameterized
by the mutation rate of the integrated virus, the coverage,
and the number of integrations), we generated five replicate
WGS datasets for a total of 16 model conditions and 96
datasets (∼320GB of sequencing data).

We ran ViFi, VERSE, Virus-Clip and ViralFusionSeq
on the simulated HPV-SIM datasets (Figure 3A–C). All
methods were run on a dedicated compute node with 24
cores and given 48 wall clock hours (1152 total core hours)
to complete the analysis. Only ViFi and Virus-Clip were
able to complete on all datasets. VERSE terminated pre-
maturely on five of the medium model conditions and 18
of the hard model conditions, and failed to detect integra-
tions four easy conditions, eight hard conditions, and all six
novel datasets. ViralFusionSeq failed to complete any of the
analyses within the allotted time (see Supplementary Sec-
tion S1), and is excluded from the remainder of this study.

On the easy model conditions at 25× coverage, all meth-
ods have high recall in detecting the integrated virus (Fig-

ure 3A). Both ViFi and VERSE are unaffected by the num-
ber of integrations and maintain high recall and precision
(typically 90% or better) regardless of the number of in-
tegrated viruses. Virus-Clip, on the other hand, has lower
precision (20–40%) and showed an odd behavior in which
its precision decreased as the number of integrated viruses
decreased. A closer inspection revealed several regions of
chr1 result in false positive integration detection across in-
dependent runs of Virus-Clip. As the model conditions get
more difficult (i.e. the integrated virus gets more divergent
from those in the reference database), we begin to see more
separation between ViFi and VERSE. ViFi continues to
maintain high precision and recall, however VERSE’s recall
drops as the viruses gets more evolutionarily divergence. In-
terestingly, Virus-Clip maintains nearly the same precision
and recall under these difficult conditions. Performance dif-
ferences between the methods are much more clear on the
novel dataset with ViFi being the only method that can still
accurately detect the integrated virus, while VERSE and
Virus-Clip unable to detect any true positive integrations.
These results demonstrate that incorporation of phyloge-
netic methods with read-based methods greatly enhanced
the capability of ViFi to sensitively and precisely detect vi-
ral integrations that could not be detected by VERSE or
Virus-Clip.

When we fix the number of integrations to be 10 and vary
the coverage, we begin to see more performance differences
between the methods (Figure 3B). In particular, all meth-
ods have lower recall as the coverage drops, though Virus-
Clip is less impacted than ViFi or VERSE. We suspect this
is because Virus-Clip requires only one split read to call an
integration, where as both ViFi and VERSE require multi-
ple supporting reads to call an integration. This design de-
cision results in a tradeoff of lower recall on low coverage
data, but allows the maintenance of high precision across
all model conditions (ViFi mean precision of 99.8% and
VERSE mean precision of 98.9%).

A comparison of the running times reveal that Virus-Clip
is the most efficient method, and on average, was three times
faster than ViFi (Figure 3C). However, it should be noted
that we are using a version of Virus-Clip that we have op-
timized for this study (see Supplementary Section S6). ViFi
is the next fastest method, and VERSE required the most
running time. All methods had a linear increase in running
time as the coverage increased. However, when the cover-
age is fixed and the number of integrations is increased,
only VERSE was significantly impacted. As some cervical
cancer samples can have up to 100 to 600 HPV integration
events (43), it is vital for viral integration detection methods
to run efficiently on samples with many integrations.

