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Abstract: The number of inflorescence branches is an important agronomic character of tomato.
The meristem differentiation and development pattern of tomato inflorescence is complex and its
regulation mechanism is very different from those of other model plants. Therefore, in order to
explore the cause of tomato inflorescence branching, transcriptome analysis was conducted on two
kinds of tomato inflorescences (single racemes and compound inflorescences). According to the
transcriptome data analysis, there were many DEGs of tomato inflorescences at early, middle, and
late stages. Then, GO and KEGG enrichments of DEGs were performed. DEGs are mainly enriched in
metabolic pathways, biohormone signaling, and cell cycle pathways. According to previous studies,
DEGs were mainly enriched in metabolic pathways, and FALSIFLORA (FA) and ANANTHA (AN)
genes were the most notable of 41 DEGs related to inflorescence branching. This study not only
provides a theoretical basis for understanding inflorescence branching, but also provides a new idea
for the follow-up study of inflorescence.

Keywords: tomato inflorescence; differentially expressed genes; pathway

1. Introduction

Higher plants exhibit various inflorescence architectures progressing in complexity
from a solitary flower to complex structures that contain multiple branches and flowers [1].
The architecture of inflorescences is one of the determinant traits for many crops, such as
rice, maize, and tomato [2]. Favorable inflorescence branching is always a major breeding
target for achieving desirable production by balancing the sink–source relationship [3].
Unlike the inflorescences of Arabidopsis thaliana and rice, the inflorescences of tomato
are cymes [4]. The SIM (sympodial inflorescence meristem) generates a new SIM before
terminating in the FM (floral meristem), and the tomato inflorescence and branches are de-
termined by the repetition of this pattern [5]. A series of regulatory genes that have received
much attention have made major contributions to inflorescence architecture in tomato by
changing the inflorescence branching pattern. In Arabidopsis thaliana and tomato [6–10],
WUSCHEL-CLAVATA (WUS-CLV) feedback regulatory loops maintain a balance between
SAM activities and control the size of the meristem [11,12]. Mutations in the CLV pathway
genes, SlCLV3, FASCIATED AND BRANCHED (FAB), and FASCIATED INFLORESCENCE
(FIN), cause meristems to enlarge, leading to an increase in inflorescence branching in
tomato [13,14]. In addition, flowering time genes also play a certain role in regulating the
inflorescence structure during the flowering period transition. The single-flower truss (SFT)
is a flowering mutant that not only flowers late, but also disrupts the normal sympodial
growth of tomato [15]. A small number of inflorescences produced by tomato SFT mutant
plants under specific growth conditions can promote the transition of inflorescences to
vegetative functions [16,17]. JOINTLESS (j) mutants produce indeterminate inflorescences
and resume vegetative growth after producing 2–3 flowers [18]. In addition, J and SFT
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synergistically regulate the inflorescence structure to prevent early changes in inflorescence
meristem (IM) characteristics after inflorescence morphogenesis [19]. In addition, tomato
FALSIFLORA (FA) controls the flowering time and floral meristem characteristics [20]. FA
mutations result in the transformation of flowers into secondary buds and the production of
highly branched inflorescences [21]. In addition to these genes promoting flowering, TMF
(TERMINATING FLOWER) also encodes an ALOG family protein that affects tomato inflo-
rescence tissues [22]. The synergistic effect of TMF and slbop can prevent early flowering
and increase inflorescence complexity. All inflorescences of slbop1/2/3 triple mutants only
develop one or two flowers [23]. In addition, floral meristem characteristic genes also have
an important influence on tomato inflorescence structure [1]. The absence of ANANTHA
(AN) and COMPOUND INFLORESCENCE (S) leads to additional branching [24]. A het-
erozygous mutation combination of JOINTLESS2 (J2) and Enher-of -JOINTLESS2 (EJ2) can
cause a certain number of inflorescence branches. A heterozygous mutation combination
of JOINTLESS2 (J2) and Enher-of -JOINTLESS2 (EJ2) can cause a certain number of inflo-
rescence branches [25–27]. However, due to the limited number of known inflorescence
branching sites or genes and the unknown underlying mechanisms, the reconfiguration of
inflorescence branching remains a challenge in tomato breeding for high-yield varieties. In
higher tomato plants, inflorescence structure, flower number, fruit size and quality, and
superior plant type are directly related to yield. The analysis of genes regulating related
traits is of great significance for understanding the genetic basis of phenotypic variation
and promoting the breeding of superior varieties. In this study, we compared the transcrip-
tome between raceme and compound inflorescence (Racemes: rachis longer, unbranched,
with many florets ascending from bottom to top; compound inflorescence: inflorescence
rachis with branches, and each branch corresponds to a raceme), and the causes of different
inflorescence branches of tomato inflorescence were analyzed through a large amount of
data and the similarities and differences of genes controlling inflorescence branches were
observed. According to previous studies, 41 genes related to the inflorescence branch were
screened from DEGs. The presence of FALSIFLORA (FA) and ANANTHA (AN) genes
among the 41 genes is the main reason for the different inflorescence branches in tomato.
At the same time, plant hormones also affect the inflorescence branch. Gibberellin mainly
affects tomato branches. We have been able to identify the main reasons for the different
branches in tomatoes, both in terms of genes and hormones. It shows that transcriptome
experiments can roughly control the formation process of compound inflorescence and lay
a theoretical foundation for the subsequent study of compound inflorescence.

