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Abstract

The rewarding effects of nicotine are associated with activation of nicotine

receptors. However, there is increasing evidence that the endogenous opioid

system is involved in nicotine’s rewarding effects. We employed PET imaging with

[11C]carfentanil to test the hypotheses that acute cigarette smoking increases

release of endogenous opioids in the human brain and that smokers have an

upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We

found no significant changes in binding potential (BPND) of [
11C]carfentanil between

the placebo and the active cigarette sessions, nor did we observe differences in

MOR binding between smokers and nonsmokers. Interestingly, we showed that in

smokers MOR availability in bilateral superior temporal cortices during the placebo

condition was negatively correlated with scores on the Fagerström Test for Nicotine

Dependence (FTND). Also in smokers, smoking-induced decreases in

[11C]carfentanil binding in frontal cortical regions were associated with self-reports

of cigarette liking and wanting. Although we did not show differences between

smokers and nonsmokers, the negative correlation with FTND corroborates the role

of MORs in superior temporal cortices in nicotine addiction and provides preliminary

evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.
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Introduction

Tobacco use is the largest preventable cause of death and disease in the United

States. In 2011, 19% of adults (43.8 million) were current smokers [10]. The

reinforcing effects of nicotine are mediated, in part, via its effects on a4b2

nicotinic acetylcholine receptors, which result in activation of dopamine (DA)

neurons and increased release of DA in the nucleus accumbens (NAc) [11]. The

ability of most drugs of abuse to increase DA in the NAc, is believed to be a

common mechanism through which drugs of abuse exert their reinforcing effects

[41]. Specifically, acute nicotine has been shown to change met-enkephalin in

striatum in ways that are interpreted to indicate that nicotine enhances the release

and synthesis of met-enkephalin in striatum [20]. However, preclinical studies

have also shown that nicotine increases release of endogenous opioids [15]. These

effects are likely to contribute to nicotine’s reinforcing effects because nicotine is

not reinforcing in knockout mice that do not express mu opioid receptors

(MORs) [6]. Adaptations in endogenous opioids secondary to chronic smoking

are also likely to contribute to the addictiveness of nicotine. Indeed, repeated

nicotine administration results in increased expression of MORs [46]. Moreover,

naloxone, a MOR antagonist drug, can trigger withdrawal in animals exposed

chronically to nicotine [35] and in daily smokers [28]. Further, polymorphic

variants in the mu receptor (Asn40Asp variant) predict response to nicotine

replacement therapy [31]. Thus, understanding the acute and long-term effects of

nicotine on the opioid system in humans might provide better strategies for the

development of treatment medications for nicotine dependence.

In this study, we tested the hypothesis that nicotine at doses delivered through a

cigarette increases the release of endogenous opioids in the human brain and that

chronic smokers exhibit neuroadaptations in mu receptors. We assessed the

effects of smoking a cigarette on the binding of the mu-opioid agonist receptor

radioligand [11C]carfentanil using positron emission tomography (PET) and

compared the responses in nonsmokers to those in smokers. [11C]carfentanil

binding in the brain is sensitive to competition with endogenous opioids [49], and

thus we hypothesized that its binding would be decreased after smoking a

cigarette. We also hypothesized that chronic smokers would show decreased

endogenous opioid release when not under the effects of nicotine and thus would

have increases in MOR when tested at baseline.

Materials and Methods

Ethics Statement

The studies were approved by the Johns Hopkins Medicine (JHM) Office of

Human Subjects Research - Institutional Review Boards and the NIH Combined

Neuroscience Institutional Review Board. After explaining the procedure, written

informed consent was obtained from each subject.
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Subjects

Ten smokers and ten age-matched nonsmokers were recruited specifically for this

study. The basic demographics and smoking-related measures are given in

Table 1. Inclusion criteria for smokers were smoking 10–45 cigarettes per day for

at least 2 years, urinary cotinine $200 ng/mL, and no desire to quit or reduce

smoking. Inclusion criteria for nonsmokers were having smoked 1–20 cigarettes in

their lifetime, no smoking in the past year, and urinary cotinine ,30 ng/mL.