In summary, these results show that as long as there is
sufficient coverage (10× or greater), ViFi had both high pre-
cision and recall (mean of 99.7% and 92.8% respectively) in
detecting integrated viruses, even if the virus is highly mu-
tated or a novel strain, and on low coverage data, ViFi main-
tains high precision. VERSE has high precision and recall
under easy conditions in which the integrated virus is ei-
ther in the reference database or similar enough to an exist-
ing virus in the reference database. However, VERSE’s re-
call drops considerably if the integrated virus is sufficiently
different from those in the reference database. In addition
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Figure 3. ViFi performance on simulated datasets. Comparison of ViFi, Virus-Finder, and VERSE on simulated datasets where (A) the coverage is fixed
to be 25x coverage and the number of integrations ranges from 10, 25, 50 and 100, and (B) the number of integrations is fixed to be 10 integrations and
the coverage ranges from 5×, 10× and 25×. Each simulation has four model conditions. The first three model conditions (easy, medium, and hard) vary
the percent similarity of simulated HPV16 genomes to the reference HPV16 genome, with five replicates per simulation. The last model condition uses
Alouatta guariba papillomavirus 1 (AgPV1), a PV genome not included in the set of viral genomes to simulate integration of a novel HPV virus. AgPV1 is
44% similar to HPV16. Random noise (drawn from a uniform distribution between -0.01 and 0.01) was added to each point due to points often directly
overlapping each other. VERSE is unable to detect integrations or terminates earlier on two easy cases, one medium case, 22 hard cases, and on all the
AgPV1 datasets, and we exclude these results from the figure. (C) The mean wall clock running time (in hours) as a function of the number of integrations
(top) and as a function of the coverage (bottom). All methods were run on a machine with 24 cores for a maximum of 48 wall clock hours (1152 total core
hours). Only runs that report integrations were included.

VERSE’s computational requirements grows considerably
as the number of integrations increase. Virus-Clip has high
recall on all but the most difficult datasets at the cost of hav-
ing lower precision. Due to Virus-Clip resulting in a large
number of positives, we exclude it from the remainder of
our analyses on the biological datasets.

Comparison on biological datasets with experimentally veri-
fied genomic integrations

Next, we compared the ViFi and VERSE on HCC-WGS
and HCC-RNAseq datasets with experimentally verified
HBV integrations. Of the 17 experimentally verified inte-
gration points in the HCC-WGS dataset, ViFi was able
to detect 13 of the integration points, and VERSE was
able to detect 12. In the HCC-RNAseq datasets, both ViFi
and VERSE recovered 10 out of 11 verified fusion mRNA
points (Supplementary Figure S1). Closer inspection of the
integration points and fusion events missed by ViFi revealed
that the number of reads supporting the integration was
very low (less than three) or the integrations occurred near

low complexity regions, making it difficult to recover the
correction integration location.

Comparison of fusion mRNA detection on TCGA-CESC
dataset

A 2013 study of RNA-seq datasets from the TCGA
database by Tang et al. (23) explored the landscape of
human-viral fusion gene expression. The authors observed
that fusion mRNA transcripts are often found in HPV-
related and HBV-related cancers. The authors verified the
fusion transcripts found in a small subset of the datasets (8
out of the 178 datasets) by showing that the fusion tran-
scripts were concordant with genomic integrations detected
using matched WGS data. We expand upon this study by
comparing the concordance of fusion mRNA transcripts
and genomic integration events on 28 TCGA cervical can-
cer samples (TCGA-CESC) with matched WGS and RNA-
seq data.

For each sample, we ran ViFi on the WGS data to
detect genomic viral integrations. For each viral integra-



3318 Nucleic Acids Research, 2018, Vol. 46, No. 7

tion reported by ViFi, we report whether ViFi, VERSE,
and the Tang et al. study also found one or more fusion
mRNA events within a 100 kb interval around that inte-
gration point. A Venn diagram showing the overlap of fu-
sion mRNA events found by the different methods show
that for any case in which VERSE or Tang et al. found a fu-
sion mRNA event, ViFi also detected the event (Figure 4A).
In addition, ViFi detected four fusion mRNA events that
were also supported by the WGS data that neither VERSE
or Tang et al. identified, of which two of the fusion events
were highly supported with uniquely mapped human reads
(see Supplementary Figure S11). Thus, not only did ViFi de-
tect more mRNA fusion transcripts than the Tang study or
VERSE, these transcripts are highly likely to represent true
fusion transcripts as the fusions are in concordance with ge-
nomic integration events.