2. Results
2.1. Paraffin Sectioning of Tomato Inflorescences

We examined two different tomato inflorescence branches and paraffin sections. As
shown in the figure below, two periods (early and middle) of paraffin sectioning were
performed on compound inflorescence (CI) and single raceme (SR) material. As seen from
Figure 1A, the flower branch sections tended to swell and increase, and the middle stage
sections tended to sag inward. We can see from Figure 1B that in the middle stage of the
flowers, both sides continued to enlarge, and the middle sag became obvious. We can see
from Figure 1C that the inflorescence tomato slice was smooth and not obviously concave.
Figure 1C,D show no significant differences.

2.2. RNA Sequencing Data and Functional Analysis

In this study, 18 samples were tested, and the average output of each sample was 6.72.
The reference genome was 92.90% for the NCBI SL3.0 (USA, NIH, 1988) assembly sample
and 80.75% for the comparison gene set. A total of 23,593 genes were detected. Illumina
quality scores of 20 (Q20) and 30 (Q30) represented the percentage of sequencing data with
error rates less than 1 and 0.1%, respectively. In this study, the clean reads ratio (%) was
more than 94%, over 96% of reads met the Q20 threshold, while 91% of clean reads met the
Q30 threshold (Table 1). We then compared clean reads with reference genome sequences
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using HISAT (USA, Johns Hopkins University), and more than 94% of clean reads were
uniquely targeted reads.
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Figure 1. Images of paraffin sections of tomato inflorescences. (A): represents E_CI, and E_CI rep-
resents the early stage of the compound inflorescence. (B): represents M_CI, which represents the 
middle stage of the compound inflorescence. (C): represents E_SR, and E_SR represents the early 
stage of a single raceme. (D): represents M_SR, which represents the metaphase of a single raceme. 
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Figure 1. Images of paraffin sections of tomato inflorescences. (A): represents E_CI, and E_CI
represents the early stage of the compound inflorescence. (B): represents M_CI, which represents the
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stage of a single raceme. (D): represents M_SR, which represents the metaphase of a single raceme.

Table 1. Statistics of the tomato transcriptome database.

Sample Total
Mapping (%)

Uniquely
Mapping (%)

Total Raw
Reads (M)

Total Clean
Reads (M)

Total Clean
Bases (Gb)

Clean Reads
Q20 (%)

Clean Reads
Q30 (%)

Clean Reads
Ratio (%)

E_CI_1 92.54 91.01 47.33 45.03 6.76 96.58 91.56 95.15
E_CI_2 92.9 91.47 47.33 45.18 6.78 96.62 91.70 95.47
E_CI_3 93.23 91.85 45.57 43.92 6.59 96.71 91.86 96.37
E_SR_1 92.72 91.29 47.33 45.40 6.81 96.81 92.13 95.92
E_SR_2 92.92 91.44 47.33 45.33 6.80 96.59 91.55 95.77
E_SR_3 92.24 90.81 47.33 44.78 6.72 96.64 91.67 94.63
M_CI_1 93.10 91.68 45.57 44.16 6.62 96.66 91.72 96.89
M_CI_2 93.11 91.66 45.57 44.12 6.62 96.58 91.56 96.81
M_CI_3 92.85 91.38 47.33 45.39 6.81 96.86 92.20 95.91
M_SR_1 93.04 91.56 45.57 43.84 6.58 96.66 91.68 96.20
M_SR_2 92.70 91.28 47.33 45.08 6.76 96.76 91.93 95.24
M_SR_3 92.98 91.55 47.33 45.46 6.82 96.59 91.55 96.06
L_CI_1 92.64 91.19 47.33 45.43 6.81 96.67 91.79 95.99
L_CI_2 92.49 91.10 47.33 45.01 6.75 96.72 91.92 95.11
L_CI_3 93.06 91.59 47.33 45.42 6.81 96.73 91.88 95.98
L_SR_1 93.37 91.92 45.57 43.86 6.58 96.69 91.73 96.25
L_SR_2 92.91 91.44 47.33 45.44 6.82 96.48 91.31 96.01
L_SR_3 93.44 91.96 45.57 43.99 6.60 96.65 91.69 96.52

E_CI indicates early compound inflorescence development; E_CI_1, E_CI_2, and E_CI_3 are three samples from
the early stage of compound inflorescence development in E_CI. M_CI represents the middle of compound
inflorescence development, and M_CI_1, M_CI_2, and M_CI_3 are three samples from the middle stage of
compound inflorescence development in M_CI. L_CI indicates late compound inflorescence development, and
L_CI_1, L_CI_2, and L_CI_3 are three samples from the late compound inflorescence of L_CI. E_SR indicates
early single raceme development, and E_SR_1, E_SR_2, and E_SR_3 are three samples of a single raceme. M_SR
indicates the middle of single raceme development, and M_SR_1, M_SR_2, and M_SR_3 are three samples from
the middle stage of a single raceme. L_SR indicates late single raceme development, and L_SR_1, L_SR_2, and
L_SR_3 are three samples from the late stage of a single raceme.
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2.3. Expression and Analysis of Differentially Expressed Genes

