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More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple 
types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on 
recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an 
artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the 
production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in 
silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and 
compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures 
were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking 
between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of 
the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we 
expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.
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Introduction

Human insulin, produced by beta-cells of the pancreatic 
islets, plays a critical role in the regulation of the metabolism 
of glucose [1]. Dysfunction of the synthesis or release of 
insulin may lead to diabetes mellitus [2]. Millions of people 
suffer from diabetes mellitus worldwide [3], and the most 
common medication to treat diabetes is insulin; so, a large 
number of studies on insulin have been done [4]. Insulin is 
first produced as an inactive protein, called preproinsulin. 
Preproinsulin, including a signal peptide, is a single, long 
protein. The chain evolves into proinsulin by cutting out the 
signal peptide. Then, proinsulin needs to be cleaved into 
insulin (an A chain and B chain) by removing the C-peptide 
linking the two chains [5]. 

Nowadays, recombinant DNA techniques enable us to 

produce insulin through biochemical processes using 
Escherichia coli [6]. However, the production of proinsulin by 
E. coli strains has to several drawbacks, such as low exp-
ression, difficulty in solubilizing the inclusion body, short 
half-life in the host cell, high proteolysis, and inefficient 
translation of the underlying coding sequences [7]. A new 
fusion protein system, which fuses an artificial leader 
peptide to the N-terminus of proinsulin, has been invented 
as a solution to these problems [8]. The specificity of 
cleavage and refolding rates are known to be dependent on 
the sequences of leader peptides, and different kinds of 
sequences have been proposed [6, 7, 9-11]. Thus, how the 
sequence of the artificial leader peptide affects the produc-
tion of proinsulin and its modification into mature insulin 
needs to be investigated. 

In this work, we used several kinds of computational 
approaches to find a better leader peptide. First, we 
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Table 1. Sequences of 13 artificial leader peptides used in the
structural simulation and refolding yields

Model Sequence of leader peptide Refolding 
yield (%)

Model 1 MTMITNSPEISHHHHHHHHHHQ
LISEAR

68.7

Model 2 MTMITNSPEISHHHHHHHHHHQ
LISEAK

NA

Model 3 MTMITDSLAVVLQGSLQR NA
Model 4 MTMITDSLAVVLQGSLQK NA
Model 5 MTMITDSLAVVLQR 62.7
Model 6 MTMITDSLAVVLQK NA
Model 7 MTMITDSLAR 57.9
Model 8 MTMITDSLAK NA
Model 9 MTMITK 54.0
Model 10 MTMITR 42.2
Model 11 MK NA
Model 12 MR NA
Model 13 M NA

Refolding yields were retrieved from our previous data [7]. The 
values of 5 models (models 1, 5, 7, 9, and 11) are reported. 
NA, not available.

Fig. 1. Predicted structures of proinsulin models. Structures of leader peptide regions and proinsulins are red and green, respectively. 

predicted the three-dimensional structures of fused proin-
sulins while changing the leader peptides. Although the 3D 
structure of proinsulin was determined recently [12] and 
although that of active insulin was determined long ago [13], 
the structure of fused proinsulin should be analyzed by 
prediction. Afterwards, the stabilities of the predicted 

structures were calculated by molecular dynamics (MD) 
simulation. MD is a method that simulates the movements 
of atoms and calculates their potential energies. Finally, the 
interaction of proinsulins with protease was evaluated by 
protein-protein docking. By comparing these structural 
analyses and experiments, we demonstrate that these 
structural analyses may contribute to determining whether a 
leader peptide results in efficient production of insulin.

Methods
Selection of artificial leader peptides

In previous work (patent WO 2004/044206 A1), a for-
mula for constructing a leader peptide was proposed as 
follows: Met-Thr-Met-Ile-Thr⋯Lys(Arg). We selected 13 
models, as shown in Table 1. Out of these 13 models, 5 have 
been used to generate experimental results in a previous 
work [7], and 7 are being introduced in this work.

Protein structure prediction 

The full sequence (leader peptide of the model plus the 
native sequence of proinsulin) of each fused protein was 
used as an input for the structure prediction. Among various 
methods of 3D protein structure prediction, we used 
I-TASSER (Iterative Threading ASSEmbly Refinement) [14], 
which ranked as first in performance in recent commu-
nity-based competitions [15, 16]. 
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Fig. 3. Energy changes during molecular dynamics simulation of proinsulin models. (A) Potential energy. (B) Total energy.

Fig. 2. Structural comparison of before (cyan) and after (green) the molecular dynamics simulation. 