A more recent study in 2017 by The Cancer Genome At-
las Research Network explored the genomic and molecu-
lar characteristics of cervical cancer on larger subset of the
TCGA database (24). The group identified 220 unique fu-
sion events using RNA-seq data from 228 cancer samples.
We took the fusion events from the TCGA Research Net-
work study that were on the same set of samples used in our
study and collapsed any fusion events that fell within the
same 100kb integration region into a single event, resulting
in 78 total unique clusters, and perform the same step on the
fusion events detected by ViFi, collapsing 212 fusion events
into 125 clusters. A comparison of the clusters revealed that
both methods had an overlap of 58 clusters, 67 were unique
to ViFi, and 20 were unique to the TCGA Research Net-
work study (Figure 4B). In order to explain this discrep-
ancy, we compared the genomic integrations detected using
ViFi from the matched WGS data with the fusion clusters
reported by both methods. First, the fusion events that were
detected by both ViFi and the TCGA Research Network
study were strongly supported from the genomic data, with
52 out of 58 fusion clusters being proximal to a genomic in-
tegration. More importantly, 21 of the 67 fusion clusters de-
tected uniquely by ViFi were proximal to a genomic integra-
tion, but no genomic integrations were detected proximal to
any of the 20 unique fusion clusters reported by TCGA Re-
search Network study.

Functional role of HPV integration in cervical cancer

Having demonstrated the ViFi can be applied to WGS and
RNA-seq data to accurately detect viral integrations, we
set out to gain deeper insight into how HPV integration
may potentially promote cervical cancer by altering genome
structure, gene transcription and possibly even activation of
normally silent regions. We used ViFi to analyze matched
WGS and RNA-seq data from 68 cervical cancer samples
that were included in the TCGA analysis.

We detected a total of 226 HPV genomic integrations
spread among 51 of the 68 cervical cancer samples (Sup-
plementary Table S3). We also detected 376 fusion (viral-
human) mRNA junctions, 87% of which were within
100kbp of a genomic integration (Figure 5A); 73% were
within 50 kb, and 54% within 10 kb. A little over half of
the genomic integrations 119 (52%) had at least one prox-
imal fusion mRNA sequence within 10kb of the integra-

tion, suggesting that some of these fusion transcripts may be
mediated by alternative splicing (44,45). These results con-
firm the robustness of automated ViFi analysis as well as
the strong concordance between the genomic and RNA-seq
data.

The majority of fusion mRNA junctions were within
10 kb of a genomic integration. Therefore, we defined an
‘integration region’ as the 10 kb region flanking a genomic
integration point in some sample; if a sample contains more
than one integration within a region (i.e. multiple integra-
tions within 10 kb of each other), the integration region is
defined as the interval that includes all integrations within
10kb and their 10kb flanking region. Using this definition,
we observed that the 226 integrations form 181 integration
regions. We used integration regions to compare genomic
features and transcription expression differences between
samples with and without integrations.

Characterization of genomic integration location

Deeper sequence analysis (see Materials and Methods for
details on annotation) revealed recurrent genomic integra-
tion sites in only 6 of the 51 cervical samples contain-
ing HPV genomic integrations; two in chr13:73,955,151–
74,005,092 (two samples) and four within 1MB of
chr8:128,747,810–128,889,296, which contains the MYC-
PVT1 locus. Both of these hotspots were previously iden-
tified in Hu et al. (43). Overall, although 67% of the in-
tegration regions contained an annotated gene, indicating
a modest but statistically significant enrichment for inte-
gration near coding genes (Z-test; P-value <10−7; Fig-
ure 5B), as has been previously reported (46), we detected
no statistically significant enrichment for integrations near
known oncogenes. Hu et al. reported an enrichment of
integrations within 25 bps of genomic instability-related
elements, including short tandem repeats (STR), short
interspersed nuclear element (SINE/Alu), long terminal
repeat/endogenous retroviruses (LTR/ERV1), and satellite
DNA (43). Interestingly, when we examined whether there
was an overall enrichment of genomic instability-related
classes (SINE, LINE and LTR) within the integration re-
gions, we found significant enrichment only for SINE ele-
ments (Z-test; P-value <10−8; Figure 5B) in the integration
region. As the vast majority of integrations were not recur-
rent nor enriched for a specific annotation, the location of
HPV genomic integration is unlikely to play a significant
role in cervical cancer pathogenicity.