In CI and SR tomato plants, DEGs were selected with a Q value≤ 0.05 and |log2FC| ≥ 1
(Figure 2). According to the figure, E_SR-vs.-L_SR up-regulated DEGs and down-regulated
DEGs were the most obvious, among which 4554 genes were up-regulated and 3525 genes
were down-regulated. Second, M_SR-vs.-L_SR up-regulated and down-regulated DEGs
were more obvious, including 1947 up-regulated genes and 3094 down-regulated genes.
However, in E_CI-vs.-E_SR, 732 DEGs were up-regulated and 352 DEGs were down-
regulated. Moreover, in M_CI-vs.-M_SR, 887 DEGs were up-regulated and 1720 DEGs were
down-regulated. Finally, in L_CI-vs.-L_SR, 1599 DEGs were up-regulated and 2436 DEGs
were down-regulated. To more intuitively detect the changes in DEGs in different periods,
we made volcano maps of DEGs in tomato inflorescences during the early, middle, and late
periods. As shown in Figure 3, red dots represent up-regulated genes, green dots represent
down-regulated genes, and gray dots represent non-DEGs.
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Figure 3. DEG volcano map. (A) E116-vs.-E115 volcano map. (B) M116-vs.-M115 volcano map.
(C) L116-vs.-L115 volcano map. Red dots represent up-regulated genes, green dots represent down-
regulated genes, and gray dots represent non-DEGs. The X-axis represents the fold change of the
difference after conversion to log2 values, while the Y-axis represents the significance value after
conversion to −log10 values.

2.4. GO Functional Classification Analysis of Differentially Expressed Genes

Through GO analysis, the biological functions of genes can be understood, as shown in
Figure 4. The size of bubbles represents the number of genes annotated in the pathway. In
general, Q ≤ 0.05 is thought to indicate significant enrichment. In the E_SR-vs.-E_CI group,
genes were enriched in the ubiquitin ligase complex, chloroplast thylakoid lumen, cell wall,
and chloroplast pathway (Figure 4A and Table S1A). In the M_SR-vs.-M_CI comparison,
DEGs were significantly enriched in photosystem I reaction centers, membrane components,
chloroplast thylakoid membranes, membranes, cell walls, and chloroplast stroma (Figure 4B
and Table S1B). In the L_SR-vs.-L_CI comparison, DEGs were significantly enriched in
the membrane components, extracellular region, cell wall, membrane, chloroplast outer
membrane, and plasmodesmata pathway (Figure 4C and Table S1C). These results indicate
that genes that regulate the number of inflorescence branches are mainly enriched in
metabolic, cellular, and biological regulation pathways.
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Figure 4. GO functional enrichment of differentially expressed genes in tomato inflorescences.
(A): E_SR-vs.-E_CI functional enrichment bubble diagram. (B): M_SR-vs.-M_CI functional enrich-
ment bubble diagram. (C): L_SR-vs.-L_CI functional enrichment bubble diagram. The size of the
bubble indicates the number of genes enriched in the GO term. The color of the bubbles indicates the
Q value. The enrichment factor is the ratio of the number of differentially expressed genes annotated
in the pathway to the number of all genes annotated in the pathway. The higher the enrichment
factor is, the higher the enrichment degree of the pathway.

2.5. Classification of DEGs in KEGG Pathways

To better analyze the factors affecting inflorescence branching, we classified DEGs into
five categories: cellular processes, environmental information processing, genetic informa-
tion processing, and metabolic and organic systems. In the comparison of E_SR-vs.-E_CI,
14 DEGs were enriched in cell processes, 15 DEGs were enriched in environmental infor-
mation processing, 28 DEGs were enriched in genetic information processing, 168 DEGs
were enriched in metabolism, and 7 DEGs were enriched in organic systems (Figure 5A
and Table S2A). In the M_SR-vs.-M_CI comparison group, 17 DEGs were enriched in cell
processes, 10 DEGs were enriched in environmental information processing, 29 DEGs were
enriched in genetic information processing, 75 DEGs were enriched in metabolism, and 11
DEGs were enriched in organic systems (Figure 5B and Table S2B). In the L_SR-vs.-L_CI
comparison group, 55 DEGs were enriched in cell processes, 68 DEGs were enriched in
environmental information processing, and 110 DEGs were enriched in genetic information
processing. There was a metabolic enrichment of 473 DEGs and organic enrichment of
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39 DEGs (Figure 5C and Table S2C). From the above description and Figure 5, we can see
that most DEGs were enriched in metabolic pathways.
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category, and the Y-axis is the KEGG pathway category.