Otherwise, inclusion criteria were the same for both groups: males and females

21–50 years old and estimated IQ $85. We followed the NIH policy for inclusion

of men and women because we had no strong reasons to exclude by gender. Due

to scan scheduling availability, female subjects were studied without controlling

for menstrual cycle stage or use of birth control medication. Subjects were

excluded if they had current or past psychiatric disorders (including drug abuse or

dependence other than nicotine dependence), neurological diseases, significant

medical illnesses, or those who were on psychoactive medications. Subjects were

recruited using public advertisements, and were initially screened by phone, and

subsequently evaluated for eligibility by a physician. As part of the screening

procedure, subjects had a physical, psychiatric, and neurologic examination. They

completed the Fagerström Test for Nicotine Dependence (FTND) [22, 3] and

completed a neuropsychological battery to insure that they were not cognitively

impaired. Routine laboratory tests were performed, including toxicology screen-

ing to rule out the use of common drugs of abuse. Subjects were instructed to

abstain from alcohol and drugs (except caffeine, nicotine, and non-psychoactive

prescription drugs) 24 hours before each session, and smokers abstained from

smoking after 12:00 midnight the night before each session. Subjects were

admitted overnight at the Johns Hopkins Hospital General Clinical Research Unit

to insure that they did not smoke the night prior to the study. On the morning of

Table 1. Demographics of participants and radioligand information of placebo and active cigarette scans

Variables Smokers Nonsmokers

Demographics and smoking- and alcohol-related measures

Number of subjects (Sex) 10 (8 M/2 F) 10 (6 M/4 F)

Age (years) 32.5¡8.2 (range: 23–50) 34.3¡10.7 (range: 22–50)

Fagerström test for nicotine dependence 6.8¡1.8 (range: 5–10) 0

Number of cigarettes per day 19.5¡12.7 (range: 10–45) 0

Number of drinks per week 1.2¡1.7 1.3¡1.6

Drinking days per week 0.7¡1.0 0.8¡1.1

Cigarette type for PET Sessions Placebo Active Placebo Active

Radioligand information

Injected radioactivity (MBq) 666+18.5 654.9+48.1 662.3+25.9 680.8+25.9

non-radioactive mass (mg) 0.98¡0.41 1.22¡0.54 1.29¡0.60 1.15¡0.57

Specific activity (MBq per mole) 349.6+88.0 329.3+75.6 273.5+94.0 285.0+133.6

Values are mean ¡ standard deviation. In demographics, M stands for males, and F, for females.

doi:10.1371/journal.pone.0113694.t001
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the PET scans, subjects were provided with a low calorie breakfast and completed

breathalyzer testing for alcohol and breath carbon monoxide (,10 parts per

million) for smokers.

PET imaging

The subjects received two PET scans, each on a separate day with [11C]carfentanil.

No statistical differences were noted in injected radioactivity, non-radioactive

mass, and specific activity (Table 1) between placebo- and active-cigarette scans

for smokers and non-smokers, or between smokers and non-smokers in the

placebo- and active-cigarette scans. PET studies were performed on the High

Resolution Research Tomograph (HRRT, CPS Innovations, Inc., Knoxville, TN).

In preparation for the study, two intravenous catheters were placed, one for

radiotracer injection and the other for blood withdrawal to measure nicotine

concentrations in plasma (immediately after smoking, every 5 min for 15 min,

then every 10 min until the PET scan was completed). Prior to each PET scan,

subjects smoked either a placebo or a nicotine-containing cigarette (see below)

and within 10 min after completion of smoking underwent dynamic PET

scanning. Dynamic scans were obtained using three-dimensional list mode

acquisition for 80 min following the intravenous bolus injection of

[11C]carfentanil. A 6-min transmission scan was acquired prior to each dynamic

scan using a rotating Cs-137 source for attenuation correction. A custom-made

thermoplastic mask was employed to reduce head motion during the PET data

acquisition times. [11C]carfentanil was synthesized via the reaction of

[11C]methyliodide and a nor-methyl precursor as previously described [14] and

was injected via a venous catheter.