Impact of HPV integration on transcription

To gain further insight into potential mechanisms by which
genomic integration of HPV may promote tumorigenesis,
we examined the impact of HPV integration on transcrip-
tion. For each integration region in a sample, the normal-
ized transcriptional activity was compared to the mean nor-
malized transcriptional activity of same region in all other
samples lacking HPV genomic integration (Materials and
Methods; Supplementary Table S4). A highly significant in-
crease in transcription (4.09 × average increase; Wilcoxon
signed rank test; P-value <10−10) was detected across all
genomic segments containing HPV integrations (Supple-
mentary Figure S2). In fact, we detected transcription of
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Figure 4. Comparison of ViFi on fusion event detection. (A) Venn diagram of the overlap of the WGS integration points with a matching mRNA event
within 100 kb reported by ViFi, VERSE, and the Tang et al. (2013) study on the TCGA-CESC samples with both RNA-seq and WGS sequencing matched
pair data. (B) Comparison of the fusion events detected by ViFi and The Cancer Genome Atlas Research Network 2017 study. Fusion are considered to
have WGS support if ViFi detected a genomic integration within a 100 kb region of the fusion event.
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Figure 5. Characterization of genomic integration sites and fusion mRNA. (A) Density plot of the distance of fusion mRNA junction to the nearest WGS
integration breakpoint. (B) Number of annotated types covered by WGS or RNA-seq reads across all integration regions. The points give the number of
specific functional annotations (e.g. LINE) across all 181 integration regions in the TCGA-CESC data set that are partially covered by at least three reads.
Blue represents results from WGS data, and red represents results from RNA-seq data. The violin plot show the distribution of the total number of specific
annotations across 1000 replicates that are partially covered by at least three reads, where each replicate is a collection of 181 randomly chosen intervals.
The P-values of the observed annotation counts (Z-test) are all statistically significant for the RNA-seq data(P-value <10−20), but for the WGS data only
the SINE elements (P-value <10−8) and genes (P-value <10−7) were enriched in a statistically significant manner.

genomic regions that are normally silent. 39% of the inte-
grations had no gene within its integration region, but tran-
scripts from 49% of those regions were still detected. To un-
derstand the function of the transcripts, we marked all tran-
scribed integration regions (Materials and Methods) and
compared against RefSeq genes (33) or RepeatMasker (34)
annotations. For each integration and a class of annota-
tions (e.g. LINE), we counted the number of unique an-
notated elements that were transcribed, and compared that
with the number of unique annotated elements of the same
class in randomly selected segments (Figure 5B). We found

a twelve fold increase in the number of transcribed LINEs,
SINEs, LTRs in close proximity to an integration site (Z-
test; P-value <10−20), and a 2-fold increase in the number
of transcribed genes proximal to an integration. Moreover,
we found a five to six-fold increase in expression of LINE
and LTR elements in regions proximal to integration sites
(Wilcoxon signed rank test; P-value <10−7, Supplementary
Figure S2)

Thus, even though there was no significant enrichment
in the number of LINE and LTR elements at the genomic
level, there was a statistically significant enrichment of the
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transcription of LINE and LTR elements in the integration
regions. These results suggests that random HPV integra-
tion into the genome result in transcription of normally
silent regions of the genome, potentially promoting ge-
nomic instability and pathway disruption by de-repressing
LINE and LTR elements (47–53).

We also noted that the increased transcriptional activity
of these normally silent regions correlated with the presence
of viral/human fusion transcripts (Figure 6A and Supple-
mentary Figure S3). Considering only the genomic regions
where fusion mRNA was found, we observed a 22.25× av-
erage increase in transcription when compared against sam-
ples without genomic integration (Wilcoxon signed rank
test; P-value <10−13); whereas no significant change in tran-
scriptional activity was detected when an integration region
did not contain a fusion mRNA (0.82×; Wilcoxon signed
rank test; P-value <0.17), and a 4.09 × average increase
over all regions. Figure 6B provides the P-values per inte-
gration region (Also see Supplementary Figure S4 and Ma-
terials and Methods). Even when we correct for the copy
number amplification typically found flanking the genomic
integration regions (Materials and Methods), we still ob-
serve that there is increased transcriptional activity in re-
gions with integrations compared to regions without inte-
grations (Supplementary Figure S5).

We observed that this increased transcriptional activity
was not trivial. In genomic regions where fusion mRNA
transcripts were found, 83% of those regions had transcrip-
tional activity higher than 75% of the transcripts within
that the same sample, and, on average, had 10.4-fold more
transcriptional activity than the transcriptional activity of
the median upper quantile transcript (Supplementary Fig-
ure S6). Thus, viral integration may cause dysregulation not
only by expression of silenced or non-coding regions of the
genome, but also by the large volume of transcripts being
produced.