2.6. Screening of Genes Affecting Tomato Inflorescence Traits

By collating gene expression log2-fold change, KEGG, and GO data, we screened
41 candidate genes related to tomato inflorescence branches from the E_SR-vs.-E_CI and
L_SR-vs.-L_CI groups (Table 2). Eight DEGs were associated with plant hormone signaling
pathways. Among them, 3 DEGs, gibberellin-related gene GA2ox1, and auxin-related
genes ARF3 and ARF4, were related to the flavonoid biosynthesis pathway, and 2 DEGs
were related to the zeatin biosynthesis pathway. One DEG was associated with carbon
metabolic pathways. Two DEGs were associated with cell cycle pathways. Six DEGs were
associated with chloroplast synthesis. Five were associated with F-box synthesis. Two
DEGs were associated with circadian pathways. Although the remaining 12 DEGs were not
enriched in relevant pathways, they also played an important role in tomato inflorescence
branching. For example, due to the loss of flower-forming ability, AN and FA led to the
formation of the lateral synaxy meristem, resulting in the formation of cauliflower (an) and
vegetative inflorescences (fa). In conclusion, some genes of the plant hormone pathway,
circadian rhythm pathway, and cell cycle pathway, as well as genes without significant
pathway expression changes, may be important reasons for the different branches of
tomato inflorescence.
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Table 2. Affect-related genes of tomato inflorescence traits.

Gene ID Symbol
Log2 Fold-Chang

Pathway
E116-vs-E115 L116-vs-L115

101252689 LOC101252689 0.98 1.16 Plant hormone signal transduction
101267446 LOC101267446 0.96 1.12 Plant hormone signal transduction

778363 ARF3 0.5 0.64 Plant hormone signal transduction
101262709 LOC101262709 1.38 1.85 Plant hormone signal transduction

778241 ARF4 0.51 1.11 Plant hormone signal transduction
101248511 LOC101248511 −1 −0.93 Plant hormone signal transduction
100134907 GA2ox1 −2.59 −3.24 Plant hormone signal transduction
101258926 LOC101258926 −3.04 −2.2 Plant hormone signal transduction
100736482 F3H 1.01 1.63 Flavonoid biosynthesis
101249699 LOC101249699 1.32 1.44 Flavonoid biosynthesis
101266223 LOC101266223 0.95 1.24 Flavonoid biosynthesis
104648079 LOC104648079 0.93 1.24 Zeatin biosynthesis
101256765 LOC101256765 −4.5 −4.19 Zeatin biosynthesis
101243791 LOC101243791 10.07 9.9 Carbon metabolism
100529127 LOC100529127 4.85 7.92 Cell cycle

543785 krp2 0.66 1.93 Cell cycle
101254782 LOC101254782 1.58 1.14 Chloroplastic
101255133 LOC101255133 1.47 1.57 Chloroplastic
101255274 LOC101255274 8.92 8.65 Chloroplastic
101258716 LOC101258716 2.11 1.91 Chloroplastic
101261442 LOC101261442 1.12 1.16 Chloroplastic
101266861 LOC101266861 1.08 1.56 Chloroplastic
104649068 LOC104649068 1.26 1.3 F-box
112940016 LOC112940016 6.79 6.53 F-box
101250115 LOC101250115 12.31 12.13 F-box
101244792 LOC101244792 9.56 9.4 F-box family protein
101261682 LOC101261682 3.65 5.77 F-box protein CPR1

778295 CHS2 2.73 2.18 Circadian rhythm
101246029 SFT −1.3 −4.15 Circadian rhythm
100301925 AN 1.59 1.12 Making of a compound inflorescence

543630 FA 0.94 2.61 Floral meristem identity

544038 SP 1.86 1.8 Regulates vegetative to reproductive
switching

543703 blind 0.29 2.33 Control the formation of lateral meristems
101259221 LOC101259221 0.79 1.11 Starch and sucrose metabolism
101266123 LOC101266123 0.44 1.31 Glycine, serine and threonine metabolism
101268249 LOC101268249 0.52 0.54 Purine metabolism
101268552 LOC101268552 5.39 5.13 Sulfur metabolism
112940464 LOC112940464 8.95 8.75 Fructose and mannose metabolism
101245153 CYP736A1 1.35 1.83 Tissue specific promoters
101251053 dxs2 0.8 2.15 Terpenoid backbone biosynthesis
101261618 Cwp 1.9 3.77 Cuticular water permeability protein

2.7. Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) is a tool for analyzing
complex data. In particular, the co-expression network predicts the regulatory relationship
between genes by using the expression correlation between genes. A dynamic shearing
algorithm was used for gene clustering and module division, and finally, 13 gene co-
expression modules were obtained, with the maximum number of genes in the modules
being 9203 (honeydew) (Figure 6B). Each branch of the cluster tree represents a module.
Each leaf represents a gene. Each color represents a module. Looking at the correlation
coefficient of the modules, it was found that the genes in the dark red and yellow modules
had higher specificity.