Cigarette smoking procedure

Subjects smoked either a Quest 1 cigarette (active, 0.6 mg nicotine) or a Quest 3

cigarette (placebo, ,0.05 mg nicotine) before each PET session in a portable

smoking booth attached to the ventilation system of a room adjacent to the

scanner. Subjects took 8 puffs over a 10-min period using a CReSS smoking

topography system (Plowshares, Inc., Baltimore, MD) to approximate equivalent

smoking topography. The order of placebo and active cigarette conditions was

counterbalanced across subjects.

Self-report Measures

Subjects were administered the Minnesota Nicotine Withdrawal Scale (MNWS

[24]) and the Tobacco Craving Questionnaire-Short Form (TCQ-SF) [23] before

and after each PET scan session. The following Visual Analog Scale (VAS) items

assessed the effects of the cigarette ‘‘right now’’: feel the effect, good effect, bad

effect, like the effect, and want a cigarette. Subjects verbally rated each item on a

scale from 0 to 10. VAS items were completed at baseline and at 5, 10, 15, 20, 25,

35, 40, 50, 60, 70, 80, and 90 min post-smoking.
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Measurement of Nicotine Concentrations in Plasma

Blood specimens (5 mL) were collected in 7-mL green-topped Vacutainer tubes

containing lithium oxalate, and immediately placed on ice. Specimens were

centrifuged within 1 h and 1.0 mL aliquots of plasma stored in cryotubes at

280 C̊ until analysis. Nicotine, cotinine, trans-39-hydroxycotinine (OH-cotinine)

and norcotinine were measured concurrently in 0.5 mL plasma specimens by a

previously validated liquid chromatography tandem mass spectrometry

(LCMSMS) method [21]. Briefly, 2 mL 0.1% formic acid were added to plasma

specimens and centrifuged at 4,0006g for 5 min at 4 C̊. Supernatants were

submitted to solid phase extraction with Strata-XC cartridges (Phenomenex, San

Jose, CA), with final elution in 3% NH4OH in methanol. LCMSMS analysis was

performed with a Shimadzu liquid chromatography system (Shimadzu

Corporation, Columbia, MD, USA), a Synergi Polar-RP 100A interfaced to a 3200

QTrap (AB Sciex, Foster City, CA, USA) with a Turbo V ESI source. Standard

mobile phases were used with gradient elution and a total run time of 12 min.

Mass spectrometric data were acquired in positive electrospray ionization mode

and multiple reaction monitoring mode (MRM). The following transitions were

monitored (quantification transition in bold): 163.2.132.2 and 163.2.84.2 for

nicotine; 177.2.80.1 and 177.2.98.1 for cotinine; 193.2.80.2 and 193.2.134 for

OH-Cotinine; 163.2.80.2 and 163.2.118.2 for norcotinine; 167.2.136.1 and

167.2.121 for Nicotine-d4; 180.2.80.2 and 180.2.101.2 for Cotinine-d3;

196.2.79.9 and 196.2.134.1 for OH-Cotinine-d3; and 167.2.84.2 and

167.2.139.2 for norcotinine-d4. Linearity ranges with 1/x weighting for nicotine

and 1/x2 for metabolites were 1 to 500 ng/mL for cotinine, OH-cotinine and

norcotinine, and from 2.5 to 500 ng/mL for nicotine. Assay accuracy at low,

medium and high QCs was 90.1–103.5% (n520) and imprecision was 4–13.8%

(n520).

Reconstruction of PET data

Emission PET scans were reconstructed using the iterative ordered-subset

expectation-maximization algorithm correcting for attenuation, scatter, and dead-

time [42]. The radioactivity was corrected for physical decay to the injection time

and re-binned to 30 dynamic PET frames of 256 (left-to-right) by 256 (nasion-to-

inion) by 207 (neck-to-cranium) voxels. The frame schedules were six 30 s, seven

60 s, five 120 s, and twelve 300 s frames. The final spatial resolution is expected to

be less than 2.5 mm full-width at half-maximum in three directions [45].