Regulation of transcription

To better understand why genomic integration and fusion
transcripts are correlated with increased transcription, we
characterized the orientation of the fusion transcripts. As
the RNA-sequencing library preparation was not strand
specific, we could not determine the active strand directly.
However, because HPV genes are known to be transcrip-
tionally active in cervical cancer cells (45), we can assume
that the majority of viral transcripts were transcribed in the
same direction as the viral gene. 82% of fusion mRNA se-
quences showed the human fragment to be downstream of
the viral genes. (Supplementary Figure S7). Of the remain-
ing 18% of the sequences where the human portion was up-
stream of the viral gene, 87% were within 10kb of an an-
notated gene. These observations suggest that transcription
of fusion mRNA sequences are largely driven by the up-
stream regulatory elements within the viral genome. In the
rare cases in which the viral gene is downstream of the hu-
man portion of the fusion transcript, human regulatory el-
ements may drive expression.

To better characterize how HPV integration might dys-
regulate transcription of neighboring DNA sequences, we
performed a more detailed analysis of the transcriptional

activity near the site of HPV integration. We categorized
each HPV integration as a simple, complex, or fusion-
less based on the number of integrations and concordant
chimeric RNA reads within its integration region. Briefly,
‘simple’ integrations correspond to regions with a single
genomic integration and concordant chimeric RNA reads,
allowing the identification of regions upstream and down-
stream of the viral gene. Regions containing genomic inte-
gration but no chimeric RNA were defined as ‘fusionless’.
All other regions with genomic integrations were classified
as ‘complex’. (Figure 7; see Materials and Methods, Sup-
plementary Figure S8 for details on classification). Using
this characterization, we observed 68 simple, 51 complex,
and 107 fusionless integrations in our dataset, enabling us
to further examine the impact of viral integration-mediated
fusions on transcription.

Simple or complex integrations demonstrated a 5- to 17-
fold increase in transcription proximal to the site of integra-
tion(Wilcoxon signed rank test; P-value <10−12) local to the
integration point (Figure 7A), and the increased transcrip-
tion was evident up to 100 kb around the integration point
(Supplementary Figure S9). In cases with simple HPV inte-
grations, we detected a sharp increase in expression down-
stream of the integrated viral sequence. Finally, fusionless
integrations (genomic integration but no fusion transcript)
showed a slight decrease in expression.

These results show that the transcriptional activity of the
integration region is significantly increased compared to the
same region across samples, however, it does not address
whether the transcriptional activity is significant within a
sample. To answer this question, we compared the tran-
scriptional activity of each position in the integration re-
gion with its own FPKMUQ and reported the percentage of
integration regions that had transcriptional activity greater
than its FPKMUQ (Figure 7B). 60–80% of simple or com-
plex integrations had higher proximal transcriptional activ-
ity than 75% of all other transcripts within the same sam-
ple proximal to the integration region. This activity was
still notable up to a 100 kb region around the integration
point (Supplementary Figure S10). Taken together, our re-
sults suggest that random HPV integration causes dysregu-
lated expression of all proximal elements possibly driven by
the viral regulatory elements.

Role of apparent hybrid circular extrachromosomal DNA
(ecDNA)

We sought to identify a mechanistic structural basis for
these findings by further integrating the RNA and WGS
data, and closely inspecting several HPV integration sites.
For each sample, we ran AmpliconArchitect (AA; (42)),
a tool for reconstructing complex genomic structures from
WGS data (Materials and Methods). AA revealed 34
out of the 68 samples contained genomic segments from
both the human and viral genomes that could be ar-
ranged into a hybrid human-viral cyclic structure, of which,
14 of these structures had a copy count greater than
four (Supplementary Figure S13–S26). For example, the
sample TCGA-C5-A0TN had 235 chimeric paired-end
reads between chr2:195,586,245 and HPV16:2,593, 149 dis-
cordant paired-end reads between chr2:195,603,512 and



Nucleic Acids Research, 2018, Vol. 46, No. 7 3321

A B

Figure 6. Impact of viral integration on proximal transcription. For each integration, we compare the expression change in the 10kb genomic interval
around an integration in a sample to the mean expression change for the same 10 kb genomic interval for all other samples without the integration. (A) The
distribution of log2-fold change in expression of human mRNA between segments with and without integrations, separated by whether the integration
produces fusion mRNA or is a fusionless integration. The dashed line represents the geometric mean value of the distribution. (B) The –log(P-value)
for expression change for integrations that produce fusion mRNA and fusionless integrations (see Materials and Methods for description of P-value
computation). Each point on the x-axis corresponds to a distinct genomic fusion segment sorted by increasing p-value. The red dashed line denotes the
threshold beyond which the samples do not show a significant change in expression (P-value >0.05 after FDR correction).