Therefore, we performed KEGG pathway analysis on the dark red and yellow mod-
ules. Deep red module genes were found to be enriched in photosynthesis, carbon fixation,
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carbon metabolism, chloroplast metabolism, carotenoid biosynthesis, and plant hormone
signal transduction pathways during photosynthesis (Figure 6C). The genes in the yel-
low module were enriched in various pathways, including plant hormone signaling, the
circadian rhythm, and the MAPK signaling pathway (Figure 6D).
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2.8. MapMan Software Analyzes DEGs

MapMan (3.6.0RC1,Elijah Myers, USA) is a plant-specific software that provides a
complete functional classification of genes and a comprehensive pathway map. The cell
response, cell function, biological regulation, and metabolism of DEG in late inflorescence
and late inflorescence of two tomato varieties were analyzed by using MapMan software.
The red squares represent down-regulated differential genes and the blue squares represent
up-regulated differential genes. The darker the color, the more significant the difference
(Figure 7). In terms of the regulation of the cell response (Figure 7A), most DEGs involved
in cell division and the cell cycle were down-regulated, and those involved in development
were significantly up-regulated. In terms of the regulation of cell function (Figure 7B), there
were more down-regulated genes than up-regulated genes in the cell division and cell
cycle pathways. There were more up-regulated DEGs in the REDOX pathway, while there
were more down-regulated genes in the DNA repair and DNA synthesis pathways. The
results of the biological regulatory pathway (Figure 7C) showed that DEGs mainly affected
indole acetic acid (IAA), abscisic acid (ABA), brassinosteroids (BR), ethylene, cytokinin
(CTK), jasmonic acid (JA), salicylic acid (SA), and gibberellin (GA). Genes related to each
hormone were also up-regulated and down-regulated. The content of DEGs in the IAA
pathway was highest, and that in the salicylic acid pathway was lowest. From metabolic
pathway analysis (Figure 7D), DEGs were enriched in the cell wall, lipids, secondary
metabolism, amino acids, TCA, starch sucrose, and light sucrose. The expression of DEGs
was up-regulated and down-regulated, and there were more down-regulated genes than
up-regulated genes. Most of the genes were enriched in secondary metabolism, and there
were more down-regulated genes than up-regulated genes.

2.9. Validation of RNA-Seq Data via qRT–PCR

To verify the accuracy of the DEG expression patterns indicated by the RNA-seq data,
we analyzed 10 DEGs by qRT–PCR with three biological replicates (Figure 8). Relative
quantitative data were calculated according to the CT method: normalization (CT = CT
(sample) CT (GAPDH)); CT = CT (sample A) CT (sample B); relative quantification = 2 CT.
The qRT–PCR data were analyzed with SPSS v.21.0 software for variance analysis, and
the Waller–Duncan (W) method was used for comparison at the p < 0.05 level. It could
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be seen from the figure that under the background where p < 0.05 represents a significant
difference, the data point marked ‘a’ was significantly higher than ‘b’ and ‘c’; ‘b’ was
significantly higher than ‘c’. There was no significant difference between the same letter.
These results indicated that the RNA-seq data were of high quality and could be used for
subsequent analysis.
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3. Discussion

In this study, we sequenced the early, middle, and late-stage inflorescences of two
different tomato inflorescence branches. The transcriptome data were verified by qRT–PCR,
and the results showed that the data obtained by RNA-seq were reliable. Transcriptome
data showed that DEGs were abundant in the nine comparison groups. We set-up three
comparison groups between the two materials: the early stage of the two materials, the
middle stage of the two materials, and the late stage of the two materials. Therefore,
we found that DEGs were the most abundant in the comparison of the early and late
inflorescences, indicating that the genes regulating inflorescence were greatly expressed
from the early to late inflorescence stages. We conducted GO and KEGG enrichment
analyses for early and late DEGs and found that DEGs were significantly enriched in
some effective pathways. To facilitate the further understanding of the gene functions, we
also carried out co-expression analysis. Then, we used MapMan software to classify the
biological functions of the DEGs, which made our study on the branching of inflorescences
more detailed.

Our GO enrichment results revealed that the different branches of tomato inflores-
cences may be closely related to some pathways. In Figure 5, DEGs in different inflorescence
branches were significantly enriched in the early stage, mainly in the ubiquitin ligase com-
plex, chloroplast thylakoid lumen, membrane, cell wall, and chloroplast pathways. DEGs
of different inflorescence branches were mainly involved in the photosystem I reaction
center, membrane components, chloroplast thylakoid membrane, membrane, cell wall,
and chloroplast stroma at the metaphase. DEGs in different inflorescence branches were
significantly enriched in the membrane components, extracellular region, cell wall, mem-
brane, chloroplast outer membrane, and plasmodesmata pathway at the late stage. We also
sorted out DEGs from different inflorescence branches through the three main categories of
molecular functions, cellular components, and biological processes. DEGs were found to be
significantly enriched in metabolic processes, cellular processes, and biological regulation
at early, middle, and late stages. According to the GO enrichment results, the different
branches of inflorescence may be caused by the presence of genes in the chloroplast thy-
lakoid membrane, photosystem reaction, membrane components, and membrane. At the
same time, the branching is closely related to metabolic processes, cellular processes, and
biological regulation.