MD simulation

The predicted structures were located in a cubic box of 
water; then, 3-ns MD simulations were carried out using 
GROMACS, ver. 5.1.2 [17]. Amber99sb was chosen as the 
force field [18]. Energies of the models were minimized 
using the steepest descent algorithm for 3 ns. The step size 
was 0.002 ps. The properties and stabilities of the models 
were evaluated based on the potential energy, total energy, 
and root-mean-square deviation of the atomic positions. 

Protein-protein docking

Protein-protein docking between trypsin (PDB ID: 2PTN) 

and recombinant proinsulins was performed using the 
InterEvDock server [19]. The InterEvDock server provides 
three kinds of scores: InterEvDock, FRODOCK [20], and 
SOAP_PP [21]. We chose the SOAP_PP score to evaluate the 
binding affinities, and docked poses were used to check 
whether two proteins were bound at the right position. 

Results and Discussion

We predicted the 3D structures of 13 artificial models of 
proinsulin using I-TASSER (Fig. 1). As shown in Fig. 1, 
different leader peptides affected the overall structure of 
proinsulin. Especially, although the sequences of models 1 
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Fig. 4. Structures by docking between proinsulin models (red) and trypsin (green). Cleavage sites are in blue.

Table 2. Protein-protein docking energies

Model number
SOAP_PP score (kJ/mol)

Round 1 Round 2

Model 1 ‒12,021.42 ‒10,875.04
Model 2 ‒12,239.53 ‒11,204.59
Model 3 ‒11,580.68 ‒10,881.19
Model 4 ‒11,394.95 ‒10,484.51
Model 5 ‒11,280.89 ‒10,628.80
Model 6 ‒11,348.51 ‒10,292.90
Model 7 ‒11,596.85 ‒10,383.14
Model 8 ‒11,194.78 ‒10,107.16
Model 9 ‒10,933.44 ‒10,304.09
Model 10 ‒11,037.88 ‒10,266.31
Model 11 ‒10,690.47 ‒9,966.84
Model 12 ‒10,872.28 ‒9,782.31
Model 13 ‒10,614.70 ‒9,815.33

and 2 had only a 1-residue difference, the predicted positions 
of the leader peptides were quite different. 

To refine the predicted structures, we observed the 
changes in structures by MD simulation at 3 ns to minimize 
energy. The structures after the MD simulation were supe-
rimposed onto the original structures by I-TASSER (Fig. 2). 
All potential energies of models were kept relatively stable 
(Fig. 3). The predicted structures were little refined; thus, 
they were naturally favorable. The total energy and potential 
energy of models 3 and 8 were the lowest. Among the models 
tested before (Table 1), no correlation between refolding 
yields and energies was observed. 

Preproinsulin should be refolded and cleaved to become 
mature insulin. A previous work showed that trypsin could 
be used as an efficient protease in the maturation of insulin 
[7]. To investigate how the leader peptide affects the binding 
mode between proinsulin and trypsin, in silico docking was 

carried out by InterEVDock [19]. 
Interestingly, in the docked structure (Fig. 4), the active 

sites (histidine 57, aspartate 102, and serine 195) of trypsin 
were located near lysine 64 and arginine 65 of proinsulin, 
which is the exact position where the first cleavage of 
proinsulin occurs to release chain A. Binding affinities were 
also predicted by InterEVDock (Table 2). Among all docked 
structures, models 1 and 2 were predicted to have the 
strongest binding affinities. 

Because multiple steps of cleavage are needed for 
maturation, we performed additional protein docking of 
trypsin to model structures whose C-terminal chain after 
residue 64 (A chain) was cleaved out. As a result of this step, 
the preferable position for the active sites of trypsin were 
located near arginine 31 and arginine 32, which are known to 
form a cleavage site between the B and C chains. The binding 
affinities of the models were predicted to be strong (in 
descending order): model 2, 3, and 1. The two docking steps 
for artificial proinsulin models into trypsin revealed leader 
peptides that did not affect the order of cleavage sites, and 
models 1 and 2 are likely to be best accessed by trypsin in 
producing mature insulin. This coincides with previously 
tested refolding yields [7]. 

In summary, using 13 artificial models of leader peptides 
of proinsulin, we predicted the structures of fused pro-
insulins, the structures were refined by MD simulation, and 
protein-protein docking revealed binding modes between 
the artificial models and trypsin. The energies of the 
predicted structures of the models were not related to 
refolding yields, but the docking energies between the 
protease and the models showed some relation. We expect 
these analyses to provide basic information in a structural 
context for more effective production of insulin.
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