A

B

Figure 7. Expression of human segments upstream and downstream of the integrated viral gene. (A) Expression fold-change within an integration region
and (B) percent of samples in which the position in the integration region has a higher FPKM than its FPKMUQ. The blue line represents an integrated
virus, with arrow representing the direction of transcription of the viral genome, and the red line represents the human genome. An integration is denoted
as ‘fusionless’ when it does not contain a mapped chimeric (viral-human mRNA); otherwise, it is denoted as ‘simple’ when it is the only integration within
a 10 kb window, and at least 75% of the chimeric paired-end reads supporting a fusion mRNA event are oriented in the same direction relative to the viral
gene. All other regions are denoted ‘complex’. The position is reported relative to the integration point in the human genome, with negative position being
upstream of the viral gene, and positive position being downstream of the viral gene. In total, there are 68 simple integrations, 51 complex integrations,
and 107 integration events with no fusion mRNA sequences. We observe a high increase downstream of simple integrations, in the entire region of complex
integrations, and no increase in expression in fusionless integrations.
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Figure 8. Proposed apparent ecDNA structure for TCGA-C5-A0TN.
Proposed apparent ecDNA structure for an integration from TCGA-
C5-A0TN. The joined segments are chr2:195,586,245-195,603,512,
chr3:126,826,267-126,849,186, and HPV16:0-7,905. There are 235
chimeric paired-end between chr2 and HPV16, 149 discordant paired-end
reads between chr2 and chr3, and 229 chimeric paired-end reads between
chr3 and HPV16. The genomic coverage fold amplification of the region
relative to the average genomic coverage of the entire genome is shown
in blue, and the mRNA coverage of the region is shown red. The FPKM
fold change for the human mRNA in this region for this sample is 7200x.
LINE and LTR elements are highlighted in teal and gold. The viral genes
are highlighted in light green. The viral genome is is not complete and
has a deletion of the E2 region. The assembled fusion transcript from this
region is shown in the figure.

chr3:126,826,267, and 229 chimeric paired-end reads be-
tween chr3:126,849,186 and HPV:6,071 (Figure 8). Anal-
yses of the reads the span these segments strongly sup-
port the fusion of these segments, with the human por-
tion and viral portion of the split reads mapping back per-
fectly to their respective reference genome (Supplementary
Figure S12). The AA reconstruction for this sample re-
vealed a path containing gene-poor segments of chromo-
some 2 (chr2:195,586,245-195,603,512) and chromosome 3
(chr3:126,826,267-126,849,186) in a circular configuration
with the partial HPV genome. Although it is initially sur-
prising that these structures are composed of genomic ma-
terial from multiple chromosomes, the identical elevated
DNA copy number of each of the fragments, suggested that
they were indeed a single structural unit. Even more com-
pellingly, the viral/human fusion transcripts and the nearly
uniformly elevated transcription of the normally silent ge-
nomic regions, is consistent with a circular structure that
is highly reminiscent of circular extrachromosomal DNA
(ecDNA), which has recently been shown to play a critical
role in accelerated evolution in cancer (42). While we cannot
rule out that this structure may be a result of tandem dupli-
cation, it would require a translocational insertion of one
chromosomal segment into another chromosomal segment
near the integration region, followed by tandem duplication
events.

DISCUSSION

Human cancer-associated viruses most commonly integrate
into the genome in seemingly random locations. Shared re-
peat regions between human and viral genomes arising from
remnants of viral elements in the human genome, compro-
mise the ability of current sequence-mapping approaches to
accurately resolve viral integration sites in human cancers,
limiting our ability to derive biological insights from the
vast repertoire of cancer NGS data. Here we show that ViFi,
a new method that integrates phylogenetic eHMMs to bet-
ter detect evolutionarily divergent viruses with sequenced-
based mappability scores, facilitates rapid, accurate, effi-
cient and specific detection of viral integration sites, provid-
ing a powerful new way to obtain biological insights from
the vast assembly of human cancer genome data.