MRI acquisition

On a separate occasion, a spoiled gradient (SPGR) sequence 1.5 or 3 T MRI was

obtained on each subject for anatomical identification of the structures of interest

using the following parameters: Repetition time, 35 ms; echo time, 6 ms; flip

angle, 458; slice thickness, 1.5 mm with no gap; field of view, 24618 cm2; image

acquisition matrix, 2566192, reformatted to 2566256 for the 1.5 T. Repetition
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time, 2110 ms; echo time, 2.73 ms; flip angle, 8; slice thickness, 0.8 mm with no

gap; field of view, 24618 cm2; image acquisition matrix, 3206288, reformatted

to 2566256 for the 3 T.

PET data analysis

Volumes of interest (VOIs)

VOIs were manually defined for putamen (Pu), caudate nucleus (CN),

hippocampus (HP), and cerebellum (Cb) using locally developed VOI tool

(VOILand). Striatal VOIs were divided into ventral striatum (vS) and anterior or

posterior dorsal subdivisions by the anterior-commissure plane, as previously

described [5, 37, 39]. Other subcortical VOIs, including globus pallidus (GP),

thalamus (Th), and amygdala (Am) were defined with FIRST software [40] and

manually adjusted on individual MRIs. Cortical VOIs were automatically defined

using Freesurfer [19] software including subdivisions of frontal (Fr), temporal

(Tp), parietal (Pa), and occipital (Oc) cortices, fusiform gyrus (Fs), cingulate

(Cg), and insula (In). VOIs for In and Oc were manually adjusted on individual

MRIs. The Oc VOI included cuneus, lingual, lateraloccipital, and pericalcarine

lobules given by Freesurfer, and served as reference region, after confirming that

these regions showed similarly low radioactivity. A total of 78 VOIs were

transferred from MRI to PET spaces using MRI-to-PET coregistration parameters

given by the SPM5 coregistration module [2, 33] to obtain time-activity curves

(TACs) of regions.

Derivation of PET outcome variables

A set of reference tissue methods were employed to obtain the binding potentials

(BPND) [27] of regions (reference region 5 Oc), including the reference region

graphical analysis (RTGA) [32] with k2
R (the brain-to-blood efflux rate constant

of Oc) set at 0.104 min21 [17], multilinear reference region method with 2

parameters (MRTM2) [26], and the bolus-plus-infusion transformation of bolus-

only scans [29]. Images of BPND were generated by the three methods and

transferred to the Montreal Neurological Institute (MNI) standard space applying

parameters of PET-to-MRI coregistration (See above) and spatial normalization

given by SPM unified segmentation method [1] in one step, and smoothed by a

Gaussian kernel (8 mm Full with at half maximum) to submit to SPM5 statistical

methods.

Voxel-wise statistical analysis

SPM5 was used to examine group differences and correlations of [11C]carfentanil

BPND to smoking status measures, and visual analogue scales on smoking, as

described in the results section. A significance level of p,0.001, uncorrected was

employed for SPM analyses with the cluster volume threshold set at 0.4 mL

(k.50). Locally prepared gray matter probability, tissue classification, and

Brodmann area maps were used for anatomical identification and visualization of

SPM clusters. Briefly, Freesurfer-derived brain region VOIs of 399 subjects (Age
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range: 18–40 years) were transferred to the SPM standard space using the SPM

unified segmentation method [1] to generate probability maps of individual

structures. The gray matter probability map was generated by summing individual

gray matter probability maps to visually confirm whether clusters fell within gray

matter areas. The tissue classification map was generated by assigning voxels to

brain structures, starting from the largest (white matter) to the smallest (the

ventral striatum) structures with a probability threshold of 0.2 to identify

anatomical locations of peaks, and calculate structure compositions of clusters.

