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Simple Summary: In this report, we identified biomarkers for tumor progression from tissue samples
of intermediate/high-risk ccRCC. Using the molecular findings and the clinical data, we developed
an improved prognostic model which could help to provide better individualized management
recommendations.

Abstract: The probability of tumor progression in intermediate/high-risk clear cell renal cell carci-
noma (ccRCC) is highly variable, underlining the lack of predictive accuracy of the current clinico-
pathological factors. To develop an accurate prognostic classifier for these patients, we analyzed
global gene expression patterns in 13 tissue samples from progressive and non-progressive ccRCC
using Illumina Hi-seq 4000. Expression levels of 22 selected differentially expressed genes (DEG)
were assessed by nCounter analysis in an independent series of 71 ccRCCs. A clinicopathological-
molecular model for predicting tumor progression was developed and in silico validated in a total of
202 ccRCC patients using the TCGA cohort. A total of 1202 DEGs were found between progressive
and non-progressive intermediate/high-risk ccRCC in RNAseq analysis, and seven of the 22 DEGs
selected were validated by nCounter. Expression of HS6ST2, pT stage, tumor size, and ISUP grade
were found to be independent prognostic factors for tumor progression. A risk score generated
using these variables was able to distinguish patients at higher risk of tumor progression (HR 7.27;
p < 0.001), consistent with the results obtained from the TCGA cohort (HR 2.74; p < 0.002). In sum-
mary, a combined prognostic algorithm was successfully developed and validated. This model may
aid physicians to select high-risk patients for adjuvant therapy.

Keywords: gene expression; clear cell renal cell carcinoma; disease progression; prognostic factors;
biomarkers; RNA sequencing

1. Introduction

Clear cell renal cell carcinoma (ccRCC) is the most frequent renal tumor, accounting
for 80–90% of cases, and has the greatest malignant potential of all renal cell carcinoma
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subtypes. The mainstay treatment for non-metastatic ccRCC is partial/radical nephrectomy.
Despite surgical treatment, approximately between 25 to 50% of these patients will develop
local relapse or distant metastases during follow-up [1–3].

Several prognostic algorithms have been designed to quantify the likelihood of de-
veloping disease progression [4,5]. Pathological stage, tumor size, and the Fuhrman/
International Society of Urological Pathology (ISUP) grading system appear to be the most
significant prognostic factors [6,7]. Although current risk models including these variables
have managed to classify patients into low-, intermediate-, and high-risk of progression,
these are insufficient to accurately predict tumor aggressiveness and prognosis at the
individual patient-level as tumor biology might not be entirely considered.

Gene expression profiles have been demonstrated to provide valuable prognostic
information in several cancer types [8,9], including ccRCC [10,11]. However, as far as we
know, none of the proposed classifiers for ccRCC are currently used in clinical practice, nor
validated in intermediate/high-risk patients. These patients exhibit a metastatic potential
of over 30% [4] and a high mortality rate of between 20–50% at 5 years [12], and yet no
adjuvant strategies are recommended by the European Guidelines [13]. Several clinical
trials for adjuvant systemic treatment have already been published. However, most of
the disappointing results are due to the poor patient selection criteria based only on
clinicopathological characteristics. Optimizing the criteria of patient selection has been
revealed as fundamental for obtaining positive outcomes. Hence, it is crucial to identify
those patients at highest risk of progression in this specific subset of patients, since they
may benefit from a better medical management.

Here, we examined gene expression profiles in intermediate/high-risk ccRCC to
identify prognostic biomarkers and develop a combined prognostic algorithm, including
clinicopathological features and molecular biomarkers, to better predict the potential risk
of recurrence after surgery.

2. Results
2.1. Clinical Features of the Cohort

The clinicopathological characteristics of the intermediate/high-risk ccRCC patients
and their follow-up information, split by study phases, are listed in Table 1.

Table 1. Demographic and pathological characteristics of enrolled patients.