We used MapMan to analyze DEGs from the four aspects of cell response, cell function,
biological regulation, and metabolic regulation (Figure 8). From the aspects of cell response
and cell function, we observed that the DEGs were significantly different in both the cell
cycle pathway and the cell division pathway. Previous studies have shown that the cell cycle
pathway can affect the growth of tomato fruits [28]. In this study, it was found that some
genes located in the cell cycle pathway may also have a certain influence on the branching
traits of tomato inflorescences, marking a new discovery with certain significance. Some
studies have also shown that the cell division pathway has a certain influence on the growth
of tomato throughout its life [29]. DEGs were found to be involved in auxin, cytokinin,
and gibberellin pathways. Previous studies have found that auxin is a key regulatory
factor in flower development [30]. When plants are treated with auxin polar transport
inhibitors, the leaf sequence pattern changes, and lateral organs and floral meristems cannot
be formed, thus forming a kind of acicular inflorescence [31,32]. As an important flowering
hormone, cytokinins can regulate floral primordium initiation and floral organ development
and participate in the regulation of stamen and pistil development of flowering plants,
delaying the senescence of flower organs [33–35]. Gibberellin plays a role in regulating
organ growth and promoting reproductive development in the whole growth process of
crops [36]. Jasmonic acid signaling in crops is usually regulated by both biotic and abiotic
stresses, but studies have shown that excess JAZ2 can promote tomato leaf growth and
early flowering [37]. Metabolic pathway analysis of DEGs involved in the cell wall, lipids,
secondary metabolism, amino acids, TCA, starch, sucrose, light reactions, photosynthesis,
and nucleotides were enriched. Previous studies have shown that DEGs affect the growth
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of tomato stems through metabolic pathways [38]. According to the above findings, cell
response, cell function, biological regulation, and metabolic regulation, both directly and
indirectly affected tomato growth and development and inflorescence branching.

To better analyze the causes of different inflorescence branches in tomato, we selected
effective genes from the transcriptome (Table 2). Previous studies have found that fruit
germination after fertilization in angiosperms is strictly regulated by plant hormones and
revealed that direct crosstalk between IAA and GA signaling components is crucial for
tomato fruit formation [39,40]. ARF3 and ARF4 are members of the auxin response factor,
ARF, family. The results showed that SlARF3 plays an important role in the formation
of epidermal cells and trichomes and revealed the novel and specific functions of ARFs
in tomato development [41]. Krp2 regulates or affects tomato fruit development through
the cell cycle pathway [28]. CHS2 is involved in the circadian pathway and flavonoid
biosynthesis pathway (FBP), which may be an ideal system for simulating genotypic
and phenotypic interactions related to secondary metabolism [42]. Previous studies have
reported that the heterozygosity of the SINGLE FLOWER TRUSS (SFT) allele for functional
loss in tomato, the genetic origin of the flowering hormone floblast, can increase yield by
60%. The yield advantage of SFT heterozygosity is robust and occurs in different genetic
backgrounds and environments. Studies have shown that the polymorphic integration of
several traits drives heterosis in a multiplicative manner, and these effects are due to the
inhibition of growth termination mediated by SELF PRUNING (SP). The results of this
study provide the first example of the yield of a single hyperdominant gene and suggest
that a single heterozygous mutation may enhance the productivity of other agricultural
organisms [43]. SINGLE FLOWER TRUSS is a regulator of flowering time and branch
structure encoding a tomato lineal homolog of FT, a major flowering integron gene in
Arabidopsis thaliana. Grafting signals generated by SFT complement the morphogenetic
defects of sft plants and replace the light dose stimulation in tomatoes and the requirement
for day length [44]. SELF-PRUNING (sp) mutations in tomato resulted in single amino acid
changes, and the mutant phenotype was simulated by the overexpression of SP antisense
RNA. The ectopic and overexpression of SP and CEN transgenes in tomato lead to uncertain
phenotypes, regulating leaf substitution for flowers in inflorescences and inducing the
vegetative apex to become a reproductive branch. SP genes are expressed in bud tips
and leaves from early stages and later also in the inflorescence and flower primordium.
This expression pattern was similar to those of the tomato direct homologs LEAFY and
FLORICAULA [45]. The SP interaction protein of tomatoes defines a conservative signaling
system that regulates bud structure and flowering as well as the vegetative to reproductive
transition of the zygote meristem [46]. The tomato blind gene encodes an MYB transcription
factor that controls lateral meristem formation [47]. In some previous studies on tomato,
some genes control the growth of tomato plants, and we can speculate that these genes
may have a close effect on tomato inflorescence branches.