The Brodmann area map was prepared by spatially aligning a published atlas [34]

to the local standard brain to report Brodmann areas that were closest to the peaks

and within the clusters, if any.

Results

None of participants fulfilled criteria of alcohol abuse or dependence, and no

statistical differences were noted regarding alcohol-related metrics between

smokers and nonsmokers (Table 1). For smokers, plots of mean plasma nicotine

concentration peaked at 5 min and reached a plateau around 30 min in the active

cigarette scan, but remained around the baseline level throughout the placebo

cigarette scan (Fig. 1). The active cigarette scan condition showed higher plasma

nicotine levels than the placebo cigarette scan condition (Table 2), while no

statistical differences were observed between the two conditions for its

metabolites. For nonsmokers, concentrations increased initially and declined

slowly thereafter (Fig. 1). Plasma nicotine concentrations were substantially

greater for smokers than nonsmokers for both cigarette conditions (Table 2).

Fig. 1. Line plots of mean concentrations across subjects of nicotine in plasma versus time of active
and placebo cigarette scans. PET data acquisition began between 5 and 10 min on the time axis in
individual subjects.

doi:10.1371/journal.pone.0113694.g001
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PET data were examined first for pharmacological effects (i.e., not including

behavioral effects) of smoking active cigarettes on [11C]carfentanil binding. Of

78 VOIs, the right parahippocampus alone showed a significant decrease of

[11C]carfentanil BPND in the active-cigarette scan (t5-5.96; p50.0002; df59;

paired t-test) in smokers. However, this region showed relatively low

[11C]carfentanil BPND (0.21¡0.06 vs. 0.25¡0.06 (mean ¡ SD; unitless) for

placebo and active scans, respectively). Other regions did not show changes in

[11C]carfentanil BPND between the two conditions separately for smokers and

nonsmokers. The voxel-wise tests (SPM) showed no changes of [11C]carfentanil

BPND between two conditions for smokers as well as for nonsmokers despite

significant differences in plasma nicotine concentrations. Magnitudes of changes

of [11C]carfentanil BPND between the two conditions remained undistinguishable

between the two groups. No correlations of [11C]carfentanil BPND to plasma

nicotine concentrations were observed including all plasma data points (2–

75 min) or plasma samples around the peak (i.e., using 2, 5, and 10 min data)

alone.

Correlations of changes of [11C]carfentanil BPND (D[11C]carfentanil BPND,

defined as placebo-cigarette scan values minus active-cigarette scan values) with

changes of self-reported VAS items (DVAS, defined as active minus placebo using

means of data recorded between 20 and 80 min after the tracer injection) were

examined. Smokers had single positive correlation clusters in left rostral frontal

lobe for VAS items feel and like the effect, and good effect (Table 3 and Fig. 2).

The three clusters spatially overlapped each other substantially. These correlations

remained statistically significant (the coefficient of determination, R2.0.704)

after removing one subject who showed larger DVAS values than other smokers in

all three scores. The three clusters should be considered to represent one cluster of

indistinguishable contributions from these three DVAS categories because the

three DVAS categories were mutually correlated (R2.0.77; p,0.0001). Smokers

also showed one cluster in right rostral frontal cortex for the VAS want a cigarette,

although the cluster volume (0.24 mL) did not reach the set criterion (0.4 mL).

Table 2. Concentrations of nicotine and metabolites in plasma during active and placebo cigarette scans.