Clinicopathological
Characteristics

Discovery Phase Hospital
Clinic Barcelona (n = 13)

Validation Phase Institute
Valenciano of Oncology (n = 64)

Gender
Male 9 (69.2) 49 (76.6)

Female 4 (30.8) 15 (23.4)
Age at diagnosis

(yr) 54.85 (36–81) 58.6 (35–87)

Pathological
tumor size (cm) 8.2 (2.5–14) 8 (3.1–24)

ISUP
ISUP 1 - 4 (6.3)
ISUP 2 2 (15.4) 20 (31.3)
ISUP 3 6 (46.2) 31 (48.4)
ISUP 4 5 (38.4) 9 (14)

Tumor stage
pT1 5 (38.4) 9 (14)
pT2 5 (38.4) 16 (25)
pT3 2 (15.4) 36 (56.3)
pT4 1 (7.8) 3 (4.7)

N stage
N0/x 11 (84.6) 58 (90.6)

N1 2 (15.4) 6 (9.4)
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Table 1. Cont.

Clinicopathological
Characteristics

Discovery Phase Hospital
Clinic Barcelona (n = 13)

Validation Phase Institute
Valenciano of Oncology (n = 64)

Perirenal fat invasion 3 (23.1) 40 (62.5)
Vascular invasion 2 (15.4) 10 (15.6)

Necrosis 1 (7.8) 24 (37.5)
SSIGN score

Intermediate risk 7 (53.8) 39 (60.9)
High risk 6 (46.2) 25 (39.1)

( ) Range or %.

Median follow-up of the cohort was 110.76 mo (range 1.1–255.6). During follow-up,
31 (48.43%) patients developed tumor progression. All of them had distant metastasis.
Median time to relapse was 12.72 months (range 1–84.84). Twenty-one (67%) of the pro-
gressive patients received adjuvant treatment, and 19 (90.5%) remained with stable disease.
Thirteen patients (20.3%) died from ccRCC. None of the non-progressive patients received
adjuvant treatment. Thirteen patients (20.3%) died from ccRCC.

2.2. Biomarker Discovery Phase

Overall, 1202 genes were identified as differentially expressed between progressive
and non-progressive intermediate/high-risk ccRCC patients. Of these, 591 were down-
regulated and 611 upregulated in progressive compared with non-progressive cases. A
heat map based on the most DEGs between the two groups of ccRCC patients is shown in
Figure 1A.

Gene set enrichment analysis (GSEA) based on Hallmark, KEGG, and Reactome
databases identified that DEGs were positively enriched in pathways, such as the epithelial-
mesenchymal transition (EMT), ECM proteoglycans, non-integrin membrane ECM inter-
actions, extracellular matrix organization, MYC targets V1, and PID syndecan 1 pathway,
among others (Figure 1B). A complete list of enriched pathways and their target genes is
available in Supplementary Materials (Table S1).

2.3. Biomarker Validation Phase

Twenty-two DEGs selected from the previous phase were analyzed by nCounter in
an independent cohort of 64 intermediate/high-risk ccRCC samples. Seven (31.8%) genes
remained significantly differentially expressed: DUOX1, HS6ST2, KRT20, RCOR2, SFN,
SSC4D, and WNT9A. All were upregulated in progressive patients. According to IPA,
these seven validated DEGs were enriched in organismal injury and abnormalities, renal
and urological disease network, and in malignant genitourinary solid tumor diseases,
among others. Significant IPA canonical pathways are depicted in Figure S1. The generated
network by GeneMANIA shows that there are no direct interactions between the seven
significant DEG, although some of them show co-expression (Figure S2).

2.4. Survival Analyses

Univariate and multivariate Cox regression analysis of the seven validated DEGs and
the six clinicopathological variables showed that HS6ST2, pathological stage, tumor size,
and ISUP grade were independent prognostic factors of tumor progression (Table 2).