Changes in inflorescence branches determine the number of flowers and thus repro-
ductive success and crop yield. In previous studies, it has been shown that AN controls
inflorescence structure by promoting the continuous stage of inflorescence meristem de-
velopment toward flower specification. During this gradual phase transition, the loss of
ANANTHA (AN) genes delays flower formation, leading to additional branching. The
variation in Solanaceae inflorescences is regulated by the time changes acquired by flower
fate, providing a flexible evolutionary mechanism for the development of synctic inflo-
rescence buds [4]. The common expression of homologs of AN in petunias results in a
very early flowering and conversion of inflorescences to single flowers and leaves to petals.
The ectopic expression of AN activates the identity of organ primordia or genes required
for growth. Previous studies have shown that AN plays a broader role in flower pattern
formation than previously thought and that the different roles of AN homologs in the
spatiotemporal control of flower identity in different species are caused by their different
expression patterns [48]. FALSIFLORA (FA) mutants are not able to form complete flowers,
and FA is also able to control flowering time and floral meristem development [20]. The
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fa mutation primarily alters inflorescence development, causing flowers to be replaced by
secondary branches but also producing a late flowering phenotype, with an increase in
the number of leaves below the first and successive inflorescences. The model suggested
that FA loci regulated floral meristem identity and flowering time in tomato in a similar
way to the role of FLORICAULA (FLO) and LEAFY (LFY) genes in Arabidopsis thaliana. The
gene is expressed in the tomato plants meristem and flower meristem, leaf primordium
and leaf, and four flower organs. Compared with other FLO/LFY lineal homologs, the
function of this gene was analyzed in tomato, a plant with a synphytic growth habit and
cyme development. As the fa mutant plant cannot form complete flowers, it produces
four rounds of flowers, albeit modified, which can be used to study the functional link
between flower induction and floral organ specification [49]. The results of our study are
highly consistent with those of previous studies, indicating that the different materials of
the branches of the two inflorescences may be influenced by mutations of AN (an) and FA
(fa) genes.

4. Materials and Methods
4.1. Test Materials

Compound inflorescences (represented by CI in the transcriptomic analysis, where
CI corresponds to 115 in the raw sequencing data) and single racemes (identified as SR
in the transcriptomic analysis, where SR corresponds to 116 in the raw sequencing data)
were used as parents in this study, in which the female had compound inflorescences (CIs)
and the male had single racemes (SRs) (both provided by the Tomato Research Group of
Northeast Agricultural University) (Figure 9). In a greenhouse at the Horticulture Station
of Northeast Agricultural University (Harbin, China), tomato seeds are sown in pots filled
with soil and grown under controlled conditions (light 16 h, 25 ◦C, and ambient humidity
50%). All plants were kept at 25 degrees Celsius and 50% relative humidity. In the early,
middle, and late stages of inflorescence differentiation, the parental flower buds were taken
once, and 3 biological replicates were prepared for each treatment.
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4.2. Paraffin Sectioning

To observe the development of the tomato inflorescence meristem, we examined paraf-
fin sections of tomato inflorescence tissue in early and middle stages [50]. The definition of
three stages of tomato inflorescence: the early inflorescence of tomato was defined as about
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3 days after germination; the middle inflorescence of tomato was defined as about 10 days
after inflorescence growth; the late inflorescence of tomato was defined as about 15 days.
The slices were placed in xylene for 40 min, anhydrous ethanol for 10 min, and 75% alcohol
for 5 min and then rinsed with tap water. The slices were immersed in saffron dye and
stained for 1–2 h with tap water, and the excess dye was washed away. The samples were
sliced and subjected to a 50%, 70%, and 80% gradient alcohol decolorization. The slices
were dyed with solid green dye for 30–60 s, soaked in three cylinders of anhydrous ethanol,
and dehydrated. The slices were divided into n-butanol and xylene transparent sections
for 5 min each. The slices were removed from the xylene and slightly dried. Neutral gum
was used to seal the slices for microscopic examination, and the images were collected
and analyzed.

4.3. RNA Extraction and Illumina Sequencing

In this experiment, we sequenced the inflorescence transcriptomes of two different
tomatoes using the DNA Nano Ball Sequence (DNBSEQ) platform. A total of 18 samples
were analyzed, and each sample yielded an average of 6.72 G of data. Total RNA was
extracted from leaf samples using plant RNA Mini-kits according to the manufacturer’s
instructions (Watson, China). Using the RNAprpe Pure Plant Kit (Thermo Fisher, New York,
NY, USA), total RNA was extracted from a total of 18 samples in each group for real-time
quantitative PCR (qRT-PCR) and RNA sequencing (RNA-seq) analyses. The extracted total
RNA was delivered to BGI (Shenzhen, China) for high-throughput sequencing. The com-
pany provides the following detailed experimental methods. mRNA samples were isolated
from total RNA samples treated with DNA enzyme I by the oligo (dT) method. Eighteen
cDNA libraries were constructed from purified RNA. The library was then sequenced using
Illumina HiSeq4000 machines according to the Illumina protocol [51,52].