Variables Smokers Nonsmokers

Cigarette type for PET Sessions Placebo Active Placebo Active

Nicotine (ng/mL) 1.9¡0.9# 4.4¡1.4*# 0.1¡0.1 0.7¡0.7

Nicotine (2–10 min; ng/mL) 1.9¡1.2# 5.8¡1.9*# 0.2¡0.4 0.9¡0.9

Cotinine (ng/mL) 217¡106 230¡97 ,1 ,1

Trans-3-hydroxy-cotinine (ng/mL) 70.5¡38.7 63.6¡38.6 0 0

Norcotinine (ng/mL) 2.6¡2.3 3.2¡1.9 0 0

Mean ¡ standard deviation (ng/mL) of individual subjects’ means across 2–75 min, except for the second nicotine row representing nicotine concentrations
only from 2–10 min.
Limits of quantification were 1 ng/mL for cotinine, OH-cotinine and norcotinine, and 2.5 ng/mL for nicotine at individual time point.
* Active cigarette scan values . placebo cigarette scan value at p,0.01; paired t-test.
#Smoker . nonsmoker at p,0.00001; t-test.

doi:10.1371/journal.pone.0113694.t002
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SPM correlation analyses were not performed on nonsmokers because DVAS

values were skewed heavily around 0 for this group. VOI-based analysis did not

identify D[11C]carfentanil BPND, - DVAS correlations in any regions in smokers.

No correlations were noted for nonsmokers in SPM and VOI-based analyses.

We also compared [11C]carfentanil BPND for the placebo and for the differences

between placebo and active cigarette scans between smokers and nonsmokers. No

regions showed differences in VOI-based analyses, and no differences in clusters

were identified in voxel-wise tests separately for active- and placebo-cigarette

scans.

Finally, the following exploratory tests were performed on smokers alone.

Correlation analysis between [11C]carfentanil BPND and FTND showed symme-

trical negative correlation in superior temporal lobes (Table 4 and Fig. 3). A left-

side negative correlation cluster also was observed for [11C]carfentanil BPND to

current smoking status (cigarettes per day, CPD). The right side cluster did not

reach the set significance criteria for this correlation. Spatial agreement of

correlation clusters between the two smoking measures may be explained by the

observation that these measures were highly correlated (CPD 56.7NFTND - 26.2;

Table 3. Clusters of D[11C]carfentanil BPND (placebo - active) to DVAS (active - placebo) correlation.

VAS Peak coordinates Peak t-values Cluster volumes Anatomical descriptions

Positive correlations

Feel effect 216 48 30 13.07 0.83 mL Lt. rostral frontal lobe (53.9%) White matter (38.5%)

Good effect 216 48 30 10.86 0.57 mL Lt. rostral frontal lobe (43.7%) White matter (45.1%)

Like effect 218 48 26 10.05 1.14 mL Lt. rostral frontal lobe (71.8%) White matter (22.5%)

Significance criteria: p,0.001, uncorrected and volume .0.4 mL.
Percentages in the last column indicate anatomical constituents of clusters.

doi:10.1371/journal.pone.0113694.t003

Fig. 2. Positive correlation clusters of D[11C]carfentanil binding potential (BPND) (placebo - active)
versus DVAS of feel the effect category in smokers, displayed on trans-axial images of a gray-matter
probability maps. Scatter plots of cluster D[11C]carfentanil BPND values to DVAS are shown together with
regression lines. VAS stands for the visual analog scale of smoking effects, and R2 stands for the coefficient of
determination of linear regression.

doi:10.1371/journal.pone.0113694.g002
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R250.909). A positive correlation of lesser significance and volume was observed

in left precentral gyrus with CPD.

Discussion

Active cigarettes in this study were expected to cause nearly 50% occupancy of

nicotinic acetylcholine receptors (nAChRs) across brain regions (e.g., [18]),

whereas Brody et al. [7] reported 26% and 79% occupancy of nACHRs by Quest 1

and 3 cigarettes, respectively. Although similar levels of occupancies of nAChRs

were expected, no regions showed changes of [11C]carfentanil BPND in this study.