Cancers 2021, 13, 6338 4 of 13

R
2

9
8

R
3

0
0

R
3

0
1

R
3

0
3

R
3

0
4

R
3

0
6

R
3

0
7

R
3

1
9

R
3

2
1

R
3

2
4

R
3

2
5

R
3

2
6

R
3

2
7

GCGR(ENSG00000215644) [ FC= 22.47p=0 ] 
RP11−803B1.2(ENSG00000244699) [ FC= 11.94p=0 ] 
NUDT11(ENSG00000196368) [ FC= 7.49p=0.001 ] 
SAMD11(ENSG00000187634) [ FC= 4.09p=0.001 ] 
RN7SL128P(ENSG00000240869) [ FC= 3.2p=0 ] 
MEX3D(ENSG00000181588) [ FC= 2.96p=0 ] 
RP1−102E24.8(ENSG00000256433) [ FC= 2.74p=0.001 ] 
GADD45GIP1(ENSG00000179271) [ FC= 2.11p=0 ] 
KLHL21(ENSG00000162413) [ FC= 2.07p=0 ] 
VPS18(ENSG00000104142) [ FC= 2.03p=0 ] 
MLF2(ENSG00000089693) [ FC= 1.95p=0 ] 
CD63(ENSG00000135404) [ FC= 1.89p=0 ] 
EIF1AD(ENSG00000175376) [ FC= 1.88p=0 ] 
ERP29(ENSG00000089248) [ FC= 1.87p=0 ] 
GATAD2A(ENSG00000167491) [ FC= 1.82p=0 ] 
PPM1G(ENSG00000115241) [ FC= 1.79p=0 ] 
NUCB1(ENSG00000104805) [ FC= 1.77p=0 ] 
FLOT2(ENSG00000132589) [ FC= 1.74p=0 ] 
WDR18(ENSG00000065268) [ FC= 1.72p=0 ] 
RUVBL2(ENSG00000183207) [ FC= 1.67p=0 ] 
EIF3A(ENSG00000107581) [ FC= 1.61p=0.001 ] 
SNX17(ENSG00000115234) [ FC= 1.59p=0 ] 
VDAC3(ENSG00000078668) [ FC= 1.57p=0 ] 
KHSRP(ENSG00000088247) [ FC= 1.53p=0.001 ] 
LTN1(ENSG00000198862) [ FC= −1.28p=0 ] 
ZNF619(ENSG00000177873) [ FC= −1.39p=0 ] 
PIK3R4(ENSG00000196455) [ FC= −1.51p=0 ] 
PAN3(ENSG00000152520) [ FC= −1.55p=0 ] 
KIAA2026(ENSG00000183354) [ FC= −1.59p=0.001 ] 
NPAT(ENSG00000149308) [ FC= −1.6p=0.001 ] 
ZW10(ENSG00000086827) [ FC= −1.63p=0 ] 
GPCPD1(ENSG00000125772) [ FC= −1.63p=0 ] 
TDRD7(ENSG00000196116) [ FC= −1.64p=0 ] 
ZGRF1(ENSG00000138658) [ FC= −1.65p=0.001 ] 
DCAF16(ENSG00000163257) [ FC= −1.66p=0 ] 
CRBN(ENSG00000113851) [ FC= −1.67p=0 ] 
ANKRD12(ENSG00000101745) [ FC= −1.69p=0 ] 
KIAA0586(ENSG00000100578) [ FC= −1.8p=0 ] 
RPGR(ENSG00000156313) [ FC= −1.92p=0 ] 
TRAF6(ENSG00000175104) [ FC= −1.95p=0 ] 
GIMAP7(ENSG00000179144) [ FC= −1.96p=0 ] 
ZBTB25(ENSG00000089775) [ FC= −2.08p=0 ] 
SPATA7(ENSG00000042317) [ FC= −2.33p=0 ] 
KMT2E−AS1(ENSG00000239569) [ FC= −2.98p=0 ] 
ADGRL4(ENSG00000162618) [ FC= −2.99p=0 ] 
OR4A5(ENSG00000221840) [ FC= −5.17p=0.001 ] 
BEST2(ENSG00000039987) [ FC= −5.93p=0.001 ] 
TAS2R7(ENSG00000121377) [ FC= −10.77p=0 ] 
PROX2(ENSG00000119608) [ FC= −12.28p=0.001 ] 
KRT14(ENSG00000186847) [ FC= −21.36p=0 ] 

group group
1
2

−2

−1

0

1

2ProgressiveNon-progressive

(A) (B)

Figure 1. Differentially expressed genes in the discovery phase. (A) Heat map displaying the 50 most DEGs between
progressive and non-progressive intermediate/high-risk ccRCC patients. Red pixels correspond to up-regulated genes,
whereas green pixels indicate down-regulated genes. (B) GSEA shows positive correlation of DEGs in pathways involved in
tumor progression. Abbreviations: DEGs, Differentially expressed genes. GSEA, Gene set enrichment analysis.

Table 2. Univariate and multivariate Cox regression analysis of statistically significant genetic and clinical variables in the
validation set.