4.4. DEG Identification

Gene expression levels were quantified by standardizing read counts to aligned frag-
ments (FPKM) of transcripts per kilobase of reads per million markers [53,54]. The fractional
index of transcription splicing alignment (HISAT) was used to align pairs of clean reads
with the reference genome [54,55]. We used NOIseq in conjunction with noise distribu-
tion models to detect DEGs [56,57]. Through the comparison of gene expression among
varieties, some DEGs were screened for further enrichment analysis. The read count data
representing the number of reads contained in the transcript were used as the input data in
the analysis of differential gene expression. Through the comparison of gene expression
among varieties, some DEGs were screened for further enrichment analysis. The read count
data representing the number of reads contained in the transcript were used as the input
data in the analysis of differential gene expression. DEGs were defined as genes with a
log2FC change ≥ 1 and FDR value ≤ 0.05 [58,59]. Multiple hypothesis testing was used to
correct the error, and the false detection rate (FDR) was used to control the threshold of the
p value to avoid false positives.

4.5. KEGG Analysis of Differentially Expressed Genes

KEGG (Kyoto Encyclopedia Genes and Genomes) database enrichment analysis was
performed using the Phyper function in R software [57]. The X-axis is the ratio of the
number of genes annotated to an item in the selected gene set to the total number of
genes annotated to the item in the species. The calculation formula is as follows: Rich
Ratio = Term Candidate Gene Num/Term Gene Num, and the Y axis is the KEGG pathway:
the bubble size represents the number of genes annotated to a certain KEGG pathway,
and the color represents the enrichment significance value. FDR (false discovery rate)
correction was performed for the p-value. Generally, a Q-value ≤ 0.01 indicated significant
enrichment. The redder the color is, the smaller the significance value.
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4.6. GO Enrichment Analysis of Differentially Expressed Genes

This software used in the experiments for the GOseq (Young et al. 2010) Gene Ontology
((GO), http://www.geneontology.org/) [60] GO functional significance enrichment analysis
provided the GO functional items (terms) that are significantly enriched in candidate
genes compared with the whole genetic background of this species, thus revealing the
biological functions that candidate genes are significantly associated with. The analysis
first put all candidate genes into the Gene Ontology database (http://www.geneontology.
org/) of each map entry, calculated each item on the number of genes, and then, using
hypergeometric inspection, found out that, compared with all the background of this species
gene, GO was significantly enriched in candidate genes entries. We used R basis function
phyper for p value calculation (https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/Hypergeometric.html (accessed on 10 June 2022)). The multiple test was positive,
then on the p value, the correction software package was the p value (https://bioconductor.
org/packages/release/bioc/html/qvalue.html (accessed on 10 June 2022)). Ending with
a Q value (corrected p value) ≤0.05 was the threshold, and the GO term meeting this
condition was defined as the GO term significantly enriched in candidate genes.

4.7. Weighted Coexpression Gene Network Analysis (WGCNA)

In this study, 18 transcriptome samples (2 materials at 3 time points, each repeated
3 times) were selected for WGCNA analysis. The WGCNA software package was used for
gene co-expression network analysis; the X-axis represents phenotypes (samples) and the Y-
axis represents different co-expression gene modules [61,62]. For missing values, if the gene
expression of a sample was missing more than 50%, it was eliminated; if a gene was missing
in more than 50% of the samples, it was eliminated. For the filtering of gene expression, the
top 75% of the genes with the median absolute deviation (MAD) were retained. The filtered
data used the automatic network construction function blockwiseModules to construct
a co-expression network. The filtered data constructed a co-expression network through
the automatic network construction function blockwiseModules. The network type was
unsigned, and the correlation type was Pearson. In the module, the exceptions were that
the power was 9, the TOM similarity threshold was 0.19, and the minimum number of
genes was 20. To study highly correlated modules, Pearson correlation coefficients between
sample matrices and gene modules were calculated and statistically tested. The higher the
correlation coefficient, the higher the correlation between the module and the sample.

4.8. Related Genes Were Verified by qRT–PCR

Real-time quantitative PCR was used to test the reliability of the RNA-seq data.
In this experiment, 10 DEGs were randomly selected. Primers were designed based

on the NCBI database, and reverse transcription and fluorescence measurements were
performed according to the requirements of the kit (Vazyme, Nanjing, China). These were
mainly involved in plant hormone signal transduction and metabolic pathways. Table S3
shows information regarding the design of qRT–PCR primers. Ace Q®q PCR SYBR®Green
Master Mix (Vazyme, NJ, USA,) and the qTOWER3G detection system (Analytik Jena,
Germany) were used in this study [63]. Gene expression was analyzed by the 2−∆∆CT

method [64].

5. Conclusions

To study the cause of different inflorescence branches in tomato, we used two different
inflorescence materials for transcriptome analysis. In the early, middle, and late comparison
groups of tomato inflorescences, a large number of DEGs were found. According to GO and
KEGG enrichment analyses, DEGs were mainly enriched in metabolic processes, cellular
processes, and biological regulation pathways. Based on previous studies, we screened
41 genes that we believed might be related to tomato inflorescence branching from the
early and late comparison groups. To better analyze the functions of the DEGs, we used
MapMan software to interpret and classify DEGs and concluded that biological regulation,

http://www.geneontology.org/
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plant hormone signal transduction, and metabolic regulation pathways all have certain
effects on tomato growth and development and inflorescence branching.
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