This finding conflicts with results of a similar study [44] that reported clusters of

decreased [11C]carfentanil BPND in the anterior cingulate and three increased

clusters in the left amygdala, left ventral striatum, and right thalamus in the

active-cigarette (1.01 mg nicotine/cigarette) condition compared to the placebo

cigarette (0.08 mg nicotine/cigarette) condition. This discrepancy is likely to

reflect the much lower nicotine concentrations achieved in our study (three fold

Fig. 3. Correlation clusters of [11C]carfentanil binding potential (BPND) of placebo-cigarette scans
versus the Fagerström Test for Nicotine Dependence (FTND) in smokers, displayed on trans-axial
images of a gray-matter probability maps. Right panels show scatter plots using cluster [11C]carfentanil
BPND, together with regression line. In regression equations, R2 stands for the coefficient of determination.

doi:10.1371/journal.pone.0113694.g003

Table 4. Clusters of placebo-cigarette [11C]carfentanil BPND to current nicotine-dependence and smoking statuses correlations in smokers.

N/P Peak coordinates Peak t-values Cluster volumes Anatomical descriptions

Placebo-cigarette scan [11C]carfentanil BPND vs. FTDN

N 262 22 28 10.31 1.01 mL Lt. superior temporal lobe (73.5%) Lt. precentral gyrus (22.1%)

N 62 4 2 7.47 0.54 mL Rt. superior temporal lobe (62.5%) Rt. precentral gyrus (29.2%)

Placebo-cigarette scan [11C]carfentanil BPND vs. cigarette per day

N 264 22 24 14.25 0.97 mL Lt. superior temporal lobe (68.3%) Lt. precentral gyrus (31.7%)

P 246 214 42 6.81 0.48 mL Lt. precentral gyrus (76.9%) Lt. postcentral gyrus (19.2%)

Significance criteria: p,0.001, uncorrected and volume.0.4 mL
P and N in the first column stand for clusters of positive and negative correlations, respectively.
Percentages in the last column indicate anatomical constituents of clusters.

doi:10.1371/journal.pone.0113694.t004
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lower plasma nicotine concentrations) and could be interpreted to suggest that

higher nicotine doses than the ones achieved in our study (peak plasma level of

7 ng/mL versus average levels of 18 ng/mL in Scott et al. [44] might be necessary

for endogenous opioid release. Differences in peak plasma nicotine concentration

between smokers and nonsmokers were likely due to minimal inhalation on the

part of nonsmokers. However, the differences in PET methodology (two 90-min

scans on separate days in this study versus one 90-min scan for two cigarette

sessions in one day) might also contribute to the differences in findings. Using the

same Quest cigarettes as this study, Ray et al. [43] reported no changes in

[11C]carfentanil BPND between the two cigarette conditions (see below), although

they analyzed smokers of A/A genotype carriers of OPRM1 A118G genotype and

G allele carriers separately. Thus, further studies are needed to investigate the

pharmacological effects of nicotine in endogenous opioid release, including its

potential modulation by OPRM1 A118G genotypes.

This and aforementioned studies [43, 44] identified different clusters of

(D[11C]carfentanil BPND to DVAS correlations). Scott et al. [44] identified one

cluster in the thalamus for the ’alert’ score alone (i.e., the study did not identify

correlations in VAS categories used in our study). Ray et al. [43] reported positive

association of [11C]carfentanil BPND with changes of self-reported nicotine reward

in right amygdala, caudate nucleus, anterior cingulate cortex, and thalamus using

VOI-based analysis. Interestingly, the correlation was found in G allele carrier

smokers (OPRM1 A118G genotype), but not in A/A genotype carriers. The closest

equivalent to the reward measures in Ray et al. [43] would be the VAS items like

the effect and good effect in our study for which the correlation was found in the

left rostral frontal lobe (corresponding to Brodmann area 10), in the mixed

genotype population. Moreover, positive correlations of cerebral blood flow

changes to the amount of monetary rewards (suggestive of positive effects) were

reported in a vicinity of current D[11C]carfentanil BPND to DVAS correlations ([x,

y, z] 5220 12 42 [36]) in smokers, but not in nonsmokers. It is intriguing to

speculate that the left rostral frontal lobe cluster (Fig. 2) might be indicative of the

dopamine-opioid interaction because the hedonic effects of cigarettes, such as

euphoria and craving, are associated with dopamine discharge in the striatum

(e.g., [4]). Regarding the dopamine-opioid interaction, Colasanti et al. [12]