Genes
Univariate Multivariate

p 95% CI HR p 95% CI HR

DUOX1 <0.001 1.404–2.751 1.965
HS6ST2 0.001 2.084–14.157 5.432 <0.001 2.710–14.880 6.35
KRT20 <0.001 1.419–2.926 2.037
RCOR2 <0.001 2.417–16.627 6.340

SFN <0.001 1.806–5.647 3.194
SSC4D 0.001 1.982–14.831 5.422

WNT9A 0.002 1.600–7.475 3.459
pT Stage <0.001 1.610–5.362 2.939 0.016 1.150–4.090 2.17

Tumor size <0.001 1.068–1.246 1.154 0.018 1.020–1.230 1.12
ISUP 0.045 1.010–2.533 1.599 0.021 1.100–3.370 1.93

Using IPA we found that HS6ST2 interacts with several molecules involved in different
cancer pathways, as illustrated in Figure 2. Moreover, HS6ST2 was found to be associated
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with formation, activation, sprouting, and tubulation of vascular endothelial cells. Tumor
development and angiogenesis are part of the five top organismal processes related to
HS6ST2.
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2.5. Classifier Development Phase

The RS for disease progression was calculated for each patient according to a mathe-
matical algorithm containing HS6ST2 expression values, pathological stage, ISUP grade,
and tumor size. A ROC analysis of this combined gene expression-clinicopathological
model was performed, and the optimal Youden’s index cut-off value (0.648) was used
to classify patients into high- and low-risk groups for tumor progression (Area Under
the Curve [AUC] 0.838). Kaplan Meier curve of the combined classifier generated using
the selected threshold was able to discriminate two groups with a significantly different
probability of tumor progression (hazard ratio (HR) 7.27; p < 0.0001) (Figure 3A). Re-
markably, the predictive combined model outperformed disease progression prediction of
clinicopathological variables, as well as of HS6ST2 gene expression (Figure S3).

2.6. Classifier In Silico Validation

We evaluated the predictive capability for disease progression of our combined model
in 202 intermediate/high-risk ccRCC samples obtained from the TCGA cohort. A RS for
disease progression was computed for each patient. A ROC analysis was performed, and
the Youden’s index value (1.106) was used as a cut-off. The AUC value of the model was
0.678, showing greater discriminatory ability than clinicopathological variables and gene
expression alone (AUC pT = 0.620; AUC tumor size = 0.669; AUC ISUP grade = 0.556;
AUC HS6ST2 = 0.642). The Kaplan Meier curve revealed that patients with a high-risk
score have shorter disease-free survival (HR 2.74; p < 0.0002) (Figure 3B). Moreover, we
carried out a Kaplan Meier sub-analysis using the RS of our combined model to evaluate its
performance in the intermediate and high-risk ccRCC samples separately. The combined
classifier was found to be statistically significant in the subset of high-risk ccRCC TCGA
cohort (HR 2.40; p = 0.015). (Figure S4).
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3. Discussion

Current risk stratification models for non-metastatic ccRCC are based mainly on clini-
copathological factors. According to the SSIGN score [5], intermediate and high-risk ccRCC
have a disease progression rate of 30 and 70% at 5 years, respectively, and two-thirds of
these patients relapse during the first year of follow-up [3]. Several randomized clinical tri-
als (RCT) [14,15] have investigated the benefits of tyrosine kinase inhibitor-based adjuvant
therapy in these groups of patients to improve disease progression-free survival (DFS).
However, results from these RCT are controversial, as only one of them [14] was positive for
its primary endpoint (DFS). The most accepted explanation is that intermediate/high-risk
ccRCC involves a heterogeneous group of tumors that do not share neither clinicopatho-
logical nor molecular characteristics [16]. Recently, interim data from the first phase-III
adjuvant immunotherapy trial [17] has shown an improvement in DFS using an anti-PD-1
agent; however, to date, several adjuvant immunotherapy trials are ongoing, and the
dissimilar patient selection criteria will most probably translate into important survival
differences [18]. This emphasizes the critical need for more reliable and individualized
prognostic markers to select ccRCC patients at the highest risk of recurrence to receive
adjuvant treatment or to avoid overtreatment and toxic side effects in those with low
progression risk.