The current version of ViFi includes eHMMs on the
HPV and HBV viral families. However, additional viral
families can be incorporated by downloading reference
genomes from the viral family of interest and using the ViFi
provided scripts to automatically build the eHMMs from
those reference genomes. One potential weakness of this ap-
proach, however, is that the alignment method used inter-
nally within ViFi may have difficulty in aligning genomes
with large amounts of genome rearrangement. To miti-
gate this problem, future versions of ViFi will also include
eHMMs built from gene families, and thus would be unaf-
fected by genome rearrangement.

In addition to providing a new computational resource
tool to the community, our analyses have yielded a number
of potentially important new biological insights about hu-
man cervical cancer that warrant further study. First, based
on ViFi analyses of TCGA DNA and RNA NGS data from
68 matched human cervical cancer samples, we show that
HPV integration plays a powerful role on local transcrip-
tional activity, especially when fusion human-viral mRNA
sequences are present. This includes a strong increase in
transcription near the integration site, often times greater
transcriptional activity than >75% of the other transcripts
within the same sample, as well as transcription of elements
that might normally not be expressed. Our results are con-
sistent with the theory that integration results in the recruit-
ment of transcription factors by HPV’s upstream regulatory
region (URR) and subsequent transcription read-through
to produce both viral-human mRNA transcripts as well as
an uptick of expression downstream from the viral integra-
tion point.

This finding adds a new and unanticipated compo-
nent to the dysregulated transcription that can be caused
by viral integration, including by production of viral-
human fusion transcripts. Viral-human fusion transcripts
can alter functional pathways, as in the case of the viral-
human fusion transcript HBx-LINE1 (22,54), which acts
as a sponge for miRNA-122 and promotes hepatic cell
epithelial-mesenchymal transition (EMT)-like changes and
increases susceptibility to induced tumor formation (54).
Recent studies for HPV-related cancers have noted differ-
ential expression profiles of miRNAs for HPV-positive and
HPV-negative samples (55,56). One possibility is that fusion
transcripts produced by integrated HPV might also act as a
sponge for miRNA. Another possibility is that fusion tran-



Nucleic Acids Research, 2018, Vol. 46, No. 7 3323

scripts might better disrupt host cellular pathways. Jeon and
Lambert found that viral mRNA from integrated HPV are
more stable due to the resulting disruption of the mRNA in-
stability element in the viral genome after integration (57).
Thus, fusion mRNA might also be more stable, especially
in light of the observation that the human portion is typi-
cally downstream of the viral portion in fusion mRNA se-
quences.

Lastly, our analyses showing uniformly amplified regions
of multiple chromosomes and HPV, with mapping reads
suggesting that circular structure, coupled with the tran-
scriptional patterns also suggesting circular structure, sug-
gest a novel mechanism of small ecDNA formation that
could contribute to viral carcinogenesis. Oncogene ampli-
fication on ecDNA has recently been shown to play a ma-
jor role in accelerated evolution in cancer (42). The find-
ings reported here raise the possibility that a different kind
of apparent circular ecDNA, which is much smaller in size
and lacks known human oncogenes, could provide a com-
plementary mechanism of pathogenesis in some viral asso-
ciated cancers through indiscriminate transcription of prox-
imal genome elements on the circular structure.

Our findings show that an integrated approach using
ViFi can reveal important new insights into the biologi-
cal mechanisms that contribute to carcinogenesis through
seemingly random viral integration into the genome. Anal-
ysis of genomic and transcriptomic profiles from cervical
cancer samples suggests that recurrent integrations, onco-
gene expression, and/or viral gene expression may not be
necessary for increased pathogenesis. Instead amplification
and over-expression of proximal elements driven by viral
gene chimerism and the possible role of viral integration in
the production of a unique type of ecDNA formation may
provide a novel and clearer explanation of the role of vi-
ral insertions in cancer pathogenesis. Future studies will be
needed to confirm the presence of these apparent circular
ecDNA structures and assess their presence in cervical can-
cer, assess their functional consequences, and examine their
occurrence in other viral associated tumors.
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