demonstrated decreases of [11C]carfentanil BPND in multiple brain regions in the

high dose scan (0.5 mg/kg) compared to a low dose (0.017 mg/kg) of oral

amphetamine in healthy male nonsmokers. Because of no known direct actions of

amphetamine on opioid neurotransmission and established amphetamine-

induced dopamine release, the study suggested that dopamine-opioid interaction

underpin the change of [11C]carfentanil BPND. Visual inspection (Fig. 3) of SPM

clusters and tabulated results (Table S3) of Colasanti et al. [12] suggested the left

middle frontal gyrus cluster (volume: 816 voxels or 65.3 mL) span the positive

correlation cluster in the left rostral frontal lobe we observed for the feel/like/good

effect DVAS categories. Therefore, this cluster might be related to the potential

dopamine-opioid interaction. Interestingly, the location in the rostral frontal

region corresponds to a region where functional connectivity was positively
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correlated with decreases in withdrawal symptoms with nicotine replacement

therapy in abstinent smokers [13]. Since dysphoria is a central symptom in

nicotine withdrawal [25], this also implicates endogenous opioid signaling in

medial prefrontal regions in the reversal of negative symptoms by nicotine

replacement.

Smoker versus nonsmoker differences in [11C]carfentanil BPND should be

discussed within the limitation that subjects received either active or placebo

cigarettes in each scan. Although the current study identified no differences in

VOI-based (except in parahippocampal gyrus but not corroborated by SPM) and

in voxel-wise statistical tests, Scott et al. [44] demonstrated robust (.13%)

differences (smokers , nonsmokers) in the rostral anterior cingulate, thalamus,

nucleus accumbens, and amygdala. Ray et al. [43] did not examine smoker versus

nonsmoker differences. Correlation analysis of [11C]carfentanil BPND with

nicotine dependence and current smoking status measures in our study should

also be interpreted with caution because those data were obtained under the

placebo cigarette condition. Numerous studies have documented the expectancy

and/or sensorimotor effects of denicotinized cigarettes in reducing tobacco

deprivation-induced withdrawal symptoms [8, 9, 16]. Thus, expectancy effects

might have contributed to the release of endogenous opioids in smokers and

nonsmokers.

Here, we report correlations of [11C]carfentanil BPND with smoking two

smoking metrics that though related represent different smoking-related

properties. A recent paper [47] reported negative correlations of baseline (i.e., no-

specific tasks) [11C]carfentanil BPND to FTND scores in the cingulate cortex,

thalamus, amygdala, and insula cortex, in alcohol-dependent subjects (n521)

after partial correlations accounting for gender and recent drinking status.

Although these correlations were observed in alcohol-dependent subjects [48], our

study and the Weerts et al. [48] study indicated negative associations of

[11C]carfentanil BPND to nicotine dependence/smoking status in selected brain

regions, including superior temporal lobes. Involvement of these lobes in nicotine

dependence was implicated in a number of studies. Interestingly, cue-induced

changes in fMRI BOLD signal negatively correlated to FTND in the right superior

temporal gyrus in a study involving 30 smokers with similar FTND scores to our

study [38], suggesting that a decrease in MOR might underpin decreased BOLD

response at least in this region. In a separate study, the left superior temporal

gyrus alone showed cue-induced changes of BOLD signals [30] in abstaining

smokers (7 hours), although correlations to FTND or CPD were not examined.

These findings need to be confirmed with a larger sample size. One limitation of

our study was the possible psychological cues provided by smoking the placebo

cigarette. The behaviors, the paraphernalia, and the environment associated with

cigarette smoking, even in the absence of nicotine, likely contribute to the craving

and reward of cigarette smoking in some smokers. Future studies without the cues

of the smoking environment could control for this confounding influence.
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In summary, smokers demonstrated correlations in [11C]carfentanil BPND with

nicotine dependence and smoking status. This suggests the need for further

investigation of the role of MOR in nicotine dependence.
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