The identification of molecular markers and the development of multigene clas-
sifiers have already been shown to considerably increase the predictive power of the
clinical parameters. In this study, we determined a set of DEGs related to progression in
intermediate/high-risk ccRCC using RNAseq. GSEA corroborates that the DEGs identified
participate mainly in canonical pathways related to carcinogenetic, cell-cycle, and metabolic
processes. To the best of our knowledge, our study is the first to report differential gene ex-
pression patterns between progressive and non-progressive intermediate/high-risk ccRCC.
Validation of a subset of DEGs in an independent series allowed us to select potential
prognostic biomarkers.

Our study indicates that HS6ST2 may serve as a useful prognostic marker among
intermediate/high-risk ccRCCs to predict disease progression. Furthermore, we developed
and validated, in an independent cohort, a model including HS6ST2 expression levels
and three clinicopathological factors which significantly improves the prognostic accuracy
upon clinicopathological characteristics for discriminating patients at higher risk of relapse.
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Our prognostic model is able to classify intermediate/high-risk ccRCC patients into two
groups of patients with a different probability of tumor progression which may help
physicians to tailor disease management, individualize follow-up, and serve as a tool to
improve patient selection for adjuvant treatment in clinical trials. Unfortunately, most of
the reported ccRCC gene-based classifiers include all clinical stages of ccRCC; thus, the
classifiers’ performance cannot be comparable [10,11]. Only Wu et al. [19], using mRNA
expression data from GSE53757 and TCGA databases, evaluated stage III ccRCC prognosis.
However, contrary to our study, they analyzed gene expression differences between normal
tissue and stage III ccRCC. Furthermore, their model was focused on overall survival, not
on disease progression, as in ours.

HS6ST2 (heparan sulfate D-glucosaminyl 6-O-sulfotransferase-2) encodes an enzyme
that catalyzes the transfer of sulfate groups in heparan sulfate proteoglycans (HSPGs).
HSPGs participate in the regulation of numerous signaling pathways by interacting with
various heparin-binding ligands and activating cytokines to influence cell growth, differ-
entiation, adhesion, and migration [20,21]. In vitro and in vivo evidence indicates that
HS6ST2 is essential for vascular development [22,23] and plays an important role in tumor
angiogenesis due to its interactions with several angiogenic growth factors, including FGF2,
VEGF, IL8, and IL6, among others [24,25]. Furthermore, evidence suggests that HS6ST2
is also associated with EMT by interacting with TGF-beta, HIF-1, and estrogen/GPER
pathways [24,26–29], activation of T lymphocytes, and indirectly related with the PD-1,
PDL-1 cancer immunotherapy pathway. Interesting, immune-oncology checkpoint in-
hibitors are being investigated as a potential first line adjuvant therapy after nephrectomy
in non-metastatic ccRCC. Numerous studies have described that inhibition of HS6ST2 in
tumor cells impairs cell migration, invasion, and tumor angiogenesis and may reverse
EMT [20]. Unsurprisingly, reduction of HS6ST2 expression has been investigated as a
potential target for future therapies [30].

In line with our findings, overexpression of HS6ST2 has been found to be a poor
prognostic factor in several malignant tumors [20,24,30–33]. Interestingly, HS6ST2 has
been recently described as part of a novel 10 glycolysis-related gene signature to predict
overall survival in ccRCC [34]. Liep et al. [35] found that overexpression of miR-145-5p and
miR-141-3p could inhibit the migration and invasion of RCC cells by decreasing HS6ST2
expression in cellular transfection experiments. Although more studies are required to
better comprehend the involvement of this gene in cancer biology, its relationship with
tumor development and angiogenesis have important clinical implications. VEGF-target
therapies have been the first-line standard of care for metastatic ccRCC and still have
a relevant role in metastatic ccRCC as a partner with anti-PD1/L1 immunotherapy in
first-line treatment or in monotherapy at progression, due to the natural chemoresistance
and radioresistance shown by tumoral renal cells.

Our study has multiple strengths. The first is that we assessed intermediate/high-risk
ccRCC patients in a multicenter study. Despite it being well known that these patients
have a higher risk of recurrence, our classifier may contribute to determine which of them
could most benefit from receiving the new targeted adjuvant treatment. Secondly, RNA
was isolated from FFPE ccRCC tissue obtained in routine practice, and the technology used
to quantify gene expression is highly cost-effective, facilitating its implementation in the
clinical setting. Thirdly, our non-progressive ccRCC patients had a long-term follow-up
to avoid misclassification. Lastly, the researchers participating in this study were blinded
to all clinical information, and gene expression was matched to clinical data only after all
patient cases had been processed.

Nevertheless, we acknowledge some study limitations. First, the retrospective design
and the small sample used in the validation phase. Secondly, the biomarker selected
may not apply to low-risk tumors and should not be generalizable to all patients with
ccRCC. Finally, external validation in the TCGA ccRCC samples revealed that our combined
classifier has a good performance predicting disease progression; nevertheless, further
experimental validation in larger cohorts is required.
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4. Materials and Methods
4.1. Patients

A multicenter study in which a total of 84 non-metastatic intermediate/high-risk
ccRCCs, as defined by the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score [5],
who underwent partial or radical nephrectomy between 2000 and 2012 in two different
centers (Hospital Clinic of Barcelona, Barcelona, Spain, and Oncologic Institute of Valencia,
Valencia, Spain), were retrospectively included.

This study was split into four-stage approach with an initial biomarker discovery
phase, a biomarker validation phase, a classifier development phase, and, lastly, the
in silico external validation using the TCGA cohort [36,37] (Figure 4). Initial discovery
phase included 13 ccRCC patients from Hospital Clinic of Barcelona, six progressive and
seven non-progressive. Biomarker validation phase comprises 71 ccRCC patients from
the Oncologic Institute of Valencia (IVO). From this, 64 ccRCC patients were eventually
included in the study, 31 progressive and 33 non-progressive (Table 1). The remaining seven
patients were discarded because of low count values in Nanostring analysis. Tissue samples
were obtained under institutional review board-approved protocols (HBC/2016/0333 and
2017-59-BIOBANCOFIVO-15-2017).

All patients were followed-up postoperatively according to the European Urology
guidelines [13]. Briefly, CT scans were performed at the 3rd month after surgery, every
6-months for the first 3 years, annually until 5 years, and biannually thereafter. Tumors
were considered as progressive when local relapse or distant metastasis were developed
during the follow-up. Non-progressive patients had a minimum follow-up of 10 years.

4.2. Tissue Specimens and RNA Isolation

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were reviewed. RNA was
isolated from FFPE specimens (total thickness 80 µm) using the RecoverAll™ Total Nucleic
Acid Isolation kit for FFPE (Ambion, Inc., Austin, TX, USA) following manufacturer’s
instructions. RNA was quantified by spectrophotometric analysis at 260 nm (NanoDrop
Technologies, Wilmington, DE, USA).

4.3. Biomarker Discovery Phase—RNA Sequencing
4.3.1. Library Preparation and Sequencing Method

RNA from 13 selected ccRCC samples was processed for library preparation using
the TruSeq® RNA Access Library Preparation Kit (Illumina, San Diego, CA, USA) that
allows generating libraries starting from degraded RNA. Briefly, cDNA strands were
synthetized from input RNA in order to be adaptor-tagged, labeled, and amplified. cDNA
was then pooled and enriched by a double step of probe hybridization. The enriched
targets were captured by streptavidin labeled beads, cleaned up, and amplified to obtain
the final multiplexed libraries. The libraries were then sequenced on an Illumina HiSeq®

4000 platform (Illumina, San Diego, CA, USA).

4.3.2. Read Alignment and Differential Gene Expression Analysis

Paired-end RNA-Seq FASTQ files were trimmed from a 3′ end to a fixed length based
on the Phred quality score (trimmed if score fell below 20, with a minimum read length
of 25) [38]. Trimmed RNA-seq reads were aligned to the GRCh38 reference genome with
STAR [39], and gene counts were determined using quantMode GeneCounts. Trimmed
reads were then aligned using STAR. We used limma-voom transformation and cyclic-
loess to normalize the non-biological variability. An assessment of differential expression
between groups was evaluated using moderated t-statistics [40]. Significant DEGs in
progressive relative to non-progressive patients were identified based on an adjusted
p value of <0.05. The heatmap and statistical analyses were performed using R statistical
package (v3.3.2). Gene set enrichment analysis (GSEA) was performed using GSEA2-2.2.0
software for testing specific gene sets based on Hallmark, Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Reactome pathway databases [41]. RNAseq files and clinical
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information were deposited into Gene Expression Omnibus (GEO) with the accession
number GSE175648.
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Figure 4. Study outline. Tissue samples were obtained from a total of 77 patients with
intermediate/high-risk ccRCC. Samples were split into a biomarker discovery (N = 13) and valida-
tion (N = 64) phase. Transcripts differentially expressed between progressive and non-progressive
intermediate/high-risk ccRCCs were first identified in the discovery phase using RNAseq. Twenty-
two DEGs were selected for validation in an independent set of 64 tissue samples using nCounter
Elements (Nanostring). A prognostic model was generated using gene expression and clinical data in
the classifier development phase. Finally, the prognostic model was in silico validated using a TCGA
cohort. Abbreviations: ccRCC, Clear cell renal cell carcinoma, DEGs, Differentially expressed genes.
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4.4. Biomarker Validation Phase
4.4.1. nCounter Elements Gene Expression Analysis

The 22 differentially expressed genes (DEGs) with a higher fold change were selected
from the discovery phase and validated in an independent cohort of 71 ccRCC patients.
nCounter Elements Analysis System (NanoString Technologies, Seattle, WA, USA) was
used to quantify gene expression from these 22 targets and two housekeeping (PPIA and
TBP) genes [42]. Briefly, probes were hybridized with the Elements TagSet and 250 ng of
RNA samples for 21 h at 67 ◦C in a Thermal Cycler. Thereafter, samples were purified in
the nCounter Prep Station to remove unligated probes. Expression data were collected
using the nCounter Digital analyzer. Those counts with values ≤ 10 were excluded from
the analysis, and those genes (n = 14) expressed in less than 80% of the samples were
discarded for further examinations. Furthermore, those samples (n = 7) with less than 80%
of expressed genes were excluded from further analysis. Empty input values for each gene
were inputted to the minimum count value for that gene. Gene expression normalization
was performed using the PPIA housekeeping gene since TBP was discarded because of its
lack of expression in more than 20% of samples.

4.4.2. Survival Analysis

Cox stepwise regression analysis was used on the established clinical prognostic
factors of ccRCC (pT stage, pN status, ISUP grade, tumor size, necrosis, vascular, and
perirenal fat invasion) and the seven DEGs to investigate their influence on tumor progres-
sion. Statistical significance was defined at a p value of 0.05.

4.5. Classifier Development Phase

After establishing the multivariate model, a risk score (RS) for the variables of the
model was calculated for each patient. RS was subjected to a Receiver Operating Character-
istics (ROC) curve analysis to choose the most appropriate threshold for predicting tumor
progression. Thereafter, Kaplan-Meier curves were generated using the selected cut-off
point and compared according to the log-rank test.

4.6. Pathway Enrichment Analysis

Ingenuity Pathway Analysis (IPA) software was used to identify interactions and net-
works between significant DEGs, possible altered canonical pathways, regulators, diseases,
and functions based on direct/indirect and experimental targets.

4.7. Classifier In Silico Validation

The Cancer Genome Atlas (TCGA) gene expression dataset was obtained from portal
(https://firebrowse.org) (accessed on 8 October 2021) [36], and TCGA clinical data were
downloaded from the portal (https://www.sciencedirect.com/science/article/pii/S00928
67418302290?via%3Dihub#app2) (accessed on 8 October 2021) [37]. After selecting samples
matching our selection criteria and excluding patients without survival status or missing
clinical data, a total of 202 ccRCCs were selected. Level 3 RNAseq expression data from
ccRCC samples by the Illumina HiSeq2000 RNA sequencing platform, and corresponding
clinical data were downloaded from the aforementioned websites.

5. Conclusions

A novel prognostic algorithm based on gene expression and clinicopathological factors
was successfully developed and validated in the TCGA cohort. This model is able to
identify a subset of intermediate/high-risk ccRCC patients with a higher risk of tumor
progression and may contribute to identify those patients that would most benefit from
closer surveillance and adjuvant treatment.

https://firebrowse.org
https://www.sciencedirect.com/science/article/pii/S0092867418302290?via%3Dihub#app2
https://www.sciencedirect.com/science/article/pii/S0092867418302290?via%3Dihub#